Доводка вольфрамовых концентратов на электромагнитном сепараторе. Выбор, обоснование и расчет технологии переработки вольфрамо-молибденовой руды. Введение Диссертация по наукам о земле, на тему "Разработка технологии извлечения вольфрама из лежалых хвосто

Магнитные методы широко применяются при обогащении руд черных, цветных и редких металлов и в других областях промышленности, в том числе и пищевой. Они используются для обогащения железных, марганцевых, медно-никелевых вольфрамовых руд, а также для доводки концентратов руд редких металлов, регенерации ферромагнитных утяжелителей в установках для разделения в тяжелых суспензиях, для удаления железных примесей из кварцевых песков, пирита из угля и др.

Все минералы различны по удельной магнитной восприимчивости и для извлечения слабомагнитных минералов необходимы поля с высокими магнитными характеристиками в рабочей зоне сепаратора.

В рудах редких металлов, в частности вольфрама и ниобия и тантала, основные минералы в виде вольфрамита и колумбита-танталита обладают магнитными свойствами и возможно применение высоко градиентной магнитной сепарации с извлечением в магнитную фракцию рудных минералов.

В лаборатории магнитных методов обогащения НПО “ЭРГА” проводились испытания вольфрамовой и ниобий-танталовой руды Спойкойнинского и Орловского месторождения. Для сухой магнитной сепарации применялся валковый сепаратор СМВИ производства НПО “ЭРГА”

Сепарация вольфрамовой и ниобий-танталовой руды проходила по схеме №1. Результаты представлены в таблице.

По результатам работы можно сделать следующие выводы:

Содержание в хвостах сепарации полезных компонентов составляет: WO3 по первой схеме сепарации - 0,031±0,011%, по второй - 0,048±0,013%; Ta 2 O 5 и Nb 2 O 5 -0,005±0,003%. Это говорит о том, что индукции в рабочей зоне сепаратора хватает для извлечения слабомагнитных минералов в магнитную фракцию и магнитный сепаратор типа СМВИ пригоден для получения отвальных хвостов.

Испытания магнитного сепаратора СМВИ проводились также на бадделеитовой руде с целью извлечения слабомагнитных минералов железа (гематита) в хвосты и очистки циркониевого концентрата.

Результатом сепарации стало снижение содержания железа в немагнитном продукте с 5,39% до 0,63% с извлечением 93%. Содержание циркония в концентрате увеличилось на 12%.

Схема работы сепаратора представлены на Рис. 1

Применение магнитного сепаратора СМВИ нашло широкое применение при обогащении различных руд. СМВИ может служить как основным обогатительным оборудованием, так и в качестве доводки концентратов. Подтверждению этому служат успешные полупромышленные испытания данного оборудования.

Основными вольфрамовыми минералами являются шеелит, гюбнерит и вольфрамит. В зависимости от вида минералов руды можно раз делить на два типа; шеелитовые и вольфрамитовые (гюбнеритовые).
Шеелитовые руды в России, а также в ряде случаев и за рубежом, обогащают флотацией. В России процесс флотации шеелитовых руд в промышленном масштабе осуществлен до второй мировой войны на Тырны-Аузской фабрике. На этой фабрике перерабатываются очень сложные молибдено-шеелитовые руды, содержащие ряд кальциевых минералов (кальцит, флюорит, апатит). Кальциевые минералы, как и шеелит, флотируют с олеиновой кислотой, депрессия кальцита и флюорита производится перемешиванием в растворе жидкого стекла без подогрева (длительное контактирование) или с подогревом, как на Тырны-Аузской фабрике. Вместо олеиновой кислоты применяют фракции таллового масла, а также кислоты из растительных масел (реагенты 708, 710 и др.) одни или в смеси с олеиновой кислотой.

Типичная схема флотации шеелитовой руды дана на рис. 38. По этой схеме удается удалить кальцит и флюорит и получить кондиционные по трехокиси вольфрама концентраты. Ho апатит все же остается в таком количестве, что содержание фосфора в концентрате выше кондиций. Избыток фосфора удаляют растворением апатита в слабой соляной кислоте. Расход кислоты зависит от содержания карбоната кальция в концентрате и составляет 0,5-5 г кислоты на тонну WO3.
При выщелачивании кислотой часть шеелита, а также повеллит, растворяют и затем высаживают из раствора в виде CaWО4 + СаМоО4 и другие примеси. Полученный грязный осадок затем перерабатывают по методу И.Н. Масленицкого.
Ввиду трудности получения кондиционного вольфрамового концентрата на многих фабриках за границей получают два продукта: богатый концентрат и бедный для гидрометаллургической перерабтки на вольфрамат кальция по методу, разработанному в Механобре И.Н. Масленицким, - выщелачивание содой в автоклаве под давлением с переводом в раствор в виде CaWО4 с последующей очисткой раствора и осаждением CaWO4. В некоторых случаях при крупновкрапленном шеелите доводку флотационных концентратов ведут на столах.
Из руд, содержащих значительное количество CaF2, извлечение шеелита за границей флотацией не освоено. Такие руды, например в Швеции, обогащают на столах. Шеелит, увлеченный с флюоритом во флотационный концентрат, затем выделяют из этого концентрата на столе.
На фабриках России шеелитовые руды обогащают флотацией, получая кондиционные концентраты.
На Тырны-Аузской фабрике из руды с содержанием 0,2% WO3 получают концентраты с содержанием 6о% WO3 при извлечении 82%. На Чорух-Дайронской фабрике при такой же по содержанию VVO3 руде получают в концентратах 72% WO3 при извлечении 78,4%; на Койташской фабрике при руде с 0,46% WO3 в концентрате получают 72,6% WO3 при извлечении WO3 85,2%; на Лянгарской фабрике в руде 0,124%, в концентратах - 72% при извлечении 81,3% WO3. Возможно дополнительное выделение бедных продуктов за счет снижения потерь в хвостах. Во всех случаях при наличии в руде сульфидов их выделяют до шеелитовой флотации.
Расход материалов и энергии иллюстрируется данными, приведенными ниже, кг/т:

Вольфрамитовые (гюбнеритовые) руды обогащают исключительно гравитационными методами. Некоторые руды с неравномерной и крупнозернистой вкрапленностью, как например, руда Букуки (Забайкалье), можно предварительно обогащать в тяжелых суспензиях, выделяя около 60% пустой породы при крупности-26+3 MM с содержанием не выше 0,03% WO3.
Однако при относительно небольшой производительности фабрик (не больше 1000 т/сутки) первую стадию обогащения производят в отсадочных машинах, обычно начиная с крупности около 10 мм при крупновкрапленных рудах. В новых современных схемах используют, кроме отсадочных машин и столов, винтовые сепараторы Гэмфри, заменяя ими часть столов.
Прогрессивная схема обогащения вольфрамовых руд дана на рис. 39.
Доводка вольфрамовых концентратов зависит от их состава.

Сульфиды из концентратов тоньше 2 мм выделяют флотогравитацией: концентраты после перемешивания с кислотой и флотореагентами (ксантат, масла) направляют на концентрационный стол; полученный CO стола концентрат сушат и подвергают магнитной сепарации. Крупнозернистый концентрат предварительно додрабливают. Сульфиды из мелких концентратов со шламовых столов выделяют пенной флотацией.
Если сульфидов много, их целесообразно выделять из слива гидроциклонов (или классификатора) до обогащения на столах. Это улучшит условия выделения вольфрамита на столах и при операциях доводки концентратов.
Обычно грубые концентраты до доводки содержат около 30% WO3 при извлечении до 85%. Для иллюстрации в табл. 86 приведены некоторые данные по фабрикам.

При гравитационном обогащении вольфрамитовых руд (гюбнеритовых, ферберитовых) из шламов тоньше 50 мк извлечение очень низкое и потери в шламовой части значительные (10-15% от содержания в руде).
Из шламов флотацией с жирными кислотами при pH=10 можно дополнительно извлечь WO3 в бедные продукты, содержащие 7- 15% WO3. Эти продукты пригодны для гидрометаллургической переработки.
Вольфрамитовые (гюбнеритовые) руды содержат некоторое количество цветных, редких и благородных металлов. Часть из них переходит при гравитационном обогащении в гравитационные концентраты и переводится в хвосты доводки. Из сульфидных хвостов доводки, как и из шламов, можно выделить селективной флотацией молибденовые, висмуто-свинцовые, свинцово-медно-серебряные, цинковые (в них кадмий, индий) и пиритные концентраты, а дополнительно выделить и вольфрамовый продукт.

25.11.2019

В каждой отрасли, где происходит производство жидкой или вязкой продукции: в фармацевтическом деле, в косметической отрасли, в пищевом и химическом секторах – везде...

25.11.2019

На сегодняшний день обогрев зеркал является новой опцией, позволяющей сохранить чистую поверхность зеркала от горячего пара после приёма водных процедур. Благодаря...

25.11.2019

Штрих код является графическим символом, изображающим чередование полосок чёрного и белого цвета либо других геометрических фигур. Его наносят в составе маркировки...

25.11.2019

О том, как грамотно выбирать топку для камина, задумываются многие хозяева загородных жилых имений, которые хотят создать в своём доме максимально уютную обстановку,...

25.11.2019

И в любительском, и в профессиональном строительстве весьма востребованными являются профильные трубы. С их помощью сооружают способные выдерживать большие нагрузки...

24.11.2019

Спецобувь - часть экипировки рабочего, предназначенная для защиты ног от холода, высоких температур, химикатов, механических повреждений, электричества и т. д....

24.11.2019

Все мы привыкли, выходя из дома, обязательно смотреть в зеркало, чтобы проверить свой внешний вид и лишний раз улыбнуться своему отражению....

23.11.2019

Испокон веков главными делами женщин по всему свету являлись стирка, уборка, приготовление еды и всевозможные действа, способствующие организации уюта в доме. Однако, то...

Изобретение относится к способу комплексной переработки хвостов обогащения вольфрамсодержащих руд. Способ включает их классификацию на мелкую и крупную фракции, винтовую сепарацию мелкой фракции с получением вольфрамового продукта и его перечистку. При этом перечистку проводят на винтовом сепараторе с получением чернового вольфрамового концентрата, который подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата, который подвергают флотации с получением высокосортного кондиционного вольфрамового концентрата и сульфидсодержащего продукта. Хвосты винтового сепаратора и концентрационного стола объединяют и подвергают сгущению. При этом полученный после сгущения слив подают на классификацию хвостов обогащения вольфрамсодержащих руд, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который отправляют на перечистку. Техническим результатом является повышение глубины переработки хвостов обогащения вольфрамсодержащих руд. 1 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к обогащению полезных ископаемых и может быть использовано при переработке хвостов обогащения вольфрамсодержащих руд.

При переработке вольфрамсодержащих руд, как и хвостов их обогащения, используют гравитационные, флотационные, магнитные, а также электростатические, гидрометаллургические и другие способы (см., например, Берт P.O., при участии К.Миллза. Технология гравитационного обогащения. Пер. с англ. - М.: Недра, 1990). Так, для предварительной концентрации полезных компонентов (минерального сырья) применяются фотометрическая и люмометрическая сортировка (например, обогатительные фабрики «Маунт Карбайн», «Кинг Айленд»), обогащение в тяжелых средах (например, португальская фабрика «Панаскуера» и английская фабрика «Хемердан»), отсадка (в особенности бедного сырья), магнитная сепарация в слабомагнитном поле (например, для выделения пирита, пирротина) или высокоинтенсивная магнитная сепарация (для разделения вольфрамита и касситерита).

Для переработки вольфрамсодержащих шламов известно использование флотации, в частности вольфрамита в КНР и на канадской фабрике «Маунт Плисад», причем на некоторых фабриках флотация полностью заменила гравитационное обогащение (например, фабрики «Йокберг», Швеция и «Миттерсил», Австрия).

Известно также использование винтовых сепараторов и винтовых шлюзов для обогащения вольфрамсодержащих руд, старых отвалов, лежалых хвостов, шламов.

Так, например, при переработке старых отвалов вольфрамовой руды на фабрике «Чердояк» (Казахстан) исходный отвальный материал после дробления и измельчения до крупности - 3 мм подвергался обогащению на отсадочных машинах, подрешетный продукт которых перечищался затем на концентрационном столе. Технологическая схема включала также обогащение на винтовых сепараторах, на которых извлекалось 75-77% WO 3 при выходе продуктов обогащения 25-30%. Винтовая сепарация позволила повысить извлечение WO 3 на 3-4% (см., например, Аникин М.Ф., Иванов В.Д., Певзнер М.Л. «Винтовые сепараторы для обогащения руд», Москва, изд-во «Недра», 1970 г., 132 с.).

Недостатками технологической схемы переработки старых отвалов являются высокая нагрузка в голове процесса на операцию отсадки, недостаточно высокое извлечение WO 3 и значительный выход продуктов обогащения.

Известен способ попутного получения вольфрамового концентрата путем переработки хвостов молибденитовой флотации (фабрика «Клаймакс молибденум», Канада). Хвосты, содержащие вольфрам, разделяют с помощью винтовой сепарации на отвальные по вольфраму шламы (легкая фракция), первичный вольфрамит - касситеритовый концентрат. Последний подвергают гидроциклонированию и слив шламов направляют в отвальные хвосты, а песковую фракцию - на флотационное выделение пиритного концентрата с содержанием 50% S (сульфидов) и вывод его в отвальные хвосты. Камерный продукт сульфидной флотации перечищают с помощью винтовой сепарации и/или конусов с получением отвальных пиритсодержащих хвостов и вольфрамит-касситеритового концентрата, который подвергают обработке на концентрационных столах. При этом получают вольфрамит-касситеритовый концентрат и отвальные хвосты. Черновой концентрат после обезвоживания перечищают последовательно путем очистки его от железа с помощью магнитной сепарации, флотационного удаления из него монацита (флотация фосфатов) и затем обезвоживают, сушат, классифицируют и разделяют с помощью стадийной магнитной сепарации на концентрат с содержанием 65% WO 3 после I стадии и 68% WO 3 после II стадии. Также получают немагнитный продукт - оловянный (касситеритовый) концентрат с содержанием ~35% олова.

Этому способу переработки свойственны недостатки - сложность и многостадийность, а также высокая энергоемкость.

Известен способ доизвлечения вольфрама из хвостов гравитационного обогащения (фабрика «Боулдер», США). Хвосты гравитационного обогащения доизмельчают, обесшламливают в классификаторе, пески которого разделяют на гидравлических классификаторах. Полученные классы обогащают раздельно на концентрационных столах. Крупнозернистые хвосты возвращают в цикл измельчения, а тонкие хвосты сгущают и повторно обогащают на шламовых столах с получением готового концентрата, промпродукта, поступающего на доизмельчение, и хвостов, направляемых на флотацию. Концентрат основной флотации подвергают одной перечистке. В исходной руде содержится 0,3-0,5% WO 3 ; извлечение вольфрама достигает 97%, причем около 70% вольфрама извлекается флотацией. Однако содержание вольфрама во флотационном концентрате низкое (около 10% WO 3) (см., Полькин С.И., Адамов Э.В. Обогащение руд цветных металлов. Учебник для вузов. М., Недра, 1983, 213 с.)

Недостатками технологической схемы переработки хвостов гравитационного обогащения являются высокая нагрузка в голове процесса на операцию обогащения на концентрационных столах, многооперационность, низкое качество получаемого концентрата.

Известен способ обработки шеелитсодержащих хвостов с целью удаления из них опасных материалов и переработки неопасных и рудных минералов с помощью улучшенного процесса разделения (сепарации) (KR 20030089109, СНАЕ et al., 21.11.2003). Способ включает стадии гомогенизирующего смешивания шеелитсодержащих хвостов, введение пульпы в реактор, «фильтрацию» пульпы с помощью грохота для удаления различных инородных материалов, последующее разделение пульпы путем винтовой сепарации, сгущение и дегидратацию нерудных минералов с получением кека, сушку кека в роторной сушилке, дробление сухого кека с использованием молотковой дробилки, работающей в замкнутом цикле с грохотом, разделение дробленых минералов с помощью «микронного» сепаратора на фракции мелких и грубых зерен (гранул), а также магнитную сепарацию грубозернистой фракции с получением магнитных минералов и немагнитной фракции, содержащей шеелит. Недостатком этого способа являются многооперационность, использование энергоемкой сушки влажного кека.

Известен способ доизвлечения вольфрама из отвальных хвостов обогатительной фабрики рудника Ингички (см. А.Б.Ежков, Х.Т.Шарипов, К.Л.Бельков «Вовлечение в переработку лежалых вольфрамсодержащих хвостов Ингичкинского рудника». Тезисы докладов III Конгресса обогатителей стран СНГ, т.1, МИСиС, М., 2001). Способ включает приготовление пульпы и ее дешламацию в гидроциклоне (удаления класса - 0,05 мм), последующее разделение обесшламленной пульпы на конусном сепараторе, двухстадийную перечистку концентрата конусного сепаратора на концентрационных столах с получением концентрата, содержащего 20,6% WO 3 , при среднем извлечении 29,06%. Недостатками этого способа являются низкое качество получаемого концентрата и недостаточно высокое извлечение WO 3 .

Описаны результаты исследований по гравитационному обогащению хвостов Ингичкинской обогатительной фабрики (см. С.В.Руднев, В.А.Потапов, Н.В.Салихова, А.А.Канцель «Исследования по выбору оптимальной технологической схемы гравитационного обогащения техногенных образований Ингичкинской обогатительной фабрики» // Горный вестник Узбекистана, 2008, №3).

Наиболее близким к патентуемому техническому решению является способ извлечения вольфрама из лежалых хвостов обогащения вольфрамсодержащих руд (Артемова О.С. Разработка технологии извлечения вольфрама из лежалых хвостов Джидинского ВМК. Автореферат дисс. кандидата технических наук, Иркутский государственный технический университет, Иркутск, 2004 г. - прототип).

Технология извлечения вольфрама из лежалых хвостов по этому способу включает операции получения черновых вольфрамсодержащих концентрата и промпродукта, золотосодержащего продукта и вторичных отвальных хвостов с помощью гравитационных методов мокрого обогащения - винтовой и центробежной сепарации - и последующей доводки полученных черновых концентрата и промпродукта с помощью гравитационного (центробежного) обогащения и магнитной сепарации с получением кондиционного вольфрамового концентрата с содержанием 62,7% WO 3 при извлечении 49,9% WO 3 .

Согласно этому способу лежалые хвосты подвергаются первичной классификации с выделением 44,5% масс. во вторичные отвальные хвосты в виде фракции +3 мм. Фракцию хвостов крупностью -3 мм разделяют на классы -0,5 и +0,5 мм и из последнего с помощью винтовой сепарации получают грубый концентрат и хвосты. Фракцию -0,5 мм разделяют на классы -0,1 и +0,1 мм. Из класса +0,1 мм с помощью центробежной сепарации выделяют грубый концентрат, который, как и грубый концентрат винтовой сепарации, подвергают центробежной сепарации с получением чернового вольфрамового концентрата и золотосодержащего продукта. Хвосты винтовой и центробежной сепарации доизмельчают до -0,1 мм в замкнутом цикле с классификацией и затем разделяют на классы -0,1+0,02 и -0,02 мм. Класс -0,02 мм выводят из процесса как вторичные отвальные хвосты. Класс -0,1+0,02 мм обогащают путем центробежной сепарации с получением вторичных отвальных хвостов и вольфрамового промпродукта, направляемого на доводку магнитной сепарацией вместе с концентратом центробежной сепарации, доизмельченным до крупности -0,1 мм. При этом получают вольфрамовый концентрат (магнитная фракция) и промпродукт (немагнитная фракция). Последний подвергается магнитной сепарации II с выделением немагнитной фракции во вторичные отвальные хвосты и вольфрамового концентрата (магнитная фракция), который обогащают последовательно путем центробежной, магнитной и вновь центробежной сепарации с получением кондиционного вольфрамового концентрата с содержанием 62,7% WO 3 при выходе 0,14% и извлечении 49,9%. При этом хвосты центробежных сепараций и немагнитная фракция направляются во вторичные отвальные хвосты, суммарный выход которых на стадии доводки чернового вольфрамового концентрата составляет 3,28% при содержании в них 2,1% WO 3 .

Недостатками этого способа являются многооперационность технологического процесса, включающего 6 операций классификации, 2 операции доизмельчения, а также 5 операций центробежной и 3 операции магнитной сепарации с использованием сравнительно дорогостоящих аппаратов. При этом доводка чернового вольфрамового концентрата до кондиционного связана с получением вторичных отвальных хвостов со сравнительно высоким содержанием в них вольфрама (2,1% WO 3).

Задача настоящего изобретения состоит в усовершенствовании способа переработки хвостов обогащения, в том числе лежалых отвальных хвостов обогащения вольфрамсодержащих руд, в получении высокосортного вольфрамового концентрата и попутно сульфидсодержащего продукта при уменьшении содержания вольфрама во вторичных отвальных хвостах.

Патентуемый способ комплексной переработки хвостов обогащения вольфрамсодержащих руд включает классификацию хвостов на мелкую и крупную фракции, винтовую сепарацию мелкой фракции с получением вольфрамового продукта, перечистку вольфрамового продукта, и доводку с получением высокосортного вольфрамового концентрата, сульфидсодержащего продукта и вторичных отвальных хвостов.

Способ отличается тем, что полученный вольфрамовый продукт подвергают перечистке на винтовом сепараторе с получением чернового концентрата и хвостов, черновой концентрат подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата и хвостов. Хвосты концентрационного стола и винтового сепаратора перечистки объединяют и подвергают сгущению, далее слив сгущения подают на стадию классификации в голову технологической схемы, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который направляют на перечистку. Гравитационный вольфрамовый концентрат подвергают флотации с получением высокосортного кондиционного вольфрамового концентрата (62% WO 3) и сульфидсодержащего продукта, который перерабатывают известными способами.

Способ может характеризоваться тем, что хвосты классифицируют на фракции, преимущественно крупностью +8 мм и -8 мм.

Технический результат патентуемого способа состоит в повышении глубины переработки при сокращении количества технологических операций и нагрузки на них вследствие выделения в голове процесса основной массы исходных хвостов (более 90%) во вторичные отвальные хвосты, с использованием более простой по устройству и эксплуатации энергосберегающей технологии винтовой сепарации. Это позволяет резко снизить нагрузку на последующие обогатительные операции, а также капитальные затраты и эксплуатационные издержки, что обеспечивает оптимизацию процесса обогащения.

Эффективность патентуемого способа показана на примере комплексной переработки хвостов Ингичкинской обогатительной фабрики (см. чертеж).

Переработку начинают с классификации хвостов на мелкую и крупную фракции с выделением вторичных отвальных хвостов в виде крупной фракции. Мелкую фракцию хвостов подвергают винтовой сепарации с выделением в голове технологического процесса во вторичные отвальные хвосты основной массы исходных хвостов (более 90%). Это позволяет соответственно резко снизить нагрузку на последующие операции, капитальные затраты и эксплуатационные издержки.

Полученный вольфрамовый продукт подвергают перечистке на винтовом сепараторе с получением чернового концентрата и хвостов. Черновой концентрат подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата и хвостов.

Хвосты концентрационного стола и винтового сепаратора перечистки объединяют и подвергают сгущению, например, в сгустителе, механическом классификаторе, гидроциклоне и других аппаратах. Слив сгущения подают на стадию классификации в голову технологической схемы, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который направляют на перечистку.

Гравитационный вольфрамовый концентрат доводят с помощью флотации до высокосортного кондиционного вольфрамового концентрата (62% WO 3) с получением при этом сульфидсодержащего продукта.

Таким образом, из вольфрамсодержащих хвостов выделяют высокосортный (62% WO 3) кондиционный вольфрамовый концентрат при достижении сравнительно высокого извлечения WO 3 , составляющего ~49% и сравнительно низкого содержания вольфрама (0,04% WO 3) во вторичных отвальных хвостах.

Полученный сульфидсодержащий продукт перерабатывают известным способом, например, используют для получения серной кислоты и серы, а также применяют в качестве корректирующей добавки при производстве цементов.

Высокосортный кондиционный вольфрамовый концентрат является высоколиквидным товарным продуктом.

Как следует из результатов осуществления патентуемого способа на примере лежалых отвальных хвостов обогащения вольфрамсодержащих руд Ингичкинской обогатительной фабрики, показана его эффективность по сравнению со способом-прототипом (см. таблицу). Обеспечивается дополнительное получение сульфидсодержащего продукта, сокращение объема свежей потребляемой воды за счет создания водооборота. Создается возможность переработки существенно более бедных хвостов (0,09% WO 3), значительное снижение содержания вольфрама во вторичных отвальных хвостах (до 0,04% WO 3). Кроме того, снижено число технологических операций и уменьшена нагрузка на большинство из них вследствие выделения в голове технологического процесса основной массы исходных хвостов (более 90%) во вторичные отвальные хвосты, с использованием более простой и менее энергоемкой технологии винтовой сепарации, что позволяет снизить капитальные затраты на приобретение оборудования и эксплуатационные издержки.

1. Способ комплексной переработки хвостов обогащения вольфрамсодержащих руд, включающий их классификацию на мелкую и крупную фракции, винтовую сепарацию мелкой фракции с получением вольфрамового продукта, его перечистку и доводку с получением высокосортного вольфрамового концентрата, сульфидсодержащего продукта и вторичных отвальных хвостов, отличающийся тем, что полученный после винтовой сепарации вольфрамовый продукт подвергают перечистке на винтовом сепараторе с получением чернового вольфрамового концентрата, полученный черновой вольфрамовый концентрат подвергают доводке на концентрационных столах с получением гравитационного вольфрамового концентрата, который подвергают флотации с получением высокосортного кондиционного вольфрамового концентрата и сульфидсодержащего продукта, хвосты винтового сепаратора и концентрационного стола объединяют и подвергают сгущению, полученный после сгущения слив подают на классификацию хвостов обогащения вольфрамсодержащих руд, а сгущенный продукт подвергают обогащению на винтовом сепараторе с получением вторичных отвальных хвостов и вольфрамового продукта, который отправляют на перечистку.

Основное обогащение

Для некоторых фабрик обогатительных в предварительном обогащении первое Синьхай будет использовать отсадочную машину с подвижным ситом, а затем вступить в операции доводки.

Гравитационное обогащение

Для технологии гравитации вольфрамита Синьхай обычно применяет такой гравитационный процесс, в котором включает многоступенчатую отсадку, многоступенчатый стол и доизмельчение промпродукта. То есть после мелкого дробления достойные руды, которые и через классификации виброгрохота,проводят многоступенчатую отсадку и производят крупный песок со отсадки и с гравитации.Потом балластовые продукты отсадки крупного класса вступят в мельницу для доизмельчении.А балластовые продукты отсадки мелкого класса через классификации вступят в сортировке многоступенчатого стола,затем производятся крупный песок с гравитации и со стола, потом хвосты со стола войдут в бункер хвостов, промпродукты со стола то вернут вэтап цикла доизмельчении,а гравитационный крупный песок со отсадки и стола вступит в операции доводки.

Перечистка

В операции доводки вольфрамита обычно используется объединённая технолония флотации и гравитационного обогащения или объединённая технолония флотации – гравитационного и магнитного обогащения. В тоже время проводит возврат сопутствующего элемента.

В операции доводки обычно используется объединённый метод флотации и стола обогащения и отмывка серного колчедана через флотации. при этим мы можем вступить в флотационном разделении серного колчедана.после этого производится концентраты вольфрамита,если концентраты вольфрамита содержат шеелит и касситерит, то производится концентраты вольфрамита, концентраты шеелита и концентраты касситерита через объединённая технолония флотации и гравитационного обогащения или объединённая технолония флотации – гравитационного и магнитного обогащения.

Обработка тонкого ила

Метод обработки тонкого ила в Синьхае обычно бывает такое: во–первых проводит сероочистку, потом соответственно свойствам тонкого ила и материала используется технология гравитационного, флотационного,магнитного и электрического обогащения или используется объединённая технолония обогащения несколько технологии, чтобы происходит возврат вольфрамовой руды,и в то время проведут утилизацию попутных рудных минералов.

Практические примеры

Объект вольфрамита Синьхая ставился в пример, крупность распределения руды данной шахты было негомогенной, очень сильное зашламливание рудов. Первоначальная технологическая схема,использовалась обогатительной фабрике,которая включает дробление предварительного обогащения,гравитацию и перечистку,из-за ряда технологических дефектов привела огромные потери вольфрамовых рудов мелкого класса, высокая стоимость обогащения, таких как плохое состояние комплексных показателей обогащения. для того,чтобы улучшить состояние сортировки вольфрамита, данная обогатительная фабрика уполномочила Синьхай на задание технической реконструкции. После тщательного исследования по свойствам руды и технологиям для обогащения данной фабрики, Синьхай оптимизировал технологию для обогащения вольфрамита данной фабрики и добавил технологию обработки тонкого ила. и в конечном итоге получить идеальные показатели обогащения. показатель обогащения фабрики до и после трансформации являются следующим:

После преобразования, извлечение вольфрамовой руды значительно усилилось. И смягчил последствий тонкого ила на процесса сортировки вольфрамита, достигается хороший показатель извлечения, эффективно улучшил экономическую эффективность фабрики.

Страница 1 из 25

Государственное бюджетное профессиональное

образовательное учреждение Республики Карелия

«Костомукшский политехнический колледж»

Зам. директора по ОД__________________Кубар Т.С

«_____»_________________________________2019 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Тема: «Ведение основного метода обогащения вольфрамовых руд и применение вспомогательных процессов обезвоживания в технологической схеме Приморского ГОКа»

Студент группы: Кузич С.Э

4 курс, группа ОПИ-15 (41С)

Специальность 21.02.18

«Обогащение полезных ископаемых»

Руководитель ВКР: Волкович О.В

преподаватель спец. дисциплин

Костомукша

2019

Введение………………………………………………………………………...…3

  1. Технологическая часть…………………………………………………………6

1.1 Общая характеристика вольфрамовых руд………………………………….6

1.2 Экономическая оценка вольфрамовых руд…………………………...……10

  1. Технологическая схема обогащения вольфрамовых руд на примере Приморского ГОКа……………………………………………………..……11

2. Обезвоживание продуктов обогащения…………………………………......17

2.1. Сущность процессов обезвоживания…………………………………..….17

2.2. Центрифугирование…………………………………………………..…….24

3. Организация безопасных условий труда…………………………………….30

3.1. Требования по созданию безопасных условий труда на рабочих местах………………………………………………………………..…...30

3.2. Требования по поддержанию безопасности на рабочих местах.…….…..32

3.3. Требования техники безопасности к работникам предприятия…………32

Заключение……………………………………………………………….…..…..34

Список использованных источников и литературы……………………....…...36

Введение

Обогащение полезных ископаемых - это отрасль промышленности, перерабатывающая твёрдые полезные ископаемые с намереньем получить концентраты, т.е. продукты, качество которых выше качества исходного сырья и соответствует требованиям дальнейшего использования их в народном хозяйстве. Полезные ископаемые являются основой народного хозяйства, и нет ни одной отрасли, где бы ни применялись полезные ископаемые или продукты их обработки.

Одним из таких полезных ископаемых является вольфрам - металл с уникальными свойствами. Он имеет самую высокую температуру кипения и плавления среди металлов, при этом – самый низкий коэффициент теплового расширения. Кроме того, он – один самых твёрдых, тяжёлых, стабильных и плотных металлов: плотность вольфрама сравнима с плотностью золота и урана и в 1, 7 раза выше, чем у свинца. Основными вольфрамовыми минералами являются шеелит, гюбнерит и вольфрамит. В зависимости от вида минералов руды можно разделить на два типа; шеелитовые и вольфрамитовые. При переработке вольфрамасодержащих руд используют гравитационные, флотационные, магнитные, а также электростатические, гидрометаллургические и другие методы.

В последние годы широко используются металлокерамические твердые сплавы, изготовленные на основе карбида вольфрама. Такие сплавы применяются в качестве резцов, для изготовления коронок бурового инструмента, фильер для холодного волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей внутреннего сгорания, жаропрочных деталей механизмов, работающих в условиях высоких температур. Наплавочные твердые сплавы (стеллиты), состоящие из вольфрама (3- 15%), хрома (25-35%) и кобальта (45-65%) с небольшим количеством углерода, применяются для покрытий быстро изнашивающихся деталей механизмов (лопастей турбин, экскаваторного оборудования и др.). Сплавы вольфрама с никелем и медью находят применение при изготовлении защитных экранов от гамма – лучей в медицине.

Металлический вольфрам используется в электротехнике, радиотехнике, рентгенотехнике: для изготовления нитей накаливания в электролампах, нагревателях высокотемпературных электрических печей, антикатодов и катодов рентгеновских трубок, электровакуумной аппаратуры и многого другого. Соединения вольфрама применяются в качестве красителей, для придания огнестойкости и водоустойчивости тканям, в химии - как чувствительный реактив на алкалоиды, никотин, белок, в качестве катализатора при производстве высокооктанового бензина.

Широко используется вольфрам и в производстве военной и космической техники (броневые плиты, башни танков, ружейные и орудийные стволы, сердечники ракет и др.).

Структура потребления вольфрама в мире постоянно меняется. Из одних отраслей он вытесняется другими материалами, но появляются все новые области его применения. Так, в первой половине XX века до 90% вольфрама расходовалось на легирование сталей. В настоящее время в промышленности преобладает производство карбида вольфрама, и все более важное значение приобретает использование металлического вольфрама. В последнее время открываются новые возможности применения вольфрама как экологически чистого материала. Вольфрам может заменить свинец в производстве различных боеприпасов, а также найти применение в изготовлении спортивного инвентаря, в частности клюшек и мячей для гольфа. Разработки в этих областях ведутся в США. В перспективе вольфрам должен заменить обедненный уран в производстве боеприпасов большого калибра. В 1970-х годах, когда цены на вольфрам составляли около 170 дол. за 1% содержания WO 3 в 1 т продукта, США, а затем и некоторые страны НАТО заменили в тяжелых боеприпасах вольфрам обедненным ураном, который при тех же технических характеристиках был существенно дешевле.

Вольфрам, как химический элемент входит в группу тяжелых металлов и с экологической точки зрения относится к среднетоксичным (II-III класс). В настоящее время источником загрязнения вольфрамом окружающей среды являются процессы разведки, добычи и переработки (обогащение и металлургия) вольфрамсодержащего минерального сырья. В результате переработки такими источниками являются неиспользуемые твердые отходы, сточные воды, пылевые вольфрамсодержащие тонкодисперсные частицы. Твердые отходы в виде отвалов и различных хвостов образуются при обогащении вольфрамовых руд. Сточные воды обогатительных фабрик представлены сливами хвостохранилищ, которые используются в качестве оборотной воды в процессах измельчения и флотации.

Цель выпускной квалификационной работы : обосновать технологическую схему обогащения вольфрамовых руд на примере Приморского ГОКа и сущность процессов обезвоживания в данной технологической схеме.



Что еще почитать