Отношения делимости. Отношение делимости и его свойства. Что будем делать с полученным материалом

Делимость натуральных чисел

Как известно, вычитание и деление на множестве натуральных чисел выполнимо не всегда. Вопрос о существовании разности натуральных чисел а и b решается просто - достаточно установить (по записи чисел), что b < а. Для деления такого общего и простого признака нет. Поэтому в математической науке с давних пор пытались найти такие правила, которые позволили бы по записи числа а узнавать, делится оно на число b или нет, не выполняя непосредственного деления а на b. В результате этих поисков были открыты не только некоторые признаки делимости, но и другие важные свойства чисел; познакомимся с некоторыми из них.

В начальных курсах математики делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются. Например, признак делимости суммы, разности и произведения на число тесно связаны с правилами деления суммы, разности и произведения на число, изучаемыми в начальных классах. В ряде курсов изучаются признаки делимости чисел на 2, 3, 5 и другие.

Вообще знания о делимости натуральных чисел расширяют представления о множестве натуральных чисел, позволяют глубже усвоить материал, связанный с делением натуральных чисел, применять полученные ранее знания о способах доказательства, о свойствах отношений и др.

Отношение делимости и его свойства

Определение. Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что a - bq.

В этом случае число b называют делителем числа а, а число а - кратным числа b.

Например, 24 делится на 8, так как существует такое q = 3, что 24 = 8·3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.

В том случае, когда а делится на b, пишут: а b. Эту запись часто читают и так: «а кратно b».

Заметим, что понятие «делитель данного числа» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5-делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия «делитель» и «делитель данного числа» совпадают.

Из определения отношения делимости и равенства а = 1·а, справедливого для любого натурального а, вытекает, что 1 является делителем любого натурального числа.

Выясним, сколько вообще делителей может быть у натурального числа а. Сначала рассмотрим следующую теорему.

Теорема 1. Делитель b данного числа а не превышает этого числа, т.е. если a b, тo b≤a.

Доказательство. Так как а b, то существует такое q N, что a=bq и, значит, a-b = bq-b = b· (q- 1). Поскольку а N, то q≥l. Тогда b· (q- 1) ≥0 и, следовательно, b≤a.

Из данной теоремы следует, что множество делителей данного числа конечно . Назовем, например, все делители числа 36. Они образуют конечное множество {1, 2, 3,4, 6,9, 12, 18, 36}.

В зависимости от числа делителей среди натуральных чисел различают простые и составные числа.

Определение. Простым числом называется такое натуральное число, которое имеет только два делителя - единицу и само это число.

Например, число 13 - простое, поскольку у него только два делителя: 1 и 13.

Определение. Составным числом называется такое натуральное число, которое имеет более двух делителей.

Так число 4 составное, у него три делителя: 1, 2 и 4.

Число 1 не является ни простым, ни составным числом в связи с тем, что оно имеет только один делитель.

Чисел, кратных данному числу, можно назвать как угодно много, - их бесконечное множество. Так, числа, кратные 4, образуют бесконечный ряд: 4, 8, 12, 16, 20, 24, ..., и все они могут быть получены по формуле а = 4q, где q принимает значения 1, 2, 3,....

Нам известно, что отношение делимости обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.

Теорема 2. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя.

Доказательство . Для любого натурального а справедливо равенство а = а·1. Так как 1 N, то, по определению отношения делимости, а а.

Теорема 3. Отношение делимости антисимметрично, т.е.

если a b и а≠b, то .

Доказательство . Предположим противное, т.е. что b а. Но тогда а ≤ b, согласно теореме, рассмотренной выше.

По условию a b и а≠b. Тогда, по той же теореме, b≤а.

Неравенства а ≤b и b ≤а будут справедливы лишь тогда, когда а=b, что противоречит условию теоремы. Следовательно, наше предположение неверное и поэтому если a b и а≠b, то .

Теорема 4. Отношение делимости транзитивно, т.е. если a b и b с, то а с.

Доказательство . Так как a b, то существует такое натуральное число q, что a - bq, а так как b с, то существует такое натуральное число р, что b= ср. Но тогда имеем: a=bq = (cp)q = c(pq). Число pq - натуральное. Значит, по определению отношения делимости, а с.

Теорема 5 (признак делимости суммы). Если каждое из натуральных чисел а 1 , а 2 , ... , а n делится на натуральное число b, то и их сумма а 1 +а 2+ ...+ а n делится на это число.

Доказательство . Так как а 1 b, то существует такое натуральное число q 1 , что а 1= bq 1 . Так как a 2 b, то существует такое натуральное число q 2 , что а 2 = bq 2 . Продолжая рассуждения, получим, что если а n b, то существует такое натуральное число q n , что а n = bq n . Эти равенства позволяют преобразовать сумму а 1 +а 2 + ... + а n в сумму вида bq 1 + bq 2 + ... + bq n . Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q 1 + q 2 + ... + q n обозначим буквой q. Тогда а 1 + а 2 + ... + a n = b(g 1 + q 2 + ... + q n)= bq, т.е. сумма а 1 + а 2 + ... + а n оказалась представленной в виде произведения числа b и некоторого натурального числа q. А это значит, что сумма а 1 + а 2 + ... + a n делится на b, что и требовалось доказать.

Например, не производя вычислений, можно сказать, что сумма 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.

Теорема 6 (признак делимости разности). Если числа a 1 и а 2 делятся на b и а 1 > а 2 , то их разность а 1 - а 2 делится на b.

Доказательство этой теоремы аналогично доказательству признака делимости суммы.

Теорема 7 (признак делимости произведения). Если число а делится на b, то произведение вида ах, где х N, делится на b.

Доказательство . Так как а b, то существует такое натуральное число q, что а = bq. Умножим обе части этого равенства на натуральное число х. Тогда ах = (bq)x, откуда на основании свойства ассоциативности умножения (bq)x – b(qx) и, значит, ах = b(qx), где qx - натуральное число. Согласно определению отношения делимости ах b, что и требовалось доказать.

Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.

Например, произведение 24 – 976 - 305 делится на 12, так как на 12 делится множитель 24.

Рассмотрим еще три теоремы, связанные с делимостью суммы и произведения, которые часто используются при решении задач на делимость.

Теорема 8. Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится.

Доказательство . Пусть s = а 1 + а 2 + ... + a n + с и известно,

что а 1 b, а 2 b ... a n b, но . Докажем, что тогда .

Предположим противное, т.е. пусть s b. Преобразуем сумму s к виду с = s - (а 1 + а 2 + ... + a n). Так как s b по предположению, (а 1 + а 2 + ... + a n) b согласно признаку делимости суммы, то по теореме о делимости разности с b. Пришли к противоречию с тем, что дано. Следовательно, .

Например, сумма 34 + 125 + 376 + 1024 на 2 не делится, так как 34 2, 376 2,124 2, но .

Теорема 9. Если в произведении ab множитель а делится на натуральное число m, а множитель b делится на натуральное число n, то ab делится на mn.

Справедливость этого утверждения вытекает из теоремы о делимости произведения.

Теорема 10. Если произведение ас делится на произведение bс, причем с - натуральное число, то и я делится на b.

Доказательство . Так как ас делится на bс, то существует такое натуральное число q, что ас = (bc)q, откуда ас = (bq)c и, следовательно, а =bq, т.е. а b.

Признаки делимости

Рассмотренные в п. 88 свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятичной системе счисления, на 2, 3,4, 5, 9.

Признаки делимости позволяют установить по записи числа делится ли оно на другое, не выполняя деления.

Теорема 11 (признак делимости на 2). Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0, 2, 4, 6, 8.

Доказательство . Пусть число х записано в десятичной системе счисления, т.е. х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10 + а 0 , где а n , a n-1 ,..., а 1 , принимают значения 0, 1,2, 3, 4, 5, 6, 7, 8, 9, а n ≠ 0 и а 0 принимает значения 0,2,4,6,8. Докажем, что тогда х 2.

Так как 10 2, то 10 2 2, 10 3 2, ..., 10 n 2 и, значит, (а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10) 2. По условию а 0 тоже делится на 2, и поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число х делится на 2.

Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0, 2,4, 6, 8.

Запишем равенство х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10+а в таком виде:

а о = х-(а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10). Но тогда, по теореме о делимости разности, а о 2, поскольку х 2 и (а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10) 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0, 2, 4, 6, 8.

Теорема 12 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Доказательство этого признака аналогично доказательству признака делимости на 2.

Теорема 13 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х.

Доказательство . Пусть число х записано в десятичной системе счисления, т.е. х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10 + а 0 и две последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х 4.

Так как 100 4, то (а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10) 4. По условию, а 1 ·10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку делимости суммы, и само число х делится на 4.

Докажем обратное, т.е. если число х делится на 4, то двузначное число, образованное последними цифрами его десятичной записи, тоже делится на 4.

Запишем равенство х = а n ·10 n + a n-1 ·10 n-1 + ... + а 1 ·10 + а 0 в таком виде: а 1 ·10 + а о = х- (а n ·10 n + a n-1 ·10 n-1 + ... + а 2 ·10 2). Так как х 4 и (а n ·10 n + a n-1 ·10 n-1 + ... + а 2 ·10 2) 4, то по теореме о делимости разности (а 1 ·10 + а о) 4 Но выражение а 1 ·10 + а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

Пусть даны натуральные числа a и b . Говорят, что число a делится на число b , если существует такое натуральное число q , что a = bq .


В этом случае число b называют делителем числа а , а число а - кратным числа b .


Например, 24 делится на 8, так как существует такое q = 3, что 24 = 8*3. Можно сказать иначе: 8 - это делитель числа 24, а 24 есть кратное числа 8.


В случае, когда а делится на b , пишут: . Эту запись часто читают и так: «а кратно b ».


Заметим, что понятие «делитель данного число» следует отличать от понятия «делитель», обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но 5 не является делителем числа 18. Если 18 делят на 6, то в случае понятия «делитель» и «делитель данного числа» совпадают.


Из определения отношения делимости и равенства а = 1*а , справедливого для любого натурального а, вытекает, 1 является делителем любого натурального числа.


Выясним, сколько вообще делителем может быть у натурального числа. Сначала рассмотрим следующую теорему.


Теорема. Делитель b данного числа а не превышает этого числа. Если , то .


Доказательство. Так как , то существует такое , что a = bq , значит, a - b = bq - b = b*(q - 1). Поскольку , то . Тогда и, следовательно, .


Из данной теоремы следует, что множество делителей данного числа конечно. Назовем, например, все делители числа 36. Они образуют конечное множество {1, 2, 3, 4, 6, 9, 12, 18, 36}.

Свойства делимости

Нам известно, что отношение делимости на множестве N обладает рядом свойств, в частности, оно рефлексивно, антисимметрично и транзитивно. Теперь, имея определение отношения делимости, мы можем доказать эти и другие его свойства.


Теорема. Отношение делимости рефлексивно, т.е. любое нату-ральное число делится само на себя.


Доказательство. Для любого натурального а справедливо ра-венство . Так как 1 е N, то, по определению отношения дели-мости, .


Теорема. Отношение делимости антисимметрично, т.е. если и , то .


Доказательство . Предположим противное, т. е. что . Но тог-да , согласно теореме, рассмотренной выше.


По условию и . Тогда, по той же теореме,.


Неравенства и будут справедливы лишь тогда, когда , что противоречит условию теоремы. Следовательно, наше предпо-ложение неверное и теорема доказана.


Теорема. Отношение делимости транзитивно, т.е. если и , то .


Доказательство. Так как, q, что а = bq, а так как , то существует такое натуральное число p , что . Но тогда имеем: . Число pq - натуральное. Значит, по определению отношения делимости,.


Теорема (признак делимости суммы). Если каждое из натураль-ных чисел а1 , а2 ..., ап делится на натуральное число b , то и их сумма а1 + а2 + ... + ап делится на это число.


Доказательство . Так как , то существует такое натураль-ное число что . Так как , то существует такое нату-ральное число , что . Продолжая рассуждения, получим, что если , то существует такое натуральное число , что . Эти равенства позволяют преобразовать сумму а1 + а2 + ... + ап в сумму вида bq1 + bq2 + ... + bqn. Вынесем за скобки общий множитель b, а получившееся в скобках натуральное число q1 + q2 + ... + qn обозначим буквой q . Тогда а1 + а2 + ... + ап = b(q1 + q2 + ... + qn) = bq , т.е. сумма а1 + а2 + ... + ап оказалась представленной в виде произведения числа b и некоторого натурального числа q. А это значит, что сумма а1 + а2 + ... + ап делится на b, что и требовалось доказать.


Например, не производя вычислений, можно сказать, что сумма 175 + 360 + 915 делится на 5, так как на 5 делится каждое слагаемое этой суммы.


Теорема (признак делимости разности). Если числа а1 и а2 делятся на b и , то их разность делится на b.


Доказательство этой теоремы аналогично доказательству призна-ка делимости суммы.


Теорема (признак делимости произведения). Если число а де-лится на b, то произведение вида ах, где N, делится на b.


Доказательство . Так как , то существует такое натураль-ное число q, что . Умножим обе части этого равенства на нату-ральное число х. Тогда ах = (bq)x, откуда на основании свойства ассоциативности умножения (bq)x = b(qx) и, значит, ах = b(qx), где qx - натуральное число. Согласно определению отношения делимости, , что и требовалось доказать.


Из доказанной теоремы следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b.


Например, произведение 24

Понятие отношения делимости

Определение. Число а делится на число в тогда и только тогда, когда существует такое число q, что а = в × q. а в ( q N 0) [а = вq].

Обозначают: а в. Читают: «число а кратно числу в», «число в – делитель числа а», «а кратно в».

Равенство а=вq называют формулой кратности числа а числу в.

Число а, кратное 2, называют четным. Общий вид четного числа: а = 2n, n N 0 .

Число, кратное 3 имеет формулу: а = 3n, n N 0 .

Определение. Отношение делимости на множестве N 0 N содержит те и только те пары чисел (а, в), у которых первая координата кратна второй. Обозначают: « ».

« » = {(а, в)| (а, в) N 0 N а в}.

Если отношение делимости обозначить , то N 0 N ={(а, в)| (а, в) N 0 N а=вq}.

Теорема. Делитель в данного числа а не превышает этого числа, то есть, если а в в а.

Доказательство. Так как а в, то ( q N 0) [а = вq] а – в=вq-в=в(q – 1), так как q N q 1.

Тогда в (q – 1) 0 в а. Из определения отношения делимости и равенства а = 1 × а, следует, что 1 является делителем для любого натурального числа.

Следствие. Множество делителей данного числа конечно.

Например, делители числа 18 является конечное множество: {1, 2, 3, 6, 9, 18}.

Свойства отношения делимости

1. Отношение делимости рефлексивно, то есть любое натуральное число делится само на себя: ( а N) [(а,а) ], то есть а: а = 1.

Доказательство. ( а N)[а = а × 1] по определению отношения делимости а: а.

2. Отношение делимости антисимметрично, то есть для различных чисел а и в из того, что а в, следует, что в не кратно а. ( а, в N 0 N)[а в а в ].

Доказательство. Допустим, что в а, тогда в а. Но по условию а в, так как а в.

Неравенства в а а в истины только в том случае, если а = в. пришли к противоречию с условием. Следовательно, допущение, что в а Л. Таким образом, отношение делимости антисимметрично.

3. Отношение делимости транзитивно. ( а,в,с N 0 N)[а в в с а с].

Доказательство. Если а в ( q N)[а = вq] (1) Из того, что в с ( t N)[в = сt] (2)

Подставим в = сt в равенство (1), получим: а = (сt)q = c(tq), t,q N tq N tq = р а = ср, р N. А это значит, что а с.

Признаки делимости. Делимость суммы, разности, произведения

Определение. Признаком делимости называется предложение, в котором доказывается как можно предсказать делимость одного числа на другое, не выполняя деления этих чисел.

Теорема (признак делимости суммы). Если числа а и в делится на число n, то их сумма делится на это число, ( а,в, n N 0 N)[а n в n (а + в) n].

Доказательство. Из того что а n в n (по определению отношения делимости)

а=nq 1 (1), q 1 N. в=nq 2 (2), q 2 N. Преобразуем сумму (а + в) к виду:

а + в = nq 1 + nq 2 = n (q 1 + q 2) = nq,q = q 1 + q 2 . а + в = nq.

Следовательно, по определению отношения делимости, что (а + в) n.

Теорема (признак делимости разности). Если числа а и в делятся на число n и а в, то их разность а – в делится на число n, то есть

( а,в,n N 0 N)[а n в n а в (а – в) n].

Теорема (признак делимости произведения). Если один из множителей произведения делится на число n, то и все произведение делится на число n.

( а,в,n N 0 N)[а n (ав) n].

Доказательство. Из того, что а n а = nq (1). Умножим обе части равенства (1) на в N, получим: ав = nqв (по ассоциативности умножения) ав = n(qв) = nt, где t = qв ав = nt. А это значит, что ав n (по определению отношения делимости). Таким образом, для делимости произведения на число достаточно чтобы на данное число делился хотя бы один из множителей этого произведения.

Теорема. Если в произведении ав множитель а делится на натуральное число m, а множитель в делится на натуральное число n, то ав делится на mn.

( а,в,m,n N)[а m в n ав mn].

Доказательство. Из того, что а m а = mq 1 , q 1 N; в n в = nq 2 , q 2 N

ав = mq 1 × nq 2 , = mn(q 1 × q 2) = mnq, q 1 × q 2 = q N. ав = mnq ав mn.

Теорема (признак делимости на 2). Для того, чтобы число х делилось на 2 необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр: 0, 2, 4, 6, 8.

Доказательство. Пусть число х записано в десятичной системе счисления, то есть:

х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 , где а n , a n –1 , …, а 1 – цифры, принимающие значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и а n 0, а 0 – принимает значения 0, 2, 4, 6, 8.

Докажем, что число х 2. Так как 10 2, то любая степень числа 10 2. Десятичную запись числа х представим в виде: х = (а n 10 n + a n –1 10 n –1 + …+a 1 10) + a 0

I слагаемое II слагаемое

В этой сумме первое слагаемое по признаку делимости суммы делится на 2. Второе слагаемое а 0 2 (по условию). Следовательно, по признаку делимости суммы на число х делится на 2.

Обратно, если число х делится на 2, то его десятичная запись оканчивается цифрой 0, 2, 4, 6, 8.

Запишем число х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 в виде: а 0 = х – (а n 10 n + a n –1 10 n –1 + …+a 1 10).

В этой разности число х 2 (по условию), вычитаемое (а n 10 n + a n –1 10 n –1 + …+a 1 10) 2 (по признаку делимости суммы). Следовательно, по теореме о делимости разности а 0 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0, 2, 4, 6, 8.

Признак делимости на 2. На 2 делятся те и только те числа, в разряде единиц которых содержится число, делящееся на 2 или на 2 делятся те и только те числа, десятичная запись которых оканчивается одной из цифр 0, 2, 4, 6, 8.

Теорема (признак делимости на 5). Для того, чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Лемма . ( n N) .

Доказательство. Так как 100 = 4 × 25, то по признаку делимости произведения

100 4. Тогда ( n N n > 1) 10 n = 100 × 10 n–2 и по признаку делимости произведения 10 n 4.

Теорема (признак делимости на 4). Натуральное число х делится на 4 тогда и только тогда, когда две последние цифры его десятичной записи образуют двузначное число, делящееся на 4.

Пусть х = а n 10 n + a n –1 10 n –1 + …+a 1 10 + a 0 и пусть десятичная запись двух последних цифр a 1 10 + a 0 выражает число , которое делится на 4.

Доказательство. Представим число х в виде суммы двух слагаемых:

х = (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) + (а 1 10 + а 0),

I слагаемое II слагаемое

где первое слагаемое, по доказанной выше Лемме, делится на 4, второе слагаемое делится на 4 по условию. Следовательно, согласно признака делимости суммы на число, число х делится на 4.

Обратно, если число х 4, то – двузначное число, образованное последними цифрами его десятичной записи, делится на 4.

По условию х 4. Докажем, что (а 1 10 + а 0) 4.

Доказательство. Десятичная запись числа х имеет вид:

х = а n 10 n + a n –1 10 n –1 + …+а 2 10 2 + a 1 10 + a 0 , представим число х в виде суммы двух слагаемых:

х = (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) + (а 1 10 + а 0) и запишем равенство в виде:

х – (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) = а 1 10 + а 0 , где х 4 (а n 10 n + a n –1 10 n –1 + …+a 2 10 2) 4 (по лемме).

Следовательно, по признаку делимости разности а 1 10 + а 0 4. выражение а 1 10 + а 0 = – есть запись двузначного числа, образованного последними цифрами записи числа х.

Признак делимости на 4. На 4 делятся те и только те числа, две последние цифры десятичной записи которых образуют число, делящееся на 4.

Теорема. Для того чтобы число х делилось на 25 необходимо и достаточно, чтобы на 25 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х.

Доказывается аналогично.

Признак делимости на 25. На 25 делятся те и только те числа, у которых две последние цифры в записи числа 00, 25, 50, 75.

Лемма. ( n N) [(10 n – 1) 9].

Докажем методом математической индукции.

1. Проверим справедливость утверждения для n = 1, И 3

Признак делимости на 3. На 3 делятся те и только те числа, сумма цифр которых делится на 3.

Лекция 4. Делимость на множестве целых неотрицательных чисел

1. Понятие отношения делимости, его свойства.

2. Признаки делимости суммы, разности, произведения.

3. Признаки делимости на 2, 3, 4, 5, 9 (два доказать).

В начальном курсе математики делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются.

Отношение делимости и его свойства

Рассмотрим отношение делимости на множестве целых неотрицательных чисел.

Определение 1. Пусть даны целые неотрицательные числа а и b . Говорят, что число а b , если существует такое целое неотрицательное число q , что а=bq . В этом случае число b называют делителем числа а , а число а - кратным числа b.

Обознаение: а b и говорят а кратно b , а b называют делителем числа а .

Заметим, что понятие "делитель данного числа" следует отличать от понятия "делитель", обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия "делитель" и "делитель данного числа" совпадают.

Замечание. Из определения 1 и равенства а=1а , следует, что 1 является делителем любого целого неотрицательного числа.



Свойства отношения делимости:

Отношение делимости рефлексивно, антисимметрично, транзитивно.

Теорема 1. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя
.

Доказательство:

Для справедливо равенство а=а 1. Т.к. 1 , то по опр. 1 .

Теорема 2. Отношение делимости антисимметрично, т. е.

Доказательство (методом от противного): Предположим, что
. Тогда очевидно, что b≥a. Но по условию
и значит а≥b. Выполнение этих неравенств возможно только при а=b, что противоречит условию. Следовательно, наше предположение неверно и справедливость свойства установлена.

Теорема 3. Отношение делимости транзитивно, то есть

Доказательство:

Т.к.
, то по опр.1 . Аналогично, т.к. b с, то .

Тогда a=bq=(cp)q=c(pq). Число рq- натуральное. Это означает по опр.1, что а с.

Таким образом, отношение делимости на множестве N, обладая свойствами рефлексивности, антисимметричности и транзитивности, является отношением нестрогого порядка.

Делимость суммы, разности, произведения целых неотрицательных чисел

Теорема 4 (признак делимости суммы): Если каждое слагаемое суммы делится на натуральное число b, то и вся сумма делится на это число, то есть

Доказательство: Пусть
. Тогда существуют q 1 ,q 2 ,…q n
N такие, что выполняются равенства: а 1 =bq 1 , а 2 =bq 2 , …, а 1 n = bq n . Из этих равенств следует, что а 1 +а 2 +…а n =bq 1 +bq 2 +…+bq n =b(q 1 +q 2 +…+q n), где q 1 +q 2 +…+q n =q
N 0 . По определению отношения делимости это означает, что .

Теорема 5 (признак делимости разности): Если каждое из чисел а и b делится на с и а≥b , то разность а-b делится на с , т. е. если .

Доказательство: Пусть
. Тогда существуют q 1 ,q 2
N такие, что а=cq 1 , b=cq 2 . Поскольку а≥b, то q 1 >q 2 . Таким образом, имеем а-b =cq 1 -cq 2 =c(q 1 -q 2)=cq, где q 1 -q 2 =q
N. Следовательно, .

Теорема 6 (признак делимости произведения): Если хотя бы один из множителей произведения делится на натуральное число b, то и все произведение делится на это число, то есть
.

Доказательство: Пусть а k b, тогда существует q
N такое, что а k =bq. Отсюда, используя коммутативный и ассоциативный законы умножения, можем записать . Поскольку произведение целых неотрицательных чисел является целым неотрицательным числом, то последнее равенство означает, что
.

Теорема 7: Если в произведении ab множитель а делится на натуральное число m , а множитель b делится на натуральное число n , то произведение ab делится на произведение nm , то есть .

Доказательство: Пусть a m и b n, тогда существуют q 1 ,q 2
N такие что, a=mq 1 , b=nq 2 . Отсюда на основании комм. и ассоц. законов умножения имеем ab=(mq 1)(nq 2)=(mn)(q 1 q 2)=(mn)q, где q 1 q 2 =q
N . следовательно, ab mn.

Теорема 8: Если в сумме одно слагаемое не делится на натуральное число b , а все остальные слагаемые делятся на это число, то и вся сумма на число b не делится.

Доказательство: Пусть S=a 1 +a 2 +…+a n +c, где а 1 b, a 2 b, …, a n b, но
. Докажем, что
. Предположим противное, то есть S b. Тогда с=S-(a 1 +a 2 +…+a n), где S b, и (a 1 +a 2 +…+a n) b. По теореме о делимости разности это означает, что с b. Полученное противоречие и доказывает теорему.

Признаки делимости

Теорема 9 (признак делимости на 2) Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0,2,4,6,8.

Доказательство. Пусть число х

х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , где а n , а n-1,…, a 1 принимают значения 0, 1, 2, ...9, а n ≠0 и а 0 принимает значения 0,2,4,6,8. Докажем, что тогда х: .2.

Так как 10: .2, то 10 2: .2, 10 3: .2,…,10 n: .2 и, значит, (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : .2. По условию а 0 тоже делится на 2, поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число хделится на 2.

Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0,2,4,6,8.

Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде: а 0 = х - (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10). Но тогда, по теореме о делимости разности, а 0: . 2, поскольку х: . 2 и (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : . 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0,2,4,6,8.

Теорема 10 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

Доказать самостоятельно!

Доказательство этого признака аналогично доказательству признака делимости на 2.

Теорема 11 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х .

Доказательство . Пусть число х записано в десятичной системе счисления, т.е.

х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х: . 4.

Так как 100: . 4, то (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4. По условию, а 1 ·10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку делимости суммы, и само число х делится на 4.

Докажем обратное, т.е. если число х делится на 4, тo двузначное число, образованное последними цифрами его десятичной записи, тоже делится на 4.

Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде:

а 1 · 10 + а 0 = х- (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) .

Так как х: . 4 и (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4, то по теореме о делимости разности (а 1 · 10 + а 0) : . 4. Но выражение а 1 · 10 + а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

Теорема12 (признак делимости на 9) Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилось на 9.

Доказательство . Докажем сначала, что числа вида 10 n - 1 делятся на 9. Действительно, 10 n - 1 = (9·10 n-1 + 10 n-1) - 1 = (9·10 n-1 +9·10 n-2 + 10 n-2)-1 = (9·10 n-1 +9·10 n-2 + …+10)-1=9·10 n-1 +9·10 n-2 + …+9. Каждое слагаемое полученной сум­мы делится на 9, значит, и число 10 n - 1 делится на 9.

Пусть число х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и (a n +a n-1 +…+a 1 +a 0) : . 9. Докажем, что тогда х: . 9.

Преобразуем сумму а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , при­бавив и вычтя из нее выражение a n +a n-1 +…+a 1 +a 0 и записав результат в таком виде:

х = (а n ·10 - a n)+( а n-1 ·10 n-1 - a n-1)+…+( а 1 · 10 - a 1)+ (а 0 – а 0)+ (a n +a n-1 +…+a 1 +a 0)= n ·(10 n -1)+ a n-1 ·(10 n-1 -1)+…+ a 1 ·(10 -1)+ (a n +a n-1 +…+a 1 +a 0).

В последней сумме каждое слагаемое делится на 9:

а n ·(10 n -1) : . 9, так как (10 n -1) : . 9,

a n-1 ·(10 n-1 -1) : . 9,так как(10 n-1 -1) : . 9 и т.д.

a 1 ·(10 -1) : . 9, так как (10- 1) : . 9,

(a n +a n-1 +…+a 1 +a 0) : . 9 по условию.

Следовательно, х: . 9.

Докажем обратное, т.е. если х: . 9, то сумма цифр его деся­тичной записи делится на 9.

Равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 запи­шем в таком виде:

a n +a n-1 +…+a 1 +a 0 = х - (а n (10 n - 1) + а n-1 ·(10 n-1 -1) +…+ a 1 ·(10 -1).

Так как в правой части этого равенства и уменьшаемое, и вычитаемое кратны 9, то по теореме о делимости разности (a n +a n-1 +…+a 1 +a 0) : . 9, т.е. сумма цифр десятичной записи числа x делится на 9, что и требовалось доказать.

Теорема15 (признак делимости на 3): Для того чтобы число х делилось на 3, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилась на 3.

Доказательство этого утверждения аналогично доказа­тельству признака делимости на 9.

Определение. Говорят, что число а делится на число в, если существует такое число c Î N 0 , что а = в · с.

В том случае, когда а делится на в пишут: а в. Читают: «а делится на в »; «а кратно в »; «в – делитель а ». Например, 12 делится на 6, так как существует такое с = 2, что 12 = 6 · 2, иначе 12 6.

Замечание . Записи и а : в не равносильны. Первое обозначает, что между числами а и в имеет место отношение делимости (возможно нацело число а разделить на число в ). Второе – есть обозначение частного чисел а и в .

Отношение делимости обладает рядом свойств.

1°. Нуль делится на любое натуральное число, т.е.

(" в Î N ) .

Доказательство. 0 = в · 0для любого в, отсюда по определению следует, что 0 в .

2°. Ни одно натуральное число не делится на нуль, т.е. ("а Î N ) [а 0].

Доказательство (от противного). Пусть существует c Î N 0 , такое, что а = 0· с, но по условию а ≠ 0,значит ни при каком с это равенство не выполняется. Значит, наше предположение о существовании с было неверным и а 0.

3°. Любое целое неотрицательное число делится на единицу, т.е.

("а Î N ) [а 1].

Доказательство. а = 1· а => а 1.

4°. Любое натуральное число делится само на себя (рефлексивность), т.е.("а Î N ) [а а ].

Доказательство. а = а · 1Þ а а.

5°. Делитель в данного натурального числа а не превышает этого числа, т.е. (а в Ù а > 0) Þ (а в ).

Доказательство. Так как а в, то а = в · с, где c Î N 0 . Определим знак разности а в.

а в = вс в = в (с – 1),поскольку а > 0, то с ≥ 1, следовательно, в (с – 1) ≥ 0,значит а в ≥ 0 Þ а в .

6°. Отношение делимости антисимметрично, т.е.

("a, в ÎN 0 )[(a в Ùв а ) Þ а = в ].

Доказательство.

1 случай. Пусть а > 0, в > 0,тогда имеем:

(по свойству 5°). Значит, а = в .

2 случай. Пусть хотя бы одно из чисел а или в равно 0.

Пусть а = 0, то в = 0по 2°, т.к. иначе в не могло бы делиться на а. Значит а = в.

7°. Отношение делимости транзитивно, т.е.

(" a, в, с Î N 0 ) [(a в Ù в с а с ].

Доказательство. а в Þ ($к )[а = вк ]; в с Þ ($)[в = cℓ ].

а = вк = (сℓ )к = с (ℓк ), ℓк – произведение двух неотрицательных целых чисел и к и потому само является целым неотрицательным, т.е. а с.

8°. Если каждое из чисел а и в делится на с, то их сумма а + в делится на с, т.е. ("a, в, с Î N 0 ) [(a с Ù в с ) Þ (а + в ) с ].

Доказательство, а с Þ а = ск, в с Þ в = cℓ.

а + в = ск + cℓ = с (к + ℓ ), т.к. к + –целое неотрицательное число, значит (а + в ) с.

Доказанное утверждение справедливо и в случае, когда число слагаемых больше двух.

Если каждое из чисел а 1 , ..., а п делится на с, то их сумма а 1 + ... + а п делится на с.

Кроме того, если числа а и в делятся на с, причем а в , то их разность а в делится на с.

9°. Если число а делится на с , то произведение вида ах, где x ÎN 0 , делится на с, т.е. а с Þ (" x Î N 0 )[ax с ].

Доказательство. а с Þ а = ск, но тогда ах = скх = с (к · х ), к, x Î N 0 , значит ах с.

Следствие из 8°, 9°.

Если каждое из чисел а 1 , а 2 , ..., а п делится на с, то каковы бы ни были числа х 1 , х 2 , ... , х n число а 1 х 1 + а 2 х 2 + ... + а n х n делится на с.

10°. Если ас делится на вс, причем с ≠ 0, то а делится на в, т.е. (ас вс Ù с ≠ 0) Þ а в.

Доказательство.

ас = вс · к; ас = (вк ) · с Ù с ≠ 0 Þ а = вк => а в .

Признаки делимости

Встречаются задачи, в которых, не производя деления, требуется установить делится или нет натуральное число а на натуральное число в. Чаще всего такие задачи возникают, когда число а надо разложить на множители. В подобных задачах пользуются признаками делимости. Признак делимости – это предложение, позволяющее ответить на вопрос, делится или нет некоторое число на данный делитель, не производя самого деления.

Применяя признак делимости, делить все-таки приходится, конечно. Из школы хорошо известен признак делимости числа на 3. Делится ли число 531246897 на 3? Для ответа на вопрос определим сумму цифр этого числа 5 + 3 + 1 + 2 + 4 + 6 + 8 + 9 + 7 = 45, т.к. 45 делится на 3, то данное число делится на 3.

Итак, вопрос о делимости данного натурального числа сведен к вопросу о делимости меньшего натурального числа.

Признаки делимости зависят от системы счисления. Рассмотрим некоторые признаки делимости в десятичной системе счисления.



Что еще почитать