Регулируемый блок питания 0. Простой блок питания. О проводах из комплекта

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Доброго времени суток форумчане и гости сайта Радиосхемы ! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, . В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А - минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом - ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие - раньше ограничить ток.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге - смотрите далее.

Печатная плата с компонентами и инструкцией в упаковке.
В самом деле - это самый простой регулируемый блок питания на свете!
Потратив меньше часа на его сборку вы получите стабилизированный регулируемый блок питания с выходным напряжением 0...12 В и максимальным током нагрузки 1 А для питания ваших конструкций.

Этот набор создан на основе замечательной статьи на одном известном кошачьем сайте. В статье (см. ниже...) описывается самый простой стабилизированный блок питания, который только можно себе представить. И не просто описывается - во второй части этой статьи описываются все расчёты, которые необходимо выполнить при конструировании такого блока питания.
Разработчики только добавили в схему светодиод D2 и баластный резистор Rd для светодиода. Светодиод будет показывать подачу напряжения на блок питания.
И да в набор добавлен маленький радиатор для транзистора VT2 и крепёж для него, чтобы вы могли испытать ваш блок питания сразу после сборки.

Характеристики:
• Входное напряжение: 12...15 В;
• Выходное напряжение: 0...12 (±1) В;
• Максимальный ток нагрузки: 1 А;
• Сложность: 1 балл;
• Время сборки: Около 1 часа;
• Размеры печатной платы: 81 x 31 x 2 мм;
• Упаковка: OEM;
• Размеры OEM упаковки: ~255 x 123 x 35 мм;
• Размеры устройства: ~81 x 31 x 35 мм;
• Общая масса набора: ~200 г.

Комплект поставки:
• Плата печатная;
• Набор радиодеталей;
• Моточек монтажного провода для переменного резистора (~0,5 м);
• Радиатор для микросхемы;
• Крепёж для радиатора (~Винт M3x20; гайка M3; шайба M3);
• БОНУС! Моточек трубчатого припоя ПОС-61 (~0,5 м);
• Схема цоколёвки компонентов;
• Схема цветовой маркировки резисторов;
• Инструкция по сборке и эксплуатации.

Примечания:
• Для данного блока питания необходим понижающий трансформатор с напряжением на вторичной обмотке 12...15 В и током не менее 1 А.
• Подсоедините трансформатор к блоку питания через клеммник X1.
• Включите трансформатор в сеть.
• Светодиод D2 должен загореться, информируя о поступлении постоянного напряжения на блок питания.
• Переменным резистором R2 установите необходимое выходное напряжение.
• Подключите нагрузку - всё работает!

Для увеличения нажмите на картинку
(навигация по картинкам осуществляется стрелочками на клавиатуре)

ЧАСТЬ 1
Блок питания

Да, да, я уже понял, что тебе не терпится - ты уже начитался теории, прочитал, что такое электрический ток, что такое сопротивление, узнал кто такой товарищ Ом и ещё много чего. И теперь ты хочешь резонно спросить: "И чего? Толк то в этом во всём какой? Куда это всё приложить то можно?". А возможно ты ничего этого и не читал, потому как это страшно скучно, но приложить руки к чему-то электронному всё-таки хочется. Спешу тебя обрадовать - сейчас мы как раз и займёмся тем, что приложим всё это как следует и спаяем первую реальную конструкцию, которая очень тебе пригодится в дальнейшем.
Делать мы будем блок питания для питания различных электронных устройств, которые мы соберём в дальнейшем. Ведь если мы сначала соберём, например, радиоприёмник - он всё равно работать не будет, пока мы не дадим ему питания. Так что, перефразируя известную пословицу - "блок питания - всему голова" (с) by Автор статьи.
Итак, приступим. Прежде всего зададимся начальными параметрами - напряжением, которое будет выдавать наш блок питания и максимальным током, который он способен будет отдать в нагрузку. То бишь, насколько мощную нагрузку можно будет к нему подключить - сможем ли мы подключить к нему только один радиоприёмник или же сможем подключить десять? Не спрашивайте меня зачем включать десять радиоприемников одновременно - не знаю, я просто для примера сказал.
Для начала, давайте подумаем над выходным напряжением. Предположим, что у нас есть два радиоприёмника, один из которых работает от 9 Вольт, а второй от 12 Вольт. Не будем же мы делать два разных блока питания для этих устройств. Отсюда вывод - нужно сделать выходное напряжение регулируемым, чтобы его можно было настраивать на разные значения и питать самые разнообразные устройства.
Наш блок питания будет иметь диапазон регулировки выходного напряжения от 1,5 до 14 Вольт - вполне достаточно на первое время. Ну а ток нагрузки мы с вами примем равным 1 Амперу.

Проще не бывает, не правда ли? Итак, какие же детальки нам понадобятся, чтобы спаять эту схемку?
Прежде всего, нам потребуется трансформатор с напряжением на вторичной обмотке 13...16 Вольт и током нагрузки не менее 1 Ампера. Он обозначен на схеме как Т1.
Также нам понадобится диодный мостик VD1 - КЦ405Б или любой другой с максимальным током 1 Ампер.
Идём дальше - С1 - электролитический конденсатор, которым мы будет фильтровать и сглаживать выпрямленное диодным мостом напряжение, его параметры указаны на схеме.
D1 - стабилитрон - он заведует стабилизацией напряжения - ведь мы же не хотим, чтобы напряжение на выходе блока питания колебалось вместе с сетевым напряжением. Стабилитрон мы возьмем Д814Д или любой другой с напряжением стабилизации 14 вольт.
Ещё нам понадобятся постоянный резистор R1 и переменный резистор R2, которым мы будем регулировать выходное напряжение.
А так же два транзистора - КТ315 с любой буковкой в названии и КТ817 тоже с любой буковкой.

Для удобства, я загнал все нужные элементы в табличку, которую можно распечатать и вместе с этим листочком отправится в магазин на закупку (или найти эти компоненты или их аналоги ).

Обозначение на схеме Номинал Примечание
Т1 Любой с напряжением вторичной обмотки 12...13 Вольт и током 1 Ампер
VD1 КЦ405Б Диодный мост. Максимальный выпрямленный ток не менее 1 Ампера
С1 2000 мкФ х 25 Вольт Электролитический конденсатор
R1 470 Ом
R2 10 кОм Переменный резистор
R3 1 кОм Постоянный резистор, мощностью рассеивания 0,125...0,25 Вт
D1 Д814Д Стабилитрон. Напряжение стабилизации 14 В
VT1 КТ315
VT2 КТ817 Транзистор. С любым буквенным индексом

Паять всё это можно как на плате, так и навесным монтажём - благо элементов в схеме совсем немного, но рекомендуется (для отладки схемы) собирать её на беспаечной макетной плате .
Транзистор VT2 необходимо обязательно установить на радиатор. Оптимальную площадь радиатора можно выбрать экспериментально, но она должна быть не меньше 50 кв. см.
При правильном монтаже схема совершенно не нуждается в настройке и начинает работать сразу.
Подключаем тестер или Вольтметр к выходу блока питания и устанавливаем резистором R2 необходимое нам напряжение.

Вот в общем-то и всё. Вопросы есть?
Ну например: "А почему резистор R1 - 100 Ом?" или, "почему два транзистора - неужели нельзя обойтись одним?". Нет?
Ну ладно, как хотите, но если всё-таки появятся, прочтите следующую часть этой статьи, где рассказывается о том, как рассчитывался этот блок питания и как рассчитать свой собственный.

ЧАСТЬ 2
Блок питания "Проще не бывает"

Ага, все-таки зашёл? Что, любопытство замучило? Но я очень рад. Нет, правда.
Располагайся поудобнее, сейчас мы вместе произведём некоторые нехитрые расчёты, которые нужны, чтобы сварганить тот блок питания, который мы уже сделали в первой части статьи.
Хотя надо сказать, что эти расчёты могут пригодиться и в более сложных схемах.

Итак, наш блок питания состоит из двух основных узлов:
• Выпрямителя, состоящего из трансформатора, выпрямительных диодов и конденсатора;
• Стабилизатора, состоящего из всего остального.

Как настоящие индейцы, начнём, пожалуй, с конца и рассчитаем сначала стабилизатор.
Стабилизатор

Схема стабилизатора показана на рисунке:

Это, так называемый параметрический стабилизатор. Состоит он из двух частей:
• Самого стабилизатора на стабилитроне D с балластным резистором R б ;
• Эмиттерного повторителя на транзисторе VT.

Непосредственно за тем, чтобы напряжение оставалось тем каким нам надо, следит стабилизатор, а эмиттерный повторитель позволяет подключать мощную нагрузку к стабилизатору.
Он играет роль как бы усилителя или если угодно - умощителя.
Два основных параметра нашего блока питания - напряжение на выходе и максимальный ток нагрузки.
Назовем их: Uвых (это напряжение) и Imax (это ток).
Для блока питания, который мы отгрохали в прошлой части, Uвых = 14 Вольт, а Imax = 1 Ампер.
Сначала нам необходимо определить какое напряжение Uвх мы должны подать на стабилизатор, чтобы на выходе получить необходимое Uвых.

Это напряжение определяется по формуле: Uвх = Uвых + 3

Откуда взялась цифра 3? Это падение напряжения на переходе коллектор-эмиттер транзистора VT. Таким образом, для работы нашего стабилизатора на его вход мы должны подать не менее 17 вольт.

Определим, какой нам нужен транзистор VT. Для этого нам надо определить, какую мощность он будет рассеивать.

Считаем: Pmax=1.3(Uвх-Uвых)Imax

Тут надо учесть один момент. Для расчёта мы взяли максимальное выходное напряжение блока питания. Однако, в данном расчёте, надо наоборот брать минимальное напряжение, которое выдаёт БП. А оно, в нашем случае, составляет 1,5 Вольта. Если этого не сделать, то транзистор может накрыться медным тазом, поскольку максимальная мощность будет рассчитана неверно.

Смотри сам:
Если мы берём Uвых=14 Вольтам, то получаем P max =1,3*(17-14)*1=3,9 Вт.

А если мы примем Uвых=1,5 Вольта, то P max =1,3*(17-1,5)*1=20,15 Вт

То есть, если бы не учли этого, то получилось бы, что расчётная мощность в ПЯТЬ раз меньше реальной. Разумеется, транзистору это сильно не понравилось бы.
Ну вот, теперь лезем в справочник и выбираем себе транзистор.
Помимо только что полученной мощности, надо учесть, что предельное напряжение между эмиттером и коллектором должно быть больше Uвх, а максимальный ток коллектора должен быть больше Imax.
Я выбрал КТ817 - вполне приличный транзистор...

Сначала определим максимальный ток базы свежевыбранного транзистора (а ты как думал? в нашем жестоком мире потребляют все - даже базы транзисторов).

I б max =I max / h21 Э min

h21 Э min - это минимальный коэффициент передачи тока транзистора и берётся он из справочника. Если там указаны пределы этого параметра - что то типа 30…40, то берётся самый маленький. Ну, у меня в справочнике написано только одно число - 25, с ним и будем считать, а что ещё остаётся?

I б max =1/25=0.04 А (или 40 мА), что не мало.

Ну давайте будем теперь искать стабилитрон.
Искать его надо по двум параметрам - напряжению стабилизации и току стабилизации.
Напряжение стабилизации должно быть равно максимальному выходному напряжению блока питания, то есть 14 Вольтам, а ток - не менее 40 мА, то есть тому, что мы посчитали.
Полезли опять в справочник...

По напряжению нам страшно подходит стабилитрон Д814Д , к тому же он у меня был под рукой. Но вот ток стабилизации… 5 мА нам никак не годится. Чего делать будем? Будем уменьшать ток базы выходного транзистора.
А для этого добавим в схему ещё один транзистор. Смотрим на рисунок. Мы добавили в схему транзистор VT2.
Сия операция позволяет нам снизить нагрузку на стабилитрон в h21Э раз. h21Э, разумеется, того транзистора, который мы только что добавили в схему. Особо не думая, я взял из кучи железок КТ315.
Его минимальный h21Э равен 30, то есть мы можем уменьшить ток до 40/30=1.33 мА , что нам вполне подходит.

Теперь посчитаем сопротивление и мощность балластного резистора R б :

R б =(Uвх-Uст)/(I б max +I ст min ),

Где:
Uст - напряжение стабилизации стабилитрона,
Iст min - ток стабилизации стабилитрона.

R б = (17-14)/((1.33+5)/1000) = 470 Ом.

Теперь определим мощность этого резистора:

P = (U вх - U ст )*2/R б ,

То есть:

P = (17-14)2/470=0,02 Вт.

Собственно и все. Таким образом, из исходных данных - выходного напряжения и тока, мы получили все элементы схемы и входное напряжение, которое должно быть подано на стабилизатор.
Однако не расслабляемся - нас ещё ждёт выпрямитель. Уж считать так считать, я так считаю (каламбур, однако).
Выпрямитель

Итак, смотрим на схему выпрямителя:

Ну, тут всё проще и почти на пальцах.
Учитывая то, что мы знаем, какое напряжение нам надо подать на стабилизатор - 17 вольт, вычислим напряжение на вторичной обмотке трансформатора. Для этого пойдём, как и в начале - с хвоста. Итак, после конденсатора фильтра мы должны иметь напряжение 17 вольт.
Учитывая то, что конденсатор фильтра увеличивает выпрямленное напряжение в 1,41 раза, получаем, что после выпрямительного моста у нас должно получиться 17/1,41=12 Вольт .
Теперь учтём, что на выпрямительном мосту мы теряем порядка 1,5-2 Вольт, следовательно, напряжение на вторичной обмотке должно быть 12+2=14 Вольт. Вполне может случится так, что такого трансформатора не найдётся, не страшно - в данном случае можно применить трансформатор с напряжением на вторичной обмотке от 13 до 16 Вольт.

C ф = 3200*I н /(U н *K н ,

Где:
Iн - максимальный ток нагрузки;
Uн - напряжение на нагрузке;
Kн - коэффициент пульсаций.

В нашем случае:
Iн = 1 Ампер;
Uн=17 Вольт;
Kн=0,01.

C ф = 3200*1/17*0,01=18823.

Однако, поскольку за выпрямителем идёт ещё стабилизатор напряжения, мы можем уменьшить расчётную ёмкость в 5…10 раз. То есть 2000 мкФ будет вполне достаточно.
Осталось выбрать выпрямительные диоды или диодный мост.
Для этого нам надо знать два основных параметра - максимальный ток, текущий через один диод и максимальное обратное напряжение, так же через один диод.

Необходимое максимальное обратное напряжение считается так:

U обр max = 2U н , то есть U обр max =2*17=34 Вольта.

А максимальный ток, для одного диода должен быть больше или равен току нагрузки блока питания. Ну а для диодных сборок в справочниках указывают общий максимальный ток, который может протекать через эту сборку.
Ну вот вроде бы и всё про выпрямители и параметрические стабилизаторы.
Впереди у нас стабилизатор для самых ленивых - на интегральной микросхеме и стабилизатор для самых трудолюбивых - компенсационный стабилизатор.

ЧАСТЬ 3
Блок питания

В этой части, как и обещалось, мы поговорим о ещё одном типе стабилизаторов - компенсационном . Как видно из названия (название видно, нет?), принцип действия их основан на компенсации чего-то чем-то как-то где-то. Чего и чем сейчас узнаем.
Для начала, рассмотрим схему простейшего компенсационного стабилизатора. Его схема более сложная, чем обычного параметрического, но совсем чуть-чуть:

Схема состоит из следующих узлов:

  • Источник опорного напряжения (ИОН) на R 2, D 1, который сам по себе является параметрическим стабилизатором.
  • Делителя напряжения R3-R5.
  • Усилителя постоянного тока (УПТ) на транзисторе VT1.
  • Регулирующего элемента на транзисторе VT2.

Работает весь этот зоопарк следующим образом. ИОН выдаёт опорное напряжение, равное напряжению на выходе стабилизатора на эмиттер VT1. Напряжение с делителя поступает на базу VT1. В результате, этому бедолаге приходится решать, что же делать с напряжением на коллекторе - то ли оставить всё как есть, то ли увеличить, то ли уменьшить. И чтобы сильно не морочиться, он поступает так - если напряжение на базе меньше опорного (которое на эмиттере), он увеличивает напряжение на коллекторе, открывая сильнее, таким образом, транзистор VT2 и увеличивая напряжение на выходе, если же напруга на базе больше опорного, то происходит обратный процесс.
В результате всей этой возни, напряжение на выходе остаётся неизменным, то есть стабилизированным, что и требуется. Причем, по сравнению с параметрическими стабилизаторами, коэффициент стабилизации у компенсационных значительно выше. Так же выше и КПД.
Резистор R4 нужен для подстройки в небольших пределах выходного напряжения стабилизатора.

Ну а теперь перейдём к сладкому - к стабилизаторам на микросхемах. Я их называю стабилизаторами для ленивых, поскольку на пайку такого стабилизатора уходит минуты две, если не меньше. Чтобы сильно не тянуть резину, сразу переходим к схеме, хотя схема то…

Итак, перед вами схема, которая до отвращения проста. В ней всего три элемента, причём обязательным является только один - микросхема DA1. Кстати, сказать, интегральные стабилизаторы по своей сущности являются компенсационными. Нуте-с, что же нам требуется? Только одно - знать напряжение, которое мы хотим получить от стабилизатора. Дальше мы идём в табличку и выбираем себе микросхемку по душе.

Напряжение на входе микросхемы должно быть как минимум на 3 Вольта выше, чем выходное, но не должно превышать 30 вольт. Ну собственно и всё.

Что, что? Тебе нужно не 15 Вольт, а 14? Экий ты капризный. Ну да ладно. В качестве поощрительного приза (правда, пока не знаю за что) расскажу ещё про одну схемку.

Разумеется, кроме стабилизаторов с фиксированным напряжением, существуют интегральные стабилизаторы, специально заточенные под регулируемое напряжение. Итак, внимание на схему!
Встречаем - КРЕН12А (можно и Б) - регулируемый стабилизатор напряжения 1,3...30 Вольт и максимальным током 1,5 А.

Кстати, у неё есть и буржуйский аналог - LM317 (на схеме нумерация выводов для неё дана в скобках) . Входное напряжение не более 37 Вольт.
Если очень хочется, в этой схеме есть что посчитать. Во всяком случае, если у тебя не нашлось резистора 240 Ом, можно воткнуть и другой, при этом пересчитав резистор R2.

Для этого существует хитрая формула:

В формуле участвуют:
• U опор = 1,25 В - внутреннее опорное напряжение микросхемы между 2-м и 8-м выводом, см. схему;
• I опор - управляющий ток, текущий через резистор R2.

Вообще говоря, формулу можно упростить, благодаря тому, что этот самый управляющий ток очень и очень мал - порядка 0,0055А, то есть на результат он практически не влияет:

Ну, теперь посчитаем.
Для начала возьмём МИНИМАЛЬНОЕ значение выходного напряжения, которое ты хочешь получить.

Итак, R1=240 Ом, Uвых=1,3 В, Uопор=1,25 В. Тогда:

R2=240(1,3-1,25)/1,25 = 9,6 Ом

После, берём МАКСИМАЛЬНОЕ напряжение, которое должен выдавать наш стабилизатор:

R1=240 Ом, Uвых=30 В, Uопор=1,25 В

R2=240(30-1,25)/1,25=5500 Ом, что есть 5,5 кОм.

Таким образом, для того чтобы напряжение на выходе стабилизатора изменялось от минимального до максимального нам нужно чтобы сопротивление резистора R2 изменялось от 9,6 Ом до 5,5кОм.
Подбираем ближайший к этому значению - у меня оказался - 4,8 кОм.

Такие вот пироги. Кстати, пока не забыл - микросхемы обязательно надо ставить на радиатор, иначе они сдохнут, причём довольно шустро. Правда грустно.

Внешне, микросхемка в корпусе КТ28-2 выглядит вот таким образом:

Хочу обратить особое внимание на то, что хотя LM317 и является полным функциональным аналогом КРЕН12А, расположение выводов у этих микросхем НЕ СОВПАДАЕТ , если КРЕН12 выполнена в вышеозначенном корпусе.

Расположение выводов микросхемы LM317. Так же распологаются выводы КРЕН12, если она выполнена в корпусе ТО-200:

Теперь точно всё.

Собираем регулируемый БП 0…30В / 5А.

Решили собрать блок питания, и не знаете на какой схеме остановиться? А ведь действительно, в интернете можно найти множество принципиальных схем этих устройств. Ну а мы с вами в этой статье рассмотрим схему БП, реализованную на отечественной элементной базе, эти компоненты, из которых собрана схема, довольно широко распространены и совсем не дефицитны, а это является большим плюсом этого варианта. Второй плюс этой схемы заключается в том, что выходное напряжение блока питания регулируется в большом диапазоне, и лежит в пределах от 0 до 30 Вольт, при этом выходной ток может достигать 5 Ампер. И еще один важный момент, данная схема имеет защиту от перегрузки и короткого замыкания в нагрузке. Принципиальная схема изображена на рисунке ниже:

Рассмотрим, из каких узлов состоит схема:

Понижающий трансформатор. Его мощность должна быть порядка 150 Ватт. Например, можно перемотать вторичные обмотки трансформатора ТС-160, или использовать железо ему подобное. При переделке ТС-160 первичная обмотка остается без изменений. Вторая обмотка рассчитывается на напряжение 28…30 Вольт, и ток не менее 5…6 Ампер. Третья обмотка должна выдавать 5…6 Вольт с током не менее 1 Ампера.

Узел выпрямителя. Он состоит из диодного моста VD1…VD4, и сглаживающей емкости С1. Печатная плата предусматривает применение импортной диодной сборки RS603 (RS602) на ток 10 Ампер, но можно собрать мост и из отдельных отечественных диодов, например, Д242, правда габариты устройства естественно увеличатся.

Диодный мост КЦ407 и два интегральных стабилизатора 7805 и 7905 образуют блок питания узла регулирования и защиты. Вместо КЦ407 можно поставить КЦ402 или КЦ405.

Защита собрана на тиристоре КУ101Е, светодиод VD9 индицирует ее состояние, при перегрузке и КЗ он загорается. В качестве датчика тока установлен резистор R4, в схеме он рассчитан на ток 3 Ампера, для 5 Ампер его необходимо пересчитать.

Регулирующим элементом является мощный кремниевый транзистор VT1 (КТ827А). Его необходимо установить на радиатор с площадью охлаждения не менее 1500 кв. см. Если возникнут трудности с приобретением КТ827А, тогда вместо него можно поставить пару транзисторов, соединенных по следующей схеме:

Резистором R7 регулируется минимальное напряжение выхода БП. Ручка потенциометра R13 выведена на лицевую панель блока питания и является регулятором выходного напряжения. Вращением R14 производится регулировка верхней границы выходного напряжения. R7 и R14 – многооборотные типа СП5.

Ниже на рисунках представлен вариант печатной платы блока питания:

Печатная плата имеет размеры 110х75 мм.

Настройка блока питания:

Вся настройка блока питания сводится к тому, чтобы установить необходимые пределы регулировки напряжения на выходе, а так же величины тока, при котором сработает защита. Как уже писалось выше, ток защиты зависит от номинала резистора R4.

Для определения диапазона регулирования выходного напряжения произведите следующие действия:

Установите потенциометры R7 и R13 в среднее положение.
Измеряя вольтметром Uвых. С помощью резистора R14 установите значение 15 Вольт.
Выверните резистор R13 на минимум, и с помощью R7 установите ноль вольт на выходе.
Теперь R13 на максимум, и с помощью R14 установите на выходе 30 Вольт. При необходимости вместо R14 (измерив его показания) можно впаять постоянное сопротивление.

На этом настройка закончена, если все собрано без ляпов и ошибок, блок питания будет работать “как часы”. На этом статью закончим, удачного вам повторения.

R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно - если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь - потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается... Но попробуем выразиться математически, то бишь

школьный курс физики

где Р - это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J - ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт... Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая.... Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника.... Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»


Схема подключения запараллеленных транзисторов вместо одного






Что еще почитать