Каким свойством обладают стороны четырехугольника описанного около окружности. Правила для многоугольников которые можно вписать в окружность и описать окружность вокруг них

Определение 1. Четырехугольником называется фигура, состоящая из четырех точек (вершины), никакие три из которых не лежат на одной прямой, и четырех последовательно соединяющих их непересекающихся отрезков (стороны).
Определение 2. Соседними называют вершины, которые являются концами одной стороны.
Определение 3. Вершины, не являющиеся соседними, называют противолежащими.
Определение 4. Отрезки, соединяющие противоположные вершины четырехугольника, называются его диагоналями.
Теорема 1. Сумма углов четырехугольника равна 360 о.
Действительно, поделив четырехугольник диагональю на два треугольника, получаем, что сумма его углов равна сумме углов этих двух треугольников. Зная, что сумма углов треугольника равна 180 о, получаем искомое: 2 * 180 о =360 о
Определение d1. Описанный четырёхугольник - это четырёхугольник, все стороны которого касаются некоторой окружности. Напомним, что понятие стороны, касающейся окружности: окружность считается касающейся данной стороны, если она касается прямой, содержащей эту сторону, и точка касания лежит на этой стороне.
Определение d2. Вписанный четырехугольник - это четырёхугольник, все вершины которого принадлежат некоторой окружности.
Теорема 2. У любого четырехугольника, вписанного в окружность, суммы пар противоположных углов равны 180 о.
Углы А и С оба опираются на дугу BD только с разных сторон, то есть охватывают всю окружность, а сама окружность - это дуга величиной в 360 о, но мы знаем теоремму, которая твердит, что величина вписанного угла равна половине угловой величины дуги, на которую он опирается, поэтому можем утвердить, что сумма этих углов (А и С в частности) равна 180 о. Тем же способом можно жоказать эту теорему и для другой пары углов.
Теорема 3. Если в четырехугольник можно вписать окружность, то суммы длин его противоположных сторон равны.
Для доказательства этой теоремы воспользуемся теоремой из темы круг и окружность , которая гласит: Отрезки касательных, проведенных из одной точки к окружности, равны, т.е. ВК=ВР, СР=СН, DH=DT и АТ=АК. Суммируем стороны АВ и CD: AB+CD=(AK+KB)+(DH+HC)=AT+BP+DT+CP=(AT+TD)+(BP+PC)=AD+BC, ч.т.д.

Для теорем 2 и 3 существуют обратные. Запишем их соответственно:

Теорема 4. Около четырехугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равны 180 градусам
Теорема 5. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин противоположных сторон равны.

Доказательство: Пусть ABCD - данный четырехугольник, и него AB + CD = AD + BC. Проведем биссектрисы его углов A и D. Эти биссектрисы непараллельны, а значит, пересекаются в некоторой точке O. Опустим из точки O на стороны AB, AD и CD перпендикуляры OK, OL и OM. Тогда OK=OL, и OL=OM, а значит, окружность с центром в точке O и радиусом OK касается сторон AB, AD и CD данного четырёхугольника. Проведём из точки B касательную к этой окружности. Пусть эта касательная пересекает прямую CD в точке P. Тогда ABPD - описанный четырёхугольник. Следовательно, по свойству описанного четырёхугольника, AB + DP = AD + BP. Также, по условию, AB+ CD = AD + BC. Следовательно, BP + PC = BC, а значит, по неравенству треугольника, точка P лежит на отрезке BC. Следовательно, прямые BP и BC совпадают, а значит, прямая BC касается окружности с центром в точке O, то есть ABCD - описанный четырёхугольник по определению. Теорема доказана.
Теорема 6. Площадь четырехугольника равна половине произведения его диагоналей и синуса угла между ними.

Доказательство: Пусть ABCD - данный четырёхугольник. Пусть также O - точка пересечения диагоналей. Тогда
S ABCD = S ABO + S BCO +S CDO + S DAO =
= 1/2(AO·BO·sin∠ AOB + BO·CO·sin∠ BOC +
+ CO·DO·sin∠ COD + DO·AO·sin∠ AOD) =
= 1/2·sin∠ BOC·(AO + CO)·(BO + DO) =
= 1/2·sin∠ BOC·AC·BD.
Теорема доказана.
Теорема d1. (Вариньона) Четырёхугольник с вершинами в серединах сторон любого четырёхугольника есть параллелограмм, причём площадь этого параллелограмма равна половине площади исходного четырёхугольника.

Доказательство: Пусть ABCD - данный четырёхугольник, а K, L, M и N - середины его сторон. Тогда KL - средняя линия треугольника ABC, а значит, KL параллельно AC. Также LM параллельно BD, MN параллельно AC, а NK параллельно BD. Следовательно, KL параллельно MN, LM параллельно KN. Значит, KLMN - параллелограмм. Площадь этого параллелограмма - KL·KN·sin∠ NKL =
1/2·AC·BD·sin∠ DOC = 1/2S ABCD .
Теорема доказана.

Выпуклый четырёхугольник A B C D {\displaystyle \displaystyle ABCD} является вписанным тогда и только тогда , когда противоположные углы в сумме дают 180°, то есть .

A + C = B + D = π = 180 ∘ . {\displaystyle A+C=B+D=\pi =180^{\circ }.}

Теорема была Предложением 22 в книге 3 Евклида Начала . Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.

p q = a c + b d . {\displaystyle \displaystyle pq=ac+bd.}

Если две прямые, из которых одна содержит отрезок AC , а другая - отрезок BD , пересекаются в точке P , то четыре точки A , B , C , D лежат на окружности тогда и только тогда, когда

A P ⋅ P C = B P ⋅ P D . {\displaystyle AP\cdot PC=BP\cdot PD.}

Точка пересечения P может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD , а во втором - вписанный четырёхугольник ABDC . Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка P делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах , поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда

tan ⁡ A 2 tan ⁡ C 2 = tan ⁡ B 2 tan ⁡ D 2 = 1. {\displaystyle \tan {\frac {A}{2}}\tan {\frac {C}{2}}=\tan {\frac {B}{2}}\tan {\frac {D}{2}}=1.}

Площадь

S = (p − a) (p − b) (p − c) (p − d) {\displaystyle S={\sqrt {(p-a)(p-b)(p-c)(p-d)}}}

Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа .

Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников , и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a , b , c и d сторона a может быть противоположной любой из сторон b , c или d . Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины .

Площадь вписанного четырёхугольника с последовательными сторонами a , b , c , d и углом B между сторонами a и b можно выразить формулой

S = 1 2 (a b + c d) sin ⁡ B {\displaystyle S={\tfrac {1}{2}}(ab+cd)\sin {B}} S = 1 2 (a c + b d) sin ⁡ θ {\displaystyle S={\tfrac {1}{2}}(ac+bd)\sin {\theta }}

где θ - любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой

S = 1 4 (a 2 − b 2 − c 2 + d 2) tan ⁡ A . {\displaystyle S={\tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})\tan {A}.} S = 2 R 2 sin ⁡ A sin ⁡ B sin ⁡ θ {\displaystyle S=2R^{2}\sin {A}\sin {B}\sin {\theta }} S ≤ 2 R 2 {\displaystyle S\leq 2R^{2}} ,

и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

Диагонали

С вершинами A , B , C , D (в указанной последовательности) и сторонами a = AB , b = BC , c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны

p = (a c + b d) (a d + b c) a b + c d {\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)}{ab+cd}}}} q = (a c + b d) (a b + c d) a d + b c {\displaystyle q={\sqrt {\frac {(ac+bd)(ab+cd)}{ad+bc}}}} p q = a c + b d . {\displaystyle pq=ac+bd.}

Согласно второй теореме Птолемея ,

p q = a d + b c a b + c d {\displaystyle {\frac {p}{q}}={\frac {ad+bc}{ab+cd}}}

при тех же обозначениях, что и прежде.

Для суммы диагоналей имеем неравенство

p + q ≥ 2 a c + b d . {\displaystyle p+q\geq 2{\sqrt {ac+bd}}.}

Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим .

(p + q) 2 ≤ (a + c) 2 + (b + d) 2 . {\displaystyle (p+q)^{2}\leq (a+c)^{2}+(b+d)^{2}.}

В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны .

Если M и N являются средними точками диагоналей AC и BD , то

M N E F = 1 2 | A C B D − B D A C | {\displaystyle {\frac {MN}{EF}}={\frac {1}{2}}\left|{\frac {AC}{BD}}-{\frac {BD}{AC}}\right|}

где E и F - точки пересечения противоположных сторон.

Если ABCD - вписанный четырёхугольник и AC пересекает BD в точке P , то

A P C P = A B C B ⋅ A D C D . {\displaystyle {\frac {AP}{CP}}={\frac {AB}{CB}}\cdot {\frac {AD}{CD}}.}

Формулы углов

a , b , c , d , полупериметром s и углом A между сторонами a и d тригонометрические функции угла A равны

cos ⁡ A = a 2 + d 2 − b 2 − c 2 2 (a d + b c) , {\displaystyle \cos A={\frac {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},} sin ⁡ A = 2 (s − a) (s − b) (s − c) (s − d) (a d + b c) , {\displaystyle \sin A={\frac {2{\sqrt {(s-a)(s-b)(s-c)(s-d)}}}{(ad+bc)}},} tan ⁡ A 2 = (s − a) (s − d) (s − b) (s − c) . {\displaystyle \tan {\frac {A}{2}}={\sqrt {\frac {(s-a)(s-d)}{(s-b)(s-c)}}}.}

Для угла θ между диагоналями выполняется

tan ⁡ θ 2 = (s − b) (s − d) (s − a) (s − c) . {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {(s-b)(s-d)}{(s-a)(s-c)}}}.}

Если продолжения противоположных сторон a и c пересекаются под углом ϕ {\displaystyle \phi } , то

cos ⁡ ϕ 2 = (s − b) (s − d) (b + d) 2 (a b + c d) (a d + b c) {\displaystyle \cos {\frac {\phi }{2}}={\sqrt {\frac {(s-b)(s-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

Формула Парамешвара

Для вписанного четырёхугольника со сторонами a , b , c , d (в указанной последовательности) и полупериметром s радиус описанной окружности) задаётся формулой

R = 1 4 (a b + c d) (a c + b d) (a d + b c) (s − a) (s − b) (s − c) (s − d) . {\displaystyle R={\frac {1}{4}}{\sqrt {\frac {(ab+cd)(ac+bd)(ad+bc)}{(s-a)(s-b)(s-c)(s-d)}}}.}

Формула была выведена индийским математиком Ватассери Парамешвара в 15 веке.

Если диагонали вписанного четырёхугольника пересекаются в точке P , а середины диагоналей - V и W , то антицентр четырёхугольника является ортоцентром треугольника VWP , а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей .

Во вписанном четырёхугольнике "центроид площади" G a , "центроид вершин" G v и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство

P G a = 4 3 P G v . {\displaystyle PG_{a}={\tfrac {4}{3}}PG_{v}.}

Другие свойства

  • Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P - точка пересечения диагоналей AC и BD . Тогда угол APB является средним арифметическим углов AOB и COD . Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника .
  • Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию , то четырёхугольник является также внешне описанным .

Четырёхугольники Брахмагупты

Четырёхугольник Брахмагупты - это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью. Все четырёхугольники Брахмагупты со сторонами a, b, c, d , диагоналями e, f , площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t , u и v ):

a = [ t (u + v) + (1 − u v) ] [ u + v − t (1 − u v) ] {\displaystyle a=} b = (1 + u 2) (v − t) (1 + t v) {\displaystyle b=(1+u^{2})(v-t)(1+tv)} c = t (1 + u 2) (1 + v 2) {\displaystyle c=t(1+u^{2})(1+v^{2})} d = (1 + v 2) (u − t) (1 + t u) {\displaystyle d=(1+v^{2})(u-t)(1+tu)} e = u (1 + t 2) (1 + v 2) {\displaystyle e=u(1+t^{2})(1+v^{2})} f = v (1 + t 2) (1 + u 2) {\displaystyle f=v(1+t^{2})(1+u^{2})} S = u v [ 2 t (1 − u v) − (u + v) (1 − t 2) ] [ 2 (u + v) t + (1 − u v) (1 − t 2) ] {\displaystyle S=uv} 4 R = (1 + u 2) (1 + v 2) (1 + t 2) . {\displaystyle 4R=(1+u^{2})(1+v^{2})(1+t^{2}).}

Свойства ортодиагональных вписанных четырёхугольников

Площадь и радиус описанной окружности

Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p 1 и p 2 , а другую делит на отрезки длиной q 1 и q 2 . Тогда (первое равенство является Предложением 11 в книге Архимеда «Леммы »)

D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

где D -

или, через стороны четырёхугольника

R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

Отсюда также следует, что

a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

Таким образом, согласно формуле Эйлера , радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

Литература

  • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. - Mathematical Association of America, 2009. - ISBN 978-0-88385-342-9 .
  • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. - 2007. - Т. 7 .
  • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. - 2nd. - Courier Dover, 2007. - ISBN 978-0-486-45805-2 . (org. 1952)
  • =Titu Andreescu, Bogdan Enescu. .
  • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta"s formula. - Mathematical Association of America, 1967. - ISBN 978-0-88385-619-2 . Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. - Москва: «Наука», 1978. - (Библиотека математического кружка).
  • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum . - 2007.
  • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. - 2016. - Т. 42 . - P. 81–107. - DOI :10.18642/jmsaa_7100121742 .
  • C. V. Durell, A. Robson. Advanced Trigonometry. - Courier Dover, 2003. - ISBN 978-0-486-43229-8 . (orig. 1930)
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .
  • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. - 2000. - Т. 84 , вып. 499 March .
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. - Cambridge University Press, 1995. - Т. 37. - (New Mathematical Library). - ISBN 978-0-88385-639-0 .
  • Roger A. Johnson. Advanced Euclidean Geometry. - Dover Publ, 2007. (orig. 1929)
  • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. - 2003. - Т. 34 , вып. 4 September .
  • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. - 2nd. - Courier Dover, 1970. - ISBN 978-0-486-69154-1 . Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
  • , Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. - 5-е. - Москва: МЦНМО OAO «Московские учебники», 2006. - ISBN 5-94057-214-6

Примерами описанных четырёхугольников могут служить дельтоиды , которые включают ромбы , которые, в свою очередь, включают квадраты . Дельтоиды - это в точности те описанные четырёхугольники, которые также являются ортодиагональными . Если четырёхугольник является описанным и вписанным четырёхугольником , он называется бицентральным .

Свойства

В описанном четырёхугольнике четыре биссектрисы пересекаются в центре окружности. И наоборот, выпуклый четырёхугольник, в котором четыре биссектрисы пересекаются в одной точке, должен быть описанным, и точка пересечения биссектрис является центром вписанной окружности .

Если противоположные стороны в выпуклом четырёхугольнике ABCD (не являющийся трапецией) пересекаются в точках E и F , то они являются касательными к окружности тогда и только тогда, когда

B E + B F = D E + D F {\displaystyle \displaystyle BE+BF=DE+DF} A E − E C = A F − F C . {\displaystyle \displaystyle AE-EC=AF-FC.}

Второе равенство почти то же, что и равенство в теореме Уркхарта . Разница только в знаках - в теореме Уркхарта суммы, а здесь разности (см. рисунок справа).

Другое необходимое и достаточное условие - выпуклый четырёхугольник ABCD является описанным в том и только в том случае, когда вписанные в треугольники ABC и ADC окружности касаются друг друга .

Описание по углам, образованным диагональю BD со сторонами четырёхугольника ABCD , принадлежит Иосифеску (Iosifescu). Он в 1954 доказал, что выпуклый четырёхугольник имеет вписанную окружность тогда и только тогда, когда

tan ⁡ ∠ A B D 2 ⋅ tan ⁡ ∠ B D C 2 = tan ⁡ ∠ A D B 2 ⋅ tan ⁡ ∠ D B C 2 . {\displaystyle \tan {\frac {\angle ABD}{2}}\cdot \tan {\frac {\angle BDC}{2}}=\tan {\frac {\angle ADB}{2}}\cdot \tan {\frac {\angle DBC}{2}}.} R a R c = R b R d {\displaystyle R_{a}R_{c}=R_{b}R_{d}} ,

где R a , R b , R c , R d являются радиусами окружностей, внешне касательным сторонам a , b , c , d соответственно и продолжениям смежных сторон с каждой стороны .

Некоторые другие описания известны для четырёх треугольников, образованных диагоналями.

Специальные отрезки

Восемь отрезков касательных описанного четырёхугольника являются отрезками между вершинами и точками касания на сторонах. В каждой вершине имеется два равных касательных отрезка.

Точки касания образуют вписанный четырёхугольник.

Площадь

Нетригонометрические формулы

K = 1 2 p 2 q 2 − (a c − b d) 2 {\displaystyle K={\tfrac {1}{2}}{\sqrt {p^{2}q^{2}-(ac-bd)^{2}}}} ,

дающая площадь в терминах диагоналей p , q и сторон a , b , c , d касательного четырёхугольника.

Площадь можно представить также в терминах касательных отрезков (см. выше). Если их обозначить через e , f , g , h , то касательный четырёхугольник имеет площадь

K = (e + f + g + h) (e f g + f g h + g h e + h e f) . {\displaystyle K={\sqrt {(e+f+g+h)(efg+fgh+ghe+hef)}}.}

Более того, площадь касательного четырёхугольника можно выразить в терминах сторон a, b, c, d и соответствующих длин касательных отрезков e, f, g, h

K = a b c d − (e g − f h) 2 . {\displaystyle K={\sqrt {abcd-(eg-fh)^{2}}}.}

Поскольку eg = fh в том и только в том случае, когда он также является вписанным, получаем, что максимальная площадь a b c d {\displaystyle {\sqrt {abcd}}} может достигаться только на четырёхугольниках, которые являются и описанными, и вписанными одновременно.

Тригонометрические формулы

K = a b c d sin ⁡ A + C 2 = a b c d sin ⁡ B + D 2 . {\displaystyle K={\sqrt {abcd}}\sin {\frac {A+C}{2}}={\sqrt {abcd}}\sin {\frac {B+D}{2}}.}

Для заданного произведения сторон площадь будет максимальной, когда четырёхугольник является также вписанным . В этом случае K = a b c d {\displaystyle K={\sqrt {abcd}}} , поскольку противоположные углы являются дополнительными . Это можно доказать и другим способом, используя математический анализ .

Ещё одна формула площади описанного четырёхугольника ABCD , использующая два противоположных угла

K = (O A ⋅ O C + O B ⋅ O D) sin ⁡ A + C 2 {\displaystyle K=\left(OA\cdot OC+OB\cdot OD\right)\sin {\frac {A+C}{2}}} ,

где O является центром вписанной окружности.

Фактически площадь можно выразить в терминах лишь двух смежных сторон и двух противоположных углов

K = a b sin ⁡ B 2 csc ⁡ D 2 sin ⁡ B + D 2 . {\displaystyle K=ab\sin {\frac {B}{2}}\csc {\frac {D}{2}}\sin {\frac {B+D}{2}}.} K = 1 2 | (a c − b d) tan ⁡ θ | , {\displaystyle K={\tfrac {1}{2}}|(ac-bd)\tan {\theta }|,}

где θ угол (любой) между диагоналями. Формула неприменима к случаю дельтоидов, поскольку в этом случае θ равен 90° и тангенс не определён.

Неравенства

Как упомянуто было вскользь выше, площадь касательного многоугольника со сторонами a , b , c , d удовлетворяет неравенству

K ≤ a b c d {\displaystyle K\leq {\sqrt {abcd}}}

и равенство достигается тогда и только тогда, когда четырёхугольник является бицентральным .

Согласно Т. А. Ивановой (1976), полупериметр s описанного четырёхугольника удовлетворяет неравенству

s ≥ 4 r {\displaystyle s\geq 4r} ,

где r - радиус вписанной окружности. Неравенство превращается в равенство тогда и только тогда, когда четырёхугольник является квадратом . Это означает, что для площади K = rs , выполняется неравенство

K ≥ 4 r 2 {\displaystyle K\geq 4r^{2}}

с переходом в равенство в том и только в том случае, когда четырёхугольник - квадрат.

Свойства частей четырёхугольника

Четыре отрезка прямых между центром вписанной окружности и точками касания делят четырёхугольник на четыре прямоугольных дельтоида .

Если прямая делит описанный четырёхугольник на два многоугольника с равными площадями и равными периметрами , то эта линия проходит через инцентр .

Радиус вписанной окружности

Радиус вписанной окружности описанного четырёхугольника со сторонами a , b , c , d задаётся формулой

r = K s = K a + c = K b + d {\displaystyle r={\frac {K}{s}}={\frac {K}{a+c}}={\frac {K}{b+d}}} ,

где K - площадь четырёхугольника, а s - полупериметр. Для описанных четырёхугольников с заданным полупериметром радиус вписанной окружности максимален, когда четырёхугольник является одновременно и вписанным .

В терминах отрезков касательных радиус вписанной окружности .

r = e f g + f g h + g h e + h e f e + f + g + h . {\displaystyle \displaystyle r={\sqrt {\frac {efg+fgh+ghe+hef}{e+f+g+h}}}.}

Радиус вписанной окружности модно выразить также в терминах расстояния от инцентра O до вершин описанного четырёхугольника ABCD . Если u = AO , v = BO , x = CO и y = DO , то

r = 2 (σ − u v x) (σ − v x y) (σ − x y u) (σ − y u v) u v x y (u v + x y) (u x + v y) (u y + v x) {\displaystyle r=2{\sqrt {\frac {(\sigma -uvx)(\sigma -vxy)(\sigma -xyu)(\sigma -yuv)}{uvxy(uv+xy)(ux+vy)(uy+vx)}}}} ,

где σ = 1 2 (u v x + v x y + x y u + y u v) {\displaystyle \sigma ={\tfrac {1}{2}}(uvx+vxy+xyu+yuv)} .

Формулы для углов

Если e , f , g и h отрезки касательных от вершин A , B , C и D соответственно к точкам касания окружности четырёхугольником ABCD , то углы четырёхугольника можно вычислить по формулам

sin ⁡ A 2 = e f g + f g h + g h e + h e f (e + f) (e + g) (e + h) , {\displaystyle \sin {\frac {A}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(e+f)(e+g)(e+h)}}},} sin ⁡ B 2 = e f g + f g h + g h e + h e f (f + e) (f + g) (f + h) , {\displaystyle \sin {\frac {B}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(f+e)(f+g)(f+h)}}},} sin ⁡ C 2 = e f g + f g h + g h e + h e f (g + e) (g + f) (g + h) , {\displaystyle \sin {\frac {C}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(g+e)(g+f)(g+h)}}},} sin ⁡ D 2 = e f g + f g h + g h e + h e f (h + e) (h + f) (h + g) . {\displaystyle \sin {\frac {D}{2}}={\sqrt {\frac {efg+fgh+ghe+hef}{(h+e)(h+f)(h+g)}}}.}

Угол между хордами KM и LN задаётся формулой (см. рисунок)

sin ⁡ φ = (e + f + g + h) (e f g + f g h + g h e + h e f) (e + f) (f + g) (g + h) (h + e) . {\displaystyle \sin {\varphi }={\sqrt {\frac {(e+f+g+h)(efg+fgh+ghe+hef)}{(e+f)(f+g)(g+h)(h+e)}}}.}

Диагонали

Если e , f , g и h являются отрезками касательных от A , B , C и D до точек касания вписанной окружности четырёхугольником ABCD , то длины диагоналей p = AC и q = BD равны

p = e + g f + h ((e + g) (f + h) + 4 f h) , {\displaystyle \displaystyle p={\sqrt {{\frac {e+g}{f+h}}{\Big (}(e+g)(f+h)+4fh{\Big)}}},} q = f + h e + g ((e + g) (f + h) + 4 e g) . {\displaystyle \displaystyle q={\sqrt {{\frac {f+h}{e+g}}{\Big (}(e+g)(f+h)+4eg{\Big)}}}.}

Хорды точек касания

Если e , f , g и h являются отрезками от вершин до точек касания, то длины хорд до противоположных точек касания равны

k = 2 (e f g + f g h + g h e + h e f) (e + f) (g + h) (e + g) (f + h) , {\displaystyle \displaystyle k={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+f)(g+h)(e+g)(f+h)}}},} l = 2 (e f g + f g h + g h e + h e f) (e + h) (f + g) (e + g) (f + h) , {\displaystyle \displaystyle l={\frac {2(efg+fgh+ghe+hef)}{\sqrt {(e+h)(f+g)(e+g)(f+h)}}},}

где хорда k соединяет стороны с длинами a = e + f и c = g + h , а хорда l соединяет стороны длиной b = f + g и d = h + e . Квадрат отношения хорд удовлетворяет соотношению

k 2 l 2 = b d a c . {\displaystyle {\frac {k^{2}}{l^{2}}}={\frac {bd}{ac}}.}

Две хорды

Хорда между сторонами AB и CD в описанном четырёхугольнике ABCD длиннее, чем хорда между сторонами BC и DA тогда и только тогда, когда средняя линия между сторонами AB и CD короче, чем средняя линия между сторонами BC и DA .

Если описанный четырёхугольник ABCD имеет точки касания M на AB и N на CD и хорда MN пересекает диагональ BD в точке P , то отношение отрезков касательных B M D N {\displaystyle {\tfrac {BM}{DN}}} равно отношению B P D P {\displaystyle {\tfrac {BP}{DP}}} отрезков диагонали BD .

Коллинеарные точки

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно в описанном четырёхугольнике ABCD O , а пары противоположных сторон пересекаются в точках E и F и M 3 - середина отрезка EF , тогда точки M 3 , M 1 , O , и M 2 лежат на одной прямой Прямая, соединяющая эти точки, называется прямой Ньютона четырёхугольника.

E и F , а продолжения противоположных сторон четырёхугольника, образованного точками касания, пересекаются в точках T и S , то четыре точки E , F , T и S лежат на одной прямой

AB , BC , CD , DA в точках M , K , N и L соответственно, и если T M , T K , T N , T L являются изотомически сопряжёнными точками этих точек (то есть AТ M = BM и т.д.), то точка Нагеля определяется как пересечение прямых T N T M и T K T L . Обе эти прямые делят периметр четырёхугольника на две равные части. Однако важнее то, что точка Нагеля Q , "центроид площади" G и центр вписанной окружности O лежат на одной прямой, и при этом QG = 2GO . Эта прямая называется прямой Нагеля описанного четырёхугольника .

В описанном четырёхугольнике ABCD с центром вписанной окружности O P , пусть H M , H K , H N , H L являются ортоцентрами треугольников AOB , BOC , COD и DOA соответственно. Тогда точки P , H M , H K , H N и H L лежат на одной прямой.

Конкурентные и перпендикулярные прямые

Две диагонали четырёхугольника и две хорды, соединяющие противоположные точки касания (противоположные вершины вписанного четырёхугольника), конкурентны (т.е. пересекаются в одной точке). Для того, чтобы показать это, можно воспользоваться частным случаем теоремы Брианшона , которая утверждает, что шестиугольник, все стороны которого касаются коническое сечение , имеет три диагонали, пересекающиеся в одной точке. Из описанного четырёхугольника легко получить шестиугольник с двумя углами по 180° путём вставки двух новых вершина противоположных точках касания. Все шесть сторон полученного шестиугольника являются касательными вписанной окружности, так что его диагонали пересекаются в одной точке. Но две диагонали шестиугольника совпадают с диагоналями четырёхугольника, а третья диагональ проходит через противоположные точки касания. Повторив те же рассуждения для двух других точек касания, получим требуемый результат.

Если вписанная окружность касается сторон AB , BC , CD и DA в точках M , K , N , L соответственно, то прямые MK , LN и AC конкурентны.

Если продолжения противоположных сторон описанного четырёхугольника пересекаются в точках E и F , а диагонали пересекаются в точке P , то прямая EF перпендикулярна продолжению OP , где O - центр вписанной окружности .

Свойства вписанной окружности

Отношения двух противоположных сторон описанного четырёхугольника можно выразить через расстояния от центра вписанной окружности O до соответствующих сторон

A B C D = O A ⋅ O B O C ⋅ O D , B C D A = O B ⋅ O C O D ⋅ O A . {\displaystyle {\frac {AB}{CD}}={\frac {OA\cdot OB}{OC\cdot OD}},\quad \quad {\frac {BC}{DA}}={\frac {OB\cdot OC}{OD\cdot OA}}.}

Произведение двух смежных сторон описанного четырёхугольника ABCD с центром вписанной окружности O удовлетворяет соотношению

A B ⋅ B C = O B 2 + O A ⋅ O B ⋅ O C O D . {\displaystyle AB\cdot BC=OB^{2}+{\frac {OA\cdot OB\cdot OC}{OD}}.}

Если O - центр вписанной окружности четырёхугольника ABCD , то

O A ⋅ O C + O B ⋅ O D = A B ⋅ B C ⋅ C D ⋅ D A . {\displaystyle OA\cdot OC+OB\cdot OD={\sqrt {AB\cdot BC\cdot CD\cdot DA}}.}

Центр вписанной окружности O совпадает с "центроидом вершин" четырёхугольника в том и только в том случае, когда

O A ⋅ O C = O B ⋅ O D . {\displaystyle OA\cdot OC=OB\cdot OD.}

Если M 1 и M 2 являются серединами диагоналей AC и BD соответственно, то

O M 1 O M 2 = O A ⋅ O C O B ⋅ O D = e + g f + h , {\displaystyle {\frac {OM_{1}}{OM_{2}}}={\frac {OA\cdot OC}{OB\cdot OD}}={\frac {e+g}{f+h}},}

где e , f , g и h - отрезки касательных в вершинах A , B , C и D соответственно. Комбинируя первое равенство с последним, получим, что "центроид вершин" описанного четырёхугольника совпадает с центом вписанной окружности тогда и только тогда, когда центр вписанной окружности лежит посередине между средними точками диагоналей.

1 r 1 + 1 r 3 = 1 r 2 + 1 r 4 . {\displaystyle {\frac {1}{r_{1}}}+{\frac {1}{r_{3}}}={\frac {1}{r_{2}}}+{\frac {1}{r_{4}}}.}

Это свойство было доказано пятью годами ранее Вайнштейном . В решении его задачи похожее свойство было дано Васильевым и Сендеровым. Если через h M , h K , h N и h L обозначить высоты тех же треугольников (опущенных из пересечения диагоналей P ), то четырёхугольник является описанным тогда и только тогда, когда

1 h M + 1 h N = 1 h K + 1 h L . {\displaystyle {\frac {1}{h_{M}}}+{\frac {1}{h_{N}}}={\frac {1}{h_{K}}}+{\frac {1}{h_{L}}}.}

Ещё одно похожее свойство относится к радиусам вневписанных окружностей r M , r K , r N и r L для тех же четырёх треугольников (четыре вневписанные окружности касаются каждой из сторон четырёхугольника и продолжений диагоналей). Четырёхугольник является описанным в том и только в том случае, когда

1 r M + 1 r N = 1 r K + 1 r L . {\displaystyle {\frac {1}{r_{M}}}+{\frac {1}{r_{N}}}={\frac {1}{r_{K}}}+{\frac {1}{r_{L}}}.}

Если R M , R K , R N и R L - радиусы описанных окружностей треугольников APB , BPC , CPD и DPA соответственно, то треугольник ABCD является описанным тогда и только тогда, когда

R M + R N = R K + R L . {\displaystyle R_{M}+R_{N}=R_{K}+R_{L}.}

В 1996 Вайнштейн, похоже, был первым, кто доказал ещё одно замечательное свойство описанных четырёхугольников, которое позднее появилось в нескольких журналах и сайтах . Свойство утверждает, что если выпуклый четырёхугольников разделён на четыре неперекрывающихся треугольника его диагоналями, центры вписанных окружностей этих треугольников лежат на одной окружности тогда и только тогда, когда четырёхугольник является описанным. Фактически центры вписанных окружностей образуют ортодиагональный вписанный четырёхугоольник . Здесь вписанные окружности можно заменить на вневписанные (касающиеся стороны и продолжения диагоналей четырёхугольника). Тогда выпуклый четырёхугольник является описанным тогда и только тогда, когда центры вневписанных окружностей являются вершинами вписанного четырёхугольника .

Выпуклый четырёхугольник ABCD , в котором диагонали пересекаются в точке P , является описанным тогда и только тогда, когда четыре центра вневписанных окружностей треугольников APB , BPC , CPD и DPA лежат на одной окружности (здесь вневписанные окружности пересекают стороны четырёхугольника, в отличие от аналогичного утверждения выше, где вневписанные окружности лежат вне четырёхугольника). Если R m , R n , R k и R l - радиусы вневписанных окружностей APB , BPC , CPD и DPA соответственно, противоположных вершинам B и D , то ещё одним необходимым и достаточным условием того, что четырёхугольник является описанным, будет

1 R m + 1 R n = 1 R k + 1 R l . {\displaystyle {\frac {1}{R_{m}}}+{\frac {1}{R_{n}}}={\frac {1}{R_{k}}}+{\frac {1}{R_{l}}}.} m △ (A P B) + n △ (C P D) = k △ (B P C) + l △ (D P A) {\displaystyle {\frac {m}{\triangle (APB)}}+{\frac {n}{\triangle (CPD)}}={\frac {k}{\triangle (BPC)}}+{\frac {l}{\triangle (DPA)}}}

здесь m, k, n, l – длины сторон AB, BC, CD и DA, а ∆(APB ) - площадь треугольника APB .

Обозначим отрезки, на которые точка P делит диагональ AC как AP = p a и PC = p c . Аналогичным образом P делить диагональ BD на отрезки BP = p b и PD = p d . Тогда четырёхугольник является описанным тогда и только тогда, когда выполняется одно из равенств:

(m + p a − p b) (n + p c − p d) (m − p a + p b) (n − p c + p d) = (k + p c − p b) (l + p a − p d) (k − p c + p b) (l − p a + p d) . {\displaystyle {\frac {(m+p_{a}-p_{b})(n+p_{c}-p_{d})}{(m-p_{a}+p_{b})(n-p_{c}+p_{d})}}={\frac {(k+p_{c}-p_{b})(l+p_{a}-p_{d})}{(k-p_{c}+p_{b})(l-p_{a}+p_{d})}}.}

Условия для описанного четырёхугольника быть другим типом четырёхугольника .

Описанный четырёхугольник является бицентричным (т.е. описанным и вписанным одновременно) тогда и только тогда, когда радиус вписанной окружности наибольший среди всех описанных четырёхугольников, имеющих ту же самую последовательность длин сторон в том и только в том случае, когда любое из нижеследующих условий выполняется:

  • Площадь равна половине произведения диагоналей
  • Диагонали перпендикулярны
  • Два отрезка, соединяющие противоположные точки касания, имеют равные длины
  • Одна пара противоположных отрезков от вершины до точки касания имеют одинаковые длины
  • C.V. Durell, A. Robson. Advanced Trigonometry // Dover reprint. - 2003.
  • Victor Bryant, John Duncan. Wheels within wheels // Mathematical Gazette. - 2010. - Вып. 94, November .
  • Albrecht Hess. On a circle containing the incenters of tangential quadrilaterals // Forum Geometricorum. - 2014. - Т. 14 .
  • Wu Wei Chao, Plamen Simeonov. When quadrilaterals have inscribed circles (solution to problem 10698) // American Mathematical Monthly . - 2000. - Т. 107 , вып. 7 . - DOI :10.2307/2589133 .
  • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .

Larry Hoehn. A new formula concerning the diagonals and sides of a quadrilateral. - 2011. - Т. 11 Т. 10 .

  • Martin Josefsson. When is a Tangential Quadrilateral a Kite? // Forum Geometricorum. - 2011a. - Т. 11 .
  • Martin Josefsson. More Characterizations of Tangential Quadrilaterals // Forum Geometricorum. - 2011b. - Т. 11 .
  • Martin Josefsson. The Area of a Bicentric Quadrilateral // Forum Geometricorum. - 2011c. - Т. 11 .
  • Martin Josefsson. Similar Metric Characterizations of Tangential and Extangential Quadrilaterals // Forum Geometricorum. - 2012. - Т. 12 .
  • Martin Josefsson. Characterizations of Orthodiagonal Quadrilaterals. - 2012b. - Т. 12 .
  • Nicusor Minculete. Characterizations of a Tangential Quadrilateral // Forum Geometricorum. - 2009. - Т. 9 .
  • Alexei Myakishev. On Two Remarkable Lines Related to a Quadrilateral // Forum Geometricorum. - 2006. - Т. 6 .
  • A.W. Siddons, R.T. Hughes. Trigonometry. - Cambridge Univ. Press, 1929.
  • И. Вайнштейн, Н. Васильев, В. Сендеров. (Решение задачи) M1495 // Квант. - 1995. - Вып. 6 .
  • Michael De Villiers. Equiangular cyclic and equilateral circumscribed polygons // Mathematical Gazette. - 2011. - Вып. 95, March .
  • Четырехугольник является вписанным в окружность, если все его вершины лежат на этой окружности. Такая окружность является описанной около четырехугольника.

    Как не каждый четырехугольник можно описать около окружности, также не каждый можно вписать в окружность.

    Выпуклый четырехугольник, вписанный в окружность, обладает свойством: его противоположные углы в сумме составляют 180° . Так, если дан четырехугольник ABCD, у которого угол A противоположен углу C, а угол B противоположен углу D, то ∠A + ∠C = 180° и ∠B + ∠D = 180°.

    Вообще, если одна пара противоположных углов четырехугольника в сумме составляет 180°, то и другая пара в сумме будет составлять столько же. Это следует из того, что у выпуклого четырехугольника сумма углов всегда равна 360°. В свою очередь данный факт следует из того, что у выпуклых многоугольников сумма углов определяется по формуле 180° * (n – 2), где n - количество углов (или сторон).

    Доказать свойство вписанного четырехугольника можно следующим образом. Пусть в окружность O вписан четырехугольник ABCD. Требуется доказать, что ∠B + ∠D = 180°.

    Угол B является вписанным в окружность. Как известно, такой угол равен половине дуги, на которую опирается. В данном случае угол B опирается на дугу ADC, значит, ∠B = ½◡ADC. (Поскольку дуга равна углу между образующими ее радиусами, то можно записать, что ∠B = ½∠AOC, внутренняя область которого содержит точку D.)

    С другой стороны угол D четырехугольника опирается на дугу ABC, то есть ∠D = ½◡ABC.

    Так как стороны углов B и D пересекают окружность в одних и тех же точках (A и C), то они разделяют окружность только на две дуги - ◡ADC и ◡ABC. Так как полная окружность в сумме составляет 360°, то ◡ADC + ◡ABC = 360°.

    Таким образом получились следующие равенства:

    ∠B = ½◡ADC
    ∠D = ½◡ABC
    ◡ADC + ◡ABC = 360°

    Выразим сумму углов:

    ∠B + ∠D = ½◡ADC + ½◡ABC

    Вынесем ½ за скобку:

    ∠B + ∠D = ½(◡ADC + ◡ABC)

    Заменим сумму дуг их числовым значением:

    ∠B + ∠D = ½ * 360° = 180°

    Мы получили, что сумма противоположных углов вписанного четырехугольника равна 180°. Это и требовалось доказать.

    То, что вписанный четырехугольник обладает таким свойством (сумма противоположных углов равна 180°), еще не означает, что любой четырехугольник, у которого сумма противоположных углов равна 180° можно вписать в окружность. Хотя на самом деле это так. Данный факт называется признаком вписанного четырехугольника и формулируется так: если сумма противоположных углов выпуклого четырехугольника равна 180°, то около него можно описать окружность (или вписать его в окружность) .

    Доказать признак вписанного четырехугольника можно методом от противного. Пусть дан четырехугольник ABCD, у которого противоположные углы B и D в сумме составляют 180°. При этом угол D не лежит на окружности. Тогда возьмем на прямой, содержащей отрезок CD, такую точку E, чтобы она лежала на окружности. Получится вписанный четырехугольник ABCE. У этого четырехугольника противоположны углы B и E, а, значит, они составляют в сумме 180°. Это следует из свойства вписанного четырехугольника.

    Получается, что ∠B + ∠D = 180° и ∠B + ∠E = 180°. Однако угол D четырехугольника ABCD по отношению к треугольнику AED является внешним, а значит больше угла E этого треугольника. Таким образом, мы пришли к противоречию. Значит, если сумма противоположных углов четырехугольника в сумме составляет 180°, то он всегда может быть вписан в окружность.

    Выпуклый четырёхугольник A B C D {\displaystyle \displaystyle ABCD} является вписанным тогда и только тогда , когда противоположные углы в сумме дают 180°, то есть .

    A + C = B + D = π = 180 ∘ . {\displaystyle A+C=B+D=\pi =180^{\circ }.}

    Теорема была Предложением 22 в книге 3 Евклида Начала . Эквивалентно, выпуклый четырёхугольник является вписанным тогда и только тогда, когда смежный угол равен противоположному внутреннему углу.

    p q = a c + b d . {\displaystyle \displaystyle pq=ac+bd.}

    Если две прямые, из которых одна содержит отрезок AC , а другая - отрезок BD , пересекаются в точке P , то четыре точки A , B , C , D лежат на окружности тогда и только тогда, когда

    A P ⋅ P C = B P ⋅ P D . {\displaystyle AP\cdot PC=BP\cdot PD.}

    Точка пересечения P может лежать как внутри, так и вне окружности. В первом случае это будет вписанный четырёхугольник ABCD , а во втором - вписанный четырёхугольник ABDC . Если пересечение лежит внутри, равенство означает, что произведение отрезков, на которые точка P делит одну диагональ, равно произведению отрезков другой диагонали. Это утверждение известно как теорема о пересекающихся хордах , поскольку диагонали вписанного четырёхугольника являются хордами описанной окружности.

    Выпуклый четырёхугольник ABCD является вписанным тогда и только тогда, когда

    tan ⁡ A 2 tan ⁡ C 2 = tan ⁡ B 2 tan ⁡ D 2 = 1. {\displaystyle \tan {\frac {A}{2}}\tan {\frac {C}{2}}=\tan {\frac {B}{2}}\tan {\frac {D}{2}}=1.}

    Площадь

    S = (p − a) (p − b) (p − c) (p − d) {\displaystyle S={\sqrt {(p-a)(p-b)(p-c)(p-d)}}}

    Вписанный четырёхугольник имеет максимальную площадь среди всех четырёхугольников, имеющих ту же последовательность длин сторон. Это другое следствие соотношения Бретшнайдера. Утверждение можно доказать с помощью математического анализа .

    Четыре неравные длины, каждая из которых меньше суммы остальных трёх, являются сторонами трёх неконгруэнтных вписанных четырёхугольников , и по формуле Брахмагупты все эти треугольники имеют одинаковую площадь. В частности, для сторон a , b , c и d сторона a может быть противоположной любой из сторон b , c или d . Любые два из этих трёх вписанных четырёхугольников имеют диагональ одинаковой длины .

    Площадь вписанного четырёхугольника с последовательными сторонами a , b , c , d и углом B между сторонами a и b можно выразить формулой

    S = 1 2 (a b + c d) sin ⁡ B {\displaystyle S={\tfrac {1}{2}}(ab+cd)\sin {B}} S = 1 2 (a c + b d) sin ⁡ θ {\displaystyle S={\tfrac {1}{2}}(ac+bd)\sin {\theta }}

    где θ - любой угол между диагоналями. Если угол A не является прямым, площадь можно выразить формулой

    S = 1 4 (a 2 − b 2 − c 2 + d 2) tan ⁡ A . {\displaystyle S={\tfrac {1}{4}}(a^{2}-b^{2}-c^{2}+d^{2})\tan {A}.} S = 2 R 2 sin ⁡ A sin ⁡ B sin ⁡ θ {\displaystyle S=2R^{2}\sin {A}\sin {B}\sin {\theta }} S ≤ 2 R 2 {\displaystyle S\leq 2R^{2}} ,

    и неравенство превращается в равенство в том и только в том случае, когда четырёхугольник является квадратом.

    Диагонали

    С вершинами A , B , C , D (в указанной последовательности) и сторонами a = AB , b = BC , c = CD и d = DA длины диагоналей p = AC и q = BD можно выразить через стороны

    p = (a c + b d) (a d + b c) a b + c d {\displaystyle p={\sqrt {\frac {(ac+bd)(ad+bc)}{ab+cd}}}} q = (a c + b d) (a b + c d) a d + b c {\displaystyle q={\sqrt {\frac {(ac+bd)(ab+cd)}{ad+bc}}}} p q = a c + b d . {\displaystyle pq=ac+bd.}

    Согласно второй теореме Птолемея ,

    p q = a d + b c a b + c d {\displaystyle {\frac {p}{q}}={\frac {ad+bc}{ab+cd}}}

    при тех же обозначениях, что и прежде.

    Для суммы диагоналей имеем неравенство

    p + q ≥ 2 a c + b d . {\displaystyle p+q\geq 2{\sqrt {ac+bd}}.}

    Неравенство становится равенством в том и только в том случае, когда диагонали имеют одинаковую длину, что можно показать, используя неравенство между средним арифметическим и средним геометрическим .

    (p + q) 2 ≤ (a + c) 2 + (b + d) 2 . {\displaystyle (p+q)^{2}\leq (a+c)^{2}+(b+d)^{2}.}

    В любом выпуклом четырёхугольнике две диагонали делят четырёхугольник на четыре треугольника. Во вписанном четырёхугольнике противоположные пары этих четырёх треугольников подобны .

    Если M и N являются средними точками диагоналей AC и BD , то

    M N E F = 1 2 | A C B D − B D A C | {\displaystyle {\frac {MN}{EF}}={\frac {1}{2}}\left|{\frac {AC}{BD}}-{\frac {BD}{AC}}\right|}

    где E и F - точки пересечения противоположных сторон.

    Если ABCD - вписанный четырёхугольник и AC пересекает BD в точке P , то

    A P C P = A B C B ⋅ A D C D . {\displaystyle {\frac {AP}{CP}}={\frac {AB}{CB}}\cdot {\frac {AD}{CD}}.}

    Формулы углов

    a , b , c , d , полупериметром s и углом A между сторонами a и d тригонометрические функции угла A равны

    cos ⁡ A = a 2 + d 2 − b 2 − c 2 2 (a d + b c) , {\displaystyle \cos A={\frac {a^{2}+d^{2}-b^{2}-c^{2}}{2(ad+bc)}},} sin ⁡ A = 2 (s − a) (s − b) (s − c) (s − d) (a d + b c) , {\displaystyle \sin A={\frac {2{\sqrt {(s-a)(s-b)(s-c)(s-d)}}}{(ad+bc)}},} tan ⁡ A 2 = (s − a) (s − d) (s − b) (s − c) . {\displaystyle \tan {\frac {A}{2}}={\sqrt {\frac {(s-a)(s-d)}{(s-b)(s-c)}}}.}

    Для угла θ между диагоналями выполняется

    tan ⁡ θ 2 = (s − b) (s − d) (s − a) (s − c) . {\displaystyle \tan {\frac {\theta }{2}}={\sqrt {\frac {(s-b)(s-d)}{(s-a)(s-c)}}}.}

    Если продолжения противоположных сторон a и c пересекаются под углом ϕ {\displaystyle \phi } , то

    cos ⁡ ϕ 2 = (s − b) (s − d) (b + d) 2 (a b + c d) (a d + b c) {\displaystyle \cos {\frac {\phi }{2}}={\sqrt {\frac {(s-b)(s-d)(b+d)^{2}}{(ab+cd)(ad+bc)}}}}

    Формула Парамешвара

    Для вписанного четырёхугольника со сторонами a , b , c , d (в указанной последовательности) и полупериметром s радиус описанной окружности) задаётся формулой

    R = 1 4 (a b + c d) (a c + b d) (a d + b c) (s − a) (s − b) (s − c) (s − d) . {\displaystyle R={\frac {1}{4}}{\sqrt {\frac {(ab+cd)(ac+bd)(ad+bc)}{(s-a)(s-b)(s-c)(s-d)}}}.}

    Формула была выведена индийским математиком Ватассери Парамешвара в 15 веке.

    Если диагонали вписанного четырёхугольника пересекаются в точке P , а середины диагоналей - V и W , то антицентр четырёхугольника является ортоцентром треугольника VWP , а вершинный центроид находится в середине отрезка, соединяющего середины диагоналей .

    Во вписанном четырёхугольнике "центроид площади" G a , "центроид вершин" G v и пересечение P диагоналей лежат на одной прямой. Для расстояний между этими точками выполняется равенство

    P G a = 4 3 P G v . {\displaystyle PG_{a}={\tfrac {4}{3}}PG_{v}.}

    Другие свойства

    • Во вписанном четырёхугольнике ABCD с центром описанной окружности O пусть P - точка пересечения диагоналей AC и BD . Тогда угол APB является средним арифметическим углов AOB и COD . Это является прямым следствием теоремы о вписанном угле и теоремы о внешнем угле треугольника .
    • Если вписанный четырёхугольник имеет длины сторон, образующие арифметическую прогрессию , то четырёхугольник является также внешне описанным .

    Четырёхугольники Брахмагупты

    Четырёхугольник Брахмагупты - это вписанный четырёхугольник с целочисленными длинами сторон, целочисленными длинами диагоналей и целочисленной площадью. Все четырёхугольники Брахмагупты со сторонами a, b, c, d , диагоналями e, f , площадью S, и радиусом описанной окружности R можно получить путём избавления от знаменателя в следующих выражениях (при рациональных параметрах t , u и v ):

    a = [ t (u + v) + (1 − u v) ] [ u + v − t (1 − u v) ] {\displaystyle a=} b = (1 + u 2) (v − t) (1 + t v) {\displaystyle b=(1+u^{2})(v-t)(1+tv)} c = t (1 + u 2) (1 + v 2) {\displaystyle c=t(1+u^{2})(1+v^{2})} d = (1 + v 2) (u − t) (1 + t u) {\displaystyle d=(1+v^{2})(u-t)(1+tu)} e = u (1 + t 2) (1 + v 2) {\displaystyle e=u(1+t^{2})(1+v^{2})} f = v (1 + t 2) (1 + u 2) {\displaystyle f=v(1+t^{2})(1+u^{2})} S = u v [ 2 t (1 − u v) − (u + v) (1 − t 2) ] [ 2 (u + v) t + (1 − u v) (1 − t 2) ] {\displaystyle S=uv} 4 R = (1 + u 2) (1 + v 2) (1 + t 2) . {\displaystyle 4R=(1+u^{2})(1+v^{2})(1+t^{2}).}

    Свойства ортодиагональных вписанных четырёхугольников

    Площадь и радиус описанной окружности

    Пусть для вписанного четырёхугольника, являющегося также ортодиагональным (т.е. имеющим перпендикулярные диагонали), пересечение диагоналей делит одну диагональ на отрезки длиной p 1 и p 2 , а другую делит на отрезки длиной q 1 и q 2 . Тогда (первое равенство является Предложением 11 в книге Архимеда «Леммы »)

    D 2 = p 1 2 + p 2 2 + q 1 2 + q 2 2 = a 2 + c 2 = b 2 + d 2 {\displaystyle D^{2}=p_{1}^{2}+p_{2}^{2}+q_{1}^{2}+q_{2}^{2}=a^{2}+c^{2}=b^{2}+d^{2}} ,

    где D -

    или, через стороны четырёхугольника

    R = 1 2 a 2 + c 2 = 1 2 b 2 + d 2 . {\displaystyle R={\tfrac {1}{2}}{\sqrt {a^{2}+c^{2}}}={\tfrac {1}{2}}{\sqrt {b^{2}+d^{2}}}.}

    Отсюда также следует, что

    a 2 + b 2 + c 2 + d 2 = 8 R 2 . {\displaystyle a^{2}+b^{2}+c^{2}+d^{2}=8R^{2}.}

    Таким образом, согласно формуле Эйлера , радиус можно выразить через диагонали p и q и расстояние x между серединами диагоналей

    R = p 2 + q 2 + 4 x 2 8 . {\displaystyle R={\sqrt {\frac {p^{2}+q^{2}+4x^{2}}{8}}}.}

    Формула для площади K вписанного ортодиагонального четырёхугольника можно получить непосредственно через стороны, если скомбинировать теорему Птолемея (см. выше) и формулу площади ортодиагонального четырёхугольника. В результате получим

    Литература

    • Claudi Alsina, Roger Nelsen. When Less is More: Visualizing Basic Inequalities, Сhapter 4.3 Cyclic, tangential, and bicentric quadrilaterals. - Mathematical Association of America, 2009. - ISBN 978-0-88385-342-9 .
    • Claudi Alsina, Roger B. Nelsen. On the diagonals of a cyclic quadrilateral // Forum Geometricorum. - 2007. - Т. 7 .
    • Nathan Altshiller-Court. College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle. - 2nd. - Courier Dover, 2007. - ISBN 978-0-486-45805-2 . (org. 1952)
    • =Titu Andreescu, Bogdan Enescu. .
    • Harold Scott MacDonald Coxeter, Samuel L. Greitzer. Geometry Revisited. 3.2 Cyclic Quadrangles; Brahmagupta"s formula. - Mathematical Association of America, 1967. - ISBN 978-0-88385-619-2 . Перевод Г. С. М. Коксетер, С. Л. Грейтцер. Новые встречи с геометрией. 3.2 Вписанные четырёхугольники; Теорема Брахмагупты. - Москва: «Наука», 1978. - (Библиотека математического кружка).
    • Crux Mathematicorum. Inequalities proposed in Crux Mathematicorum . - 2007.
    • D. Fraivert. The theory of an inscribable quadrilateral and a circle that forms Pascal points // Journal of Mathematical Sciences: Advances and Applications. - 2016. - Т. 42 . - P. 81–107. - DOI :10.18642/jmsaa_7100121742 .
    • C. V. Durell, A. Robson. Advanced Trigonometry. - Courier Dover, 2003. - ISBN 978-0-486-43229-8 . (orig. 1930)
    • Mowaffaq Hajja. A condition for a circumscriptible quadrilateral to be cyclic // Forum Geometricorum. - 2008. - Т. 8 .
    • Larry Hoehn. Circumradius of a cyclic quadrilateral // Mathematical Gazette. - 2000. - Т. 84 , вып. 499 March .
    • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. - Cambridge University Press, 1995. - Т. 37. - (New Mathematical Library). - ISBN 978-0-88385-639-0 .
    • Roger A. Johnson. Advanced Euclidean Geometry. - Dover Publ, 2007. (orig. 1929)
    • Thomas Peter. Maximizing the area of a quadrilateral // The College Mathematics Journal. - 2003. - Т. 34 , вып. 4 September .
    • Alfred S. Posamentier, Charles T. Salkind. Challenging Problems in Geometry. - 2nd. - Courier Dover, 1970. - ISBN 978-0-486-69154-1 . Глава: Solutions: 4-23 Prove that the sum of the squares of the measures of the segments made by two perpendicular chords is equal to the square of the measure of the diameter of the given circle.
    • , Перевод с русского издания В.В. Прасолов. Задачи по планиметрии. Учебное пособие. - 5-е. - Москва: МЦНМО OAO «Московские учебники», 2006. - ISBN 5-94057-214-6


    Что еще почитать