Причина возникновения молний. Что такое молния и отчего возникает

Молния - одно из тех природных явлений, которые издавна внушали страх человеческому роду. Понять её сущность стремились величайшие умы, такие как Аристотель или Лукреций. Они считали, что это шар, состоящий из огня и зажатый в водяных парах туч, и, увеличиваясь в размере, он прорывает их и стремительной искрой падает на землю.

Понятие молнии и ее зарождение

Чаще всего молния образуется в которые имеют достаточно большой размер. Верхняя часть может располагаться на высоте 7 километров, а нижняя - всего лишь в 500 метрах над поверхностью земли. Учитывая атмосферную температуру воздуха, можно прийти к выводу, что на уровне 3-4 км вода замерзает и превращается в льдинки, которые, сталкиваясь между собой, электризуются. Те, что обладают наибольшим размером, получают отрицательный заряд, а наименьшие - положительный. Исходя из своего веса, они равномерно распределяются в облаке по слоям. Сближаясь между собой, они образуют плазменный канал, из которого и получается электрическая искра, именуемая молнией. Свою ломаную форму она получила из-за того, что на пути к земле часто встречаются различные воздушные частицы, которые образуют преграды. И чтобы их обойти, приходится менять траекторию.

Физическое описание молнии

Разряд молнии выделяет от 109 до 1010 джоулей энергии. Такое колоссальное количество электричества в большей степени расходуется на создание световой вспышки и которая иначе называется громом. Но даже маленькой части молнии хватит, чтобы творить немыслимые вещи, например, ее разряд может убить человека или разрушить здание. Еще один интересный факт говорит о том, что это природное явление способно плавить песок, образуя полые цилиндры. Такой эффект достигается из-за высокой температуры внутри молнии, она может достигать 2000 градусов. Время удара о землю также различно, оно не может быть больше секунды. Что же касается мощности, то амплитуда импульса может достичь сотни киловатт. Соединяя все эти факторы, получается наисильнейший природный разряд тока, который несет в себе гибель всему тому, к чему прикоснется. Все существующие виды молний очень опасны, и встреча с ними крайне нежелательна для человека.

Образование грома

Все виды молний невозможно представить себе без раската грома, который не несет в себе такой же опасности, но в некоторых случаях может привести к сбою работы сети и к другим техническим неполадкам. Он возникает из-за того, что теплая волна воздуха, нагретая молнией до температуры горячее, чем солнце, сталкивается с холодной. Звук, получающийся при этом, - не что иное, как волна, вызванная колебаниями воздуха. В большинстве случаев громкость увеличивается к концу раската. Это происходит из-за отражения звука от облаков.

Какие бывают молнии

Оказывается, все они разные.

1. Линейные молнии - наиболее часто встречающаяся разновидность. Электрический раскат выглядит как перевернутое вверх тормашками, разросшееся дерево. От главного канала отходит несколько более тонких и коротких "отростков". Длина такого разряда может достигать 20 километров, а сила тока - 20 000 ампер. Скорость движения составляет 150 километров в секунду. Температура плазмы, наполняющей канал молнии, доходит до 10 000 градусов.

2. Внутриоблачные молнии - происхождение данного вида сопровождается изменением электрических и магнитных полей, также излучаются радиоволны. Такой раскат с наибольшей вероятностью можно встретить ближе к экватору. В умеренных широтах он появляется крайне редко. Если в облаке находится молния, то побудить ее выбраться наружу может и посторонний объект, нарушающий целостность оболочки, например наэлектризованный самолет или металлический трос. По длине может колебаться от 1 до 150 километров.

3. Наземные молнии - данный вид проходит несколько стадий. На первой из них начинается ударная ионизация, которая создается в начале свободными электронами, они всегда присутствует в воздухе. Под действием электрического поля элементарные частицы приобретают высокие скорости и направляются к земле, сталкиваясь с молекулами, составляющими воздух. Таким образом, возникают электронные лавины, по-другому называющиеся стримеры. Они представляют собой каналы, которые, сливаясь между собой, служат причиной яркой, термоизолированной молнии. Она достигает земли в форме небольшой лестницы, потому что на ее пути встречаются преграды, и чтобы их обойти, она меняет направление. Скорость движения составляет примерно 50000 километров в секунду.

После того как молния пройдет свой путь, она заканчивает движение на несколько десятков микросекунд, при этом свет ослабевает. После этого начинается следующая стадия: повторение пройденного пути. Самый последний разряд превосходит по яркости все предыдущие, сила тока в нем может достигать сотен тысяч ампер. Температура же внутри канала колеблется в районе 25 000 градусов. Такой вид молний самый продолжительный, поэтому последствия могут быть разрушительными.

Жемчужные молнии

Отвечая на вопрос о том, какие бывают молнии, нельзя упустить из виду такое редкое природное явление. Чаще всего разряд проходит после линейного и полностью повторяет его траекторию. Только вот на вид он представляет собой шары, находящиеся на расстоянии друг от друга и напоминающие собой бусы из драгоценного материала. Такая молния сопровождается самыми громкими и раскатистыми звуками.

Шаровая молния

Природное явление, когда молния принимает форму шара. В этом случае траектория ее полета становится непредсказуемой, что делает ее еще опаснее для человека. В большинстве случаев такой электрический ком возникает совместно с другими видами, но зафиксирован факт его появления даже в солнечную погоду.

Как образуется Именно этим вопросом чаще всего задаются люди, столкнувшиеся с этим феноменом. Как всем известно, некоторые вещи являются прекрасными проводниками электричества, так вот именно в них, накапливая свой заряд, и начинает зарождаться шар. Также он может появиться из основной молнии. Очевидцы же утверждают, что она возникает просто из ниоткуда.

Диаметр молнии колеблется от нескольких сантиметров до метра. Что же касается цвета, то существует несколько вариантов: от белого и желтого до ярко-зеленого, крайне редко можно встретить черный электрический шар. После стремительного спуска он движется горизонтально, примерно в метре от поверхности земли. Такая молния может неожиданно менять траекторию и так же неожиданно исчезнуть, высвободив при этом огромную энергию, из-за которой происходит плавление или же вовсе разрушение различных предметов. Живет она от десяти секунд до нескольких часов.

Спрайт-молния

Совсем недавно, в 1989 году, ученые обнаружили еще один вид молнии, который получил название спрайт . Открытие произошло совершенно случайно, потому что феномен наблюдается крайне редко и длится лишь десятые доли секунды. От других их отличает высота, на которой они появляются - примерно 50-130 километров, в то время как другие подвиды не преодолевают 15-километровый рубеж. Также спрайт-молния отличается огромным диаметром, который достигает 100 км. Они выглядят как вертикальные и вспыхивают группами. Их цвет различается в зависимости от состава воздуха: ближе к земле, где больше кислорода, они зеленые, желтые или белые, а вот под влиянием азота, на высоте более 70 км, они приобретают ярко-красный оттенок.

Поведение во время грозы

Все виды молний несут в себе необычайную опасность для здоровья и даже жизни человека. Чтобы избежать электрического удара, на открытой местности следует придерживаться следующих правил:

  1. В данной ситуации в группу риска попадают самые высокие объекты, поэтому стоит избегать открытых местностей. Чтобы стать ниже, лучше всего присесть и положить голову и грудь на колени, в случае поражения эта поза защитит все жизненно важные органы. Ни в коем случае нельзя ложиться плашмя, чтобы не увеличивать площадь возможного попадания.
  2. Также не стоит прятаться под высокими деревьями и Нежелательным укрытием будут и незащищенные конструкции или металлические объекты (например, навес для пикника).
  3. Во время грозы нужно немедленно выйти из воды, потому что она является хорошим проводником. Попадая в нее, разряд молнии может с легкостью распространиться и на человека.
  4. Ни в коем случае нельзя пользоваться мобильным телефоном.
  5. Для оказания первой помощи пострадавшему лучше всего произвести сердечно-легочную реанимацию и немедленно вызвать службу спасения.

Правила поведения в доме

Внутри помещений тоже существует опасность поражения.

  1. Если на улице началась гроза, первым делом нужно закрыть все окна и двери.
  2. Необходимо отключить все электрические приборы.
  3. Не приближаться к проводным телефонам и прочим кабелям, они являются прекрасными проводниками электричества. Таким же эффектом обладают и металлические трубы, поэтому не стоит находиться рядом с сантехникой.
  4. Зная, как образуется шаровая молния и как непредсказуема ее траектория, если она все-таки попала в помещение, необходимо немедленно его покинуть и закрыть все окна и двери. Если же эти действия невозможны, лучше стоять неподвижно.

Природа все еще неподвластна человеку и несет многие опасности. Все виды молний - это, по своей сути, мощнейшие электрические разряды, которые в несколько раз превышают по мощности все искусственно созданные человеком источники тока.

Lightning 1882
(c) Photographer: William N. Jennings, c. 1882

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина , по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли .

Физические свойства молнии

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Формирование молнии

Наиболее часто молния возникает в кучево-дождевых облаках , тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках - внутриоблачные молнии , а могут ударять в землю - наземные молнии . Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.

Наземные молнии

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация , создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.

По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения - частиц с энергиями 10 12 -10 15 эВ , формирующих широкий атмосферный ливень (ШАЛ) с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях.

По одной из гипотез, частицы запускают процесс, получивший название пробоя на убегающих электронах . Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры , представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии .

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.

По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример , соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода .

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии , характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера , и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 2000-3000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой, поэтому принято считать что разряд молнии происходит от облака по направлению к земле(сверху вниз).

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии над Тулузой, Франция. 2006 год

Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору , меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением , так называемыми атмосфериками .

Полёт из Калькутты в Мумбаи.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт - особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках .

Молнии в верхней атмосфере

В 1989 году был обнаружен особый вид молний - эльфы, молнии в верхней атмосфере . В 1995 году был открыт другой вид молний в верхней атмосфере - джеты .

Эльфы

Джеты

Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов .

Спрайты

Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало .

Взаимодействие молнии с поверхностью земли и расположенными на ней объектами

Глобальная частота ударов молний (шкала показывает число ударов в год на квадратный километр)

Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год. 75 % этих молний ударяет между облаками или внутри облаков, а 25 % - в землю.

Самые мощные молнии вызывают рождение фульгуритов .

Ударная волна от молнии

Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию . Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны :

  • на расстоянии от центра 5 см (граница светящегося канала молнии) - 0,93 МПа,
  • на расстоянии 0,5 м - 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека),
  • на расстоянии 5 м - 0,002 МПа (выбивание стёкол и временное оглушение человека).

На бо́льших расстояниях ударная волна вырождается в звуковую волну - гром .

Люди и молния

Молнии - серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание , падает, могут отмечаться судороги , часто останавливается дыхание и сердцебиение . На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 - 2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления , с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами , и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.

Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.

Молния и электроустановки

Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение , вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования таким как разрядниками , нелинейными ограничителями перенапряжения, длинноискровыми разрядниками. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс , создаваемый молнией.

Молния и авиация

Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса, летательные аппараты оборудуются разрядниками.

Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.

Молния и надводные корабли

Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.

Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.

Деятельность человека, вызывающая молнию

При наземном ядерном взрыве за доли секунды до прихода границы огненной полусферы в нескольких сотнях метров (~400-700 м при сравнении со взрывом 10,4 Мт) от центра дошедшее гамма-излучение продуцирует электромагнитный импульс с напряжённостью на уровне ~100-1000 кВ/м, вызвающий разряды молний, бьющих от земли вверх перед приходом границы огненной полусферы.


См. также

Примечания

  1. Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Физический институт им. П.Н. Лебедева, РАН, М.2004 г. :37
  2. В возникновении молний обвинили космические лучи Lenta.Ru , 09.02.2009
  3. Красные Эльфы и Синие Джеты
  4. ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
  5. Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
  6. V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) "Electrical discharge from a thundercloud top to the lower ionosphere, " Nature , vol. 416, pages 152-154.
  7. Появление НЛО объяснили спрайтами . lenta.ru (24.02.2009). Архивировано из первоисточника 23 августа 2011. Проверено 16 января 2010.
  8. John E. Oliver Encyclopedia of World Climatology . - National Oceanic and Atmospheric Administration, 2005. - ISBN 978-1-4020-3264-6
  9. . National Oceanic and Atmospheric Administration. Архивировано
  10. . NASA Science. Science News. (December 5, 2001). Архивировано из первоисточника 23 августа 2011. Проверено 15 апреля 2011.
  11. К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
  12. Живлюк Ю.Н., Мандельштам С.Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483-487.
  13. Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005-538,с. ISBN 5-17-005305-3 Стр.35-36.
  14. Editors: Mariko Namba Walter,Eva Jane Neumann Fridman Shamanism: an encyclopedia of world beliefs, practices, and culture. - ABC-CLIO, 2004. - Т. 2. - С. 442. -

Задумывались ли вы когда-то почему птицы сидят на высоковольтных проводах, а человек, коснувшись проводов, погибает? Все очень просто - они сидят на проводе, но ток через птицу не течет, но если птичка взмахнет крылом, одновременно касаясь двух фаз - умрет. Обычно так погибают большие птицы типа аистов, орлов, соколов.

Так и человек может коснуться фазы и ему ничего не будет, если через него ток не потечет, для этого нужно одевать прорезиненные ботинки и не дай Бог коснуться стены или металла.

Электрический ток способен убить человека в долю секунды, он поражает без предупрежденья. Молния ударяет в землю сто раз в секунду и свыше восьми миллионов раз в день. Эта сила природы в пять раз горячее, чем поверхность солнца. Электрический разряд бьёт с силой в 300`000 ампер и миллион вольт в долю секунды. В повседневной жизни мы думаем, что можем контролировать электричество, которое питает наши дома, наружное освещение, а теперь и автомобили. Но электричество в его первозданной форме не поддаётся контролю. А молния - это электричество в громадных масштабах. И всё же молния остаётся большой загадкой. Она может ударить неожиданно, и её путь может быть непредсказуемым.

Молния в небе не приносит вреда, но одна из десяти молний обрушивается на поверхность земли. Молния разделяется на множество ветвей, каждая из которых способна поразить человека находящегося в эпицентре. При ударе человека молнией, разряд тока может переходить от одного человека к другому, если они соприкасаются.

Существует правило тридцати и тридцати: если вы видите молнию, а менее чем через тридцать секунд услышали гром, то надо искать убежище, а затем требуется подождать тридцать минут с последнего раската грома, прежде чем выходить на улицу. Но молния не всегда подчиняется строгому порядку.

Существует такое атмосферное явление, как гром среди ясного неба. Часто молния, выходя из облака, проходит до шестнадцати километров, прежде чем ударить в землю. Другими словами, молния может появиться ниоткуда. Молнии нужен ветер и вода. Когда сильные ветра поднимают влажный воздух, возникают условия для появления разрушительных гроз.

Невозможно разложить на составляющие то, что укладывается в миллионную долю секунды. Одно из ложных убеждений состоит в том, что мы видим молнию, когда она устремляется в землю, на самом деле мы видим обратный путь молнии в небо. Молния - это не однонаправленный удар в землю, а это на самом деле кольцо, путь в две стороны. Вспышка молнии, которую мы видим, так называемый обратный удар, завершающая фаза цикла. И когда обратный удар молнии раскаляет воздух, появляется её визитная карточка - гром. Обратный путь молнии - это та часть молнии, которую мы видим как вспышку и слышим как гром. Обратный ток силой в тысячи ампер и миллионы вольт устремляются от земли к облаку.

Молния регулярно поражает электрическим током человека в помещении. Она может проникнуть в строение разными путями, по водосточным трубам и водопроводу. Молния может проникать в электропроводку, сила тока которой в обычном доме не достигает двухсот ампер и перегружает электропроводку скачками от двадцати тысяч до двухсот тысяч ампер. Возможно, наиболее опасная тропа в вашем доме ведёт прямо к вашей руке через телефон. Почти две трети ударов электрическим током в помещениях приходятся на людей, взявшие в свои руки трубку стационарного телефона во время молнии. Беспроводные телефоны более безопасны во время грозы, но молния может ударить человека электрическим током, который стоит рядом с базой телефона. Даже громоотвод не может защитить вас от всех молний, так как он не способен ловить молнию в небе.

О природе молнии

Существует несколько различных теорий, объясняющих происхождение молний.

Обычно нижняя часть облака несёт отрицательный заряд, а верхняя - положительный, что делает систему облако-земля подобной гигантскому конденсатору.

Когда разность электрических потенциалов становится достаточно большой, между землёй и облаком или между двумя частями облака происходит разряд, известный под названием молнии.

Опасно ли находиться в автомобиле во время молнии?

В одном из этих опы-тов искусственная смертельная молния в метр длиной была на-правлена на стальную крышу автомобиля, в котором находился человек. Молния прошла по обшивке, не нанеся вреда человеку. Как же так получилось? Поскольку заряды на заряженном пред-мете взаимно отталкиваются, они стремятся разойтись как можно дальше друг от друга.

В случае полого механического шара пи цилиндра заряды распределяются по внешней поверхности предмета Аналогично, если молния л дарит в металлическую крышу автомобиля, то отталкивающиеся электроны чрезвычайно быстро разойдутся по поверхности автомашины и уйдут через ее корпус в землю. Поэтому молния по поверхности металлической машины уходит в землю и не попадает внутрь автомобиля. По той же причине совершенной защитой от молнии является металличе-ская клеть. В результате ударов в автомашину искусственных молний напряжением 3 млн. вольт потенциал автомобиля и тела, находящегося в нём человека, повышается почти до 200 тыс. вольт. Человек при этом не испытывает ни малейшего признака удара электрического тока, поскольку между любыми точками его тела нет никакой разности потенциалов.

Значит, почти полностью защищает от молнии пребывание в хорошо заземленном здании с металлическим каркасом, а та-ковых много в современных городах.


Чем объяснить, что птицы совершенно спокойно и безнаказанно сидят на проводах?

Тело сидящей птицы представляет собой как бы ответвление цепи (параллельное соединение). Сопротивление этой ветви с птицей много больше, чем сопротивление провода между ногами птицы. Поэтому сила тока в теле птицы ничтожна. Если бы птица, сидя на проводе, коснулась бы крылом или хвостом столба или как-то ещё соединилась бы с землёй, она мгновенно была бы убита током, который устремился бы через неё в землю.


Интересные факты о молниях

Средняя длина молнии 2,5 км. Некоторые разряды простираются в атмосфере на расстояние до 20 км.

Молнии приносят пользу: они успевают выхватить из воздуха млн тн азота, связать его и направить в землю, удобряя почву.

Молнии Сатурна в миллион раз сильнее земных.

Разряд молнии обычно состоит из трех или более повторных разрядов - импульсов, следующих по одному и тому же пути. Интервалы между последовательными импульсами очень коротки, от 1/100 до 1/10 с (этим обусловлено мерцание молнии).

Ежесекундно на Земле вспыхивает около 700 молний. Мировые очаги гроз: остров Ява - 220, экваториальная Африка - 150, южная Мексика - 142, Панама - 132, центральная Бразилия - 106 грозовых дней в году. Россия: Мурманск - 5, Архангельск - 10, С-Петербург - 15, Москва - 20 грозовых дней в году.

Воздух в зоне канала молнии практически мгновенно разогревается до температуры 30 000-33 000° С. От удара молнии в мире в среднем ежегодно погибает около 3 000 человек

Статистика показывает, что на 5000-10000 летных часов приходится один удар молнии в самолет, к счастью, почти все поврежденные самолеты продолжают полет.

Несмотря на сокрушительную мощь молнии, уберечься от нее довольно просто. Во время грозы следует немедленно уходить с открытых мест, ни в коем случае нельзя прятаться под отдельно стоящими деревьями, а также находиться вблизи высоких мачт и ЛЭП. Не следует держать в руках стальные предметы. Также во время гроз нельзя пользоваться средствами радиосвязи, мобильными телефонами. В помещении нужно отключить телевизоры, радиоприемники и электроприборы.


Молниеотводы защищают здания от поражения молнией по двум причинам: они дают возможность стекать в воздух наве-денному на здании заряду, а при ударе молнии в здание уводят её в землю.

Попав в грозу, следует избегать укрываться возле одиноч-ных деревьев, изгородей, возвышенных мест и находиться на от-крытых пространствах.

Среди множества атмосферных явлений молния, несомненно, занимает особое место. Она чрезвычайно красива и зрелищна, а невероятная мощь ее ударов и сегодня приводит в ужас многих людей.


И это несмотря на то, что все они учились в школе и представляют, что такое электричество.

Древние представления о молнии

В древности молния вызывала у людей не менее сильные чувства. Ею восхищались и ее боялись, считая ее оружием богов. Не зря наиболее грозные и воинственные божества практически у всех народов были вооружены именно молниями: Зевс — у древних греков, Юпитер – у римлян, Перун – у славян.

В древнеиндийском пантеоне богов молнией были вооружены Шива-Разрушитель и Индра-Воин, у которого для метания молний даже имелось специальное оружие – ваджра.

В то же время молния нередко считалась символом пробуждения жизненных сил и энергии. Так, по верованиям древних китайцев, погодой управляла специальная небесная управа из четырех богов.

Молнией заведовала богиня Дянь-му, которая сближала и разводила небесные зеркала, начиная вспышкой молнии неуклонное движение жизни на полях и в сердцах людей. В христианстве молния символизирует Божественное откровение и Божественный суд.

Как образуется молния?

Сегодня всем известно, что молния – это мощный электрический разряд, возникающий между тучами. Но как именно он образуется, представляют далеко не все.


Грозовая туча – это облако водяного пара, имеющее размеры подчас в десятки километров. Его верхняя часть может находиться на высоте 6-7 км, в то время как нижняя – всего в полукилометре от земли.

На высоте 4 км всегда царит отрицательная температура, поэтому капельки пара там превращаются в льдинки. Хаотично перемещаясь, они постоянно трутся друг о друга, благодаря чему большинство из них приобретают электрический заряд: мелкие – положительный, крупные – отрицательный.

Под действием тяготения крупные льдинки опускаются в нижние слои тучи, скапливаясь там, а мелкие остаются наверху. Постепенно суммарная величина зарядов становится достаточно большой для того, чтобы возникшее между ними поле приобрело гигантскую напряженность.

Когда разнозаряженные части тучи сближаются, отдельные ионы и электроны, сорванные с места взаимным притяжением, устремляются навстречу друг другу, увлекая за собой соседей. Возникает плазменный канал разряда, распространяющийся по участкам тучи со скоростью в сотые доли секунды.


Иногда нижний край тучи нависает над землей достаточно низко, чтобы электрический пробой случился между тучей и поверхностью земли. Особенно «везет» в этом отношении отдельно стоящим пригоркам или деревьям, столбам и вышкам линий электропередач, которые становятся катализаторами разряда. Вот почему опасно в грозу оставаться под одиноким деревом на пригорке или электрическим столбом.

Температура внутри канала молнии достигает десяти тысяч градусов, а электрическое напряжение – нескольких сотен миллионов вольт. В то же время емкость облачного «конденсатора» совсем невелика – всего около 0,15 микрофарад. Раскаленная плазма выжигает воздух вокруг канала, который затем схлопывается, вызвав ударную волну, которую мы воспринимаем как гром.

Зарница

Молнии возникают не только в обычных облаках, состоящих из водяного пара. Для их образования необходимо, чтобы в воздухе находилась мелкодисперсная взвесь любого вещества, частицы которого будут тереться друг о друга и приобретать электрический заряд.

Так, в засушливое лето иногда можно увидеть «сухую грозу» — молнии, образованные в огромных тучах поднятой ветром пыли. Эти молнии называют зарницами.

Шаровая молния

Иногда во время грозы происходит образование шаровой молнии – шарообразного сгустка энергии небольшого размера. Это одно из наиболее малоизученных атмосферных явлений, повторить которое в лабораторных условиях, в отличие от обычной молнии, до сих пор не удалось.


Шарообразная молния может причинить вред человеку, которого она коснется, но немало и случаев, когда контакт с нею не приносил никаких неприятных ощущений.

Добавить сайт в закладки

Молния с точки зрения электричества

Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по инициативе которого был проведен опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 г. им была опубликована работа, в которой был описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.

Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.

Как происходит формирование молнии? Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми. Иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.

Схема возникновения молнии: а - формирование; б - разряд.

Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1-0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую и световую.

Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и кончаются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор необъяснённые свойства, отличающие молнии от разрядов между электродами.

Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме несколько кв.км.

Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках (внутриоблачные молнии), а могут ударять в землю (наземные молнии).

Наземные молнии

Схема развития наземной молнии: а, б - две ступени лидера; 1 - облако; 2 - стримеры; 3 - канал ступенчатого лидера; 4 - корона канала; 5 - импульсная корона на головке канала; в - образование главного канала молнии (К).

Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизируют их.

По более современным представлениям, разряд инициируют высокоэнергетические космические лучи, которые запускают процесс, получивший название пробоя на убегающих электронах. Таким образом, возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью - ступенчатому лидеру молнии.

Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров.

Яркое свечение охватывает при этом все пройденные ступени, затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду. По мере продвижения лидера к земле напряжённость поля на его конце усиливается, и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.

В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду.

Температура канала при главном разряде может превышать 25 000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр - несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары.

Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому.

Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию - светящуюся полосу.

Внутриоблачные молнии

Внутриоблачные молнии включают в себя обычно только лидерные стадии, их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.

Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт, особенно если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.

В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год.

Люди и молния

Молнии - серьезная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, т.к. электрический ток идет по кратчайшему пути "грозовое облако-земля". Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание.

Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.

В организме пострадавших от молнии отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, у него могут начаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока» - места входа и выхода электричества.

Это древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1-2 суток после смерти). Они - результат расширения капилляров в зоне контакта молнии с телом. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга.

При поражении молнией первая медицинская помощь должна быть неотложной. В тяжелых случаях (остановка дыхания и сердцебиения) необходима реанимация, её должен оказать, не ожидая медицинских работников, любой свидетель несчастья. Реанимация эффективна только в первые минуты после поражения молнией, через 10-15 минут она, как правило, уже неэффективна. Экстренная госпитализация необходима во всех случаях.

Жертвы молний

В мифологии и литературе:

  • Асклепий (Эскулап), сын Аполлона - бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок, Зевс поразил его своей молнией;
  • Фаэтон, сын бога солнца Гелиоса - однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями.

Исторические личности:

  • российский академик Г. В. Рихман - в 1753 году погиб от удара молнии;
  • народный депутат Украины, экс-губернатор Ровенской области В. Червоний 4 Июля 2009 года погиб от удара молнии.
  • Рой Салли Ван остался живым после семи ударов молнией;
  • американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвертая молния полностью разрушила его памятник на кладбище;
  • у индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации.

Деревья и молния

Высокие деревья - частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах шрамы от молний можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.

Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии.

В следующие сезоны деревья обычно восстанавливают поврежденные ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьезным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.

Из деревьев, пораженных молнией, делают музыкальные инструменты, приписывая им уникальные свойства.



Что еще почитать