Схема электронных часов с индикацией на светодиодах. Как сделать часы своими руками? Схема электрическая самодельных часов с термометром

Всегда являлись важными элементами любых электронных приборов. Задействованы данные устройства в усилителях, а также приемниках. Основной функцией блоков питания принято считать снижение предельного напряжения, которое исходит от сети. Появились первые модели только после того, как была изобретена катушка переменного тока.

Дополнительно на развитие блоков питания повлияло внедрение трансформаторов в схему устройства. Особенность импульсных моделей заключается в том, что в них применяются выпрямители. Таким образом, стабилизация напряжения в сети осуществляется несколько другим способом, чем в обычных приборах, где задействуется преобразователь.

Устройство блока питания

Если рассматривать обычный блок питания, который используется в радиоприемниках, то он состоит из частотного трансформатора, транзистора, а также нескольких диодов. Дополнительно в цепи присутствует дроссель. Конденсаторы устанавливаются разной емкости и по параметрам могут сильно отличаться. Выпрямители используются, как правило, конденсаторного типа. Они относятся к разряду высоковольтных.

Работа современных блоков

Первоначально напряжение поступает на мостовой выпрямитель. На этом этапе срабатывает ограничитель пикового тока. Необходимо это для того, чтобы в блоке питания не сгорел предохранитель. Далее ток проходит по цепи через специальные фильтры, где происходит его преобразование. Для зарядки резисторов необходимо несколько конденсаторов. Запуск узла происходит только после пробоя динистора. Затем в блоке питания осуществляется отпирание транзистора. Это дает возможность значительно снизить автоколебания.

При возникновении генерации напряжения задействуются диоды в схеме. Они соединены между собой при помощи катодов. Отрицательный потенциал в системе дает возможность запереть динистор. Облегчение запуска выпрямителя осуществляется после запирания транзистора. Дополнительно обеспечивается Чтобы предотвратить насыщение транзисторов, имеется два предохранителя. Срабатывают они в цепи только после пробоя. Для запуска обратной связи необходим обязательно трансформатор. Подпитывают его в блоке питания импульсные диоды. На выходе переменный ток проходит через конденсаторы.

Особенности лабораторных блоков

Принцип работы импульсных блоков питания данного типа построен на активном преобразовании тока. Мостовой выпрямитель в стандартной схеме предусмотрен один. Для того чтобы убирать все помехи, используются фильтры в начале, а также в конце цепи. Конденсаторы импульсный лабораторный блок питания имеет обычные. Насыщение транзисторов происходит постепенно, и на диодах это сказывается положительно. Регулировка напряжения во многих моделях предусмотрена. Система защиты призвана спасать блоки от коротких замыканий. Кабели для них обычно используются немодульной серии. В таком случае мощность модели может доходить до 500 Вт.

Разъемы блока питания в системе чаще всего устанавливаются типа АТХ 20. Для охлаждения блока в корпусе монтируется вентилятор. Скорость вращения лопастей должна регулироваться при этом. Максимальную нагрузку блок лабораторного типа должен уметь выдерживать на уровне 23 А. При этом параметр сопротивления в среднем поддерживается на отметке 3 Ом. Предельная частота, которую имеет импульсный лабораторный блок питания, равна 5 Гц.

Как осуществлять ремонт устройств?

Чаще всего блоки питания страдают из-за сгоревших предохранителей. Находятся они рядом с конденсаторами. Начать ремонт импульсных блоков питания следует со снятия защитной крышки. Далее важно осмотреть целостность микросхемы. Если на ней дефекты не видны, ее можно проверить при помощи тестера. Чтобы снять предохранители, необходимо в первую очередь отсоединить конденсаторы. После этого их можно без проблем извлечь.

Для проверки целостности данного устройства осматривают его основание. Сгоревшие предохранители в нижней части имеют темное пятно, которое свидетельствует о повреждении модуля. Чтобы заменить данный элемент, нужно обратить внимание на его маркировку. Затем в магазине радиоэлектроники можно приобрести аналогичный товар. Установка предохранителя осуществляется только после закрепления конденсатов. Еще одной распространенной проблемой в блоках питания принято считать неисправности с трансформаторами. Представляют они собой коробки, в которых устанавливаются катушки.

Когда напряжение на устройство подается очень большое, то они не выдерживают. В результате целостность обмотки нарушается. Сделать ремонт импульсных блоков питания при такой поломке невозможно. В данном случае трансформатор, как и предохранитель, можно только заменить.

Сетевые блоки питания

Принцип работы импульсных блоков питания сетевого типа основан на низкочастотном снижении амплитуды помех. Происходит это благодаря использованию высоковольтных диодов. Таким образом, контролировать предельную частоту получается эффективнее. Дополнительно следует отметить, что транзисторы применяются средней мощности. Нагрузка на предохранители оказывается минимальная.

Резисторы в стандартной схеме используются довольно редко. Во многом это связано с тем, что конденсатор способен участвовать в преобразовании тока. Основной проблемой блока питания данного типа является электромагнитное поле. Если конденсаторы используются с малой емкостью, то трансформатор находится в зоне риска. В данном случае следует очень внимательно относиться к мощности устройства. Ограничители для пикового тока сетевой импульсный блок питания имеет, а находятся они сразу над выпрямителями. Их основной задачей является контроль рабочей частоты для стабилизации амплитуды.

Диоды в данной системе частично выполняют функции предохранителей. Для запуска выпрямителя используются только транзисторы. Процесс запирания, в свою очередь, необходим для активации фильтров. Конденсаторы также могут применяться разделительного типа в системе. В таком случае запуск трансформатора будет осуществляться намного быстрее.

Применение микросхем

Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.

Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.

Преимущества регулируемых блоков питания

Принцип работы импульсных блоков питания с регуляторами заключается в применении специального контроллера. Данный элемент в цепи может изменять пропускную способность транзисторов. Таким образом, предельная частота на входе и на выходе значительно отличается. Настраивать по-разному можно импульсный блок питания. Регулировка напряжения осуществляется с учетом типа трансформатора. Для охлаждения прибора используют обычные куллеры. Проблема данных устройств, как правило, заключается в избыточном токе. Для того чтобы ее решить, применяют защитные фильтры.

Мощность приборов в среднем колеблется в районе 300 Вт. Кабели в системе используются только немодульные. Таким образом, коротких замыканий можно избежать. Разъемы блока питания для подключения устройств обычно устанавливают серии АТХ 14. В стандартной модели имеется два выхода. Выпрямители используются повышенной вольтности. Сопротивление они способны выдерживать на уровне 3 Ом. В свою очередь, максимальную нагрузку импульсный регулируемый блок питания воспринимает до 12 А.

Работа блоков на 12 вольт

Импульсный включает в себя два диода. При этом фильтры устанавливаются с малой емкостью. В данном случае процесс пульсации происходит крайне медленно. Средняя частота колеблется в районе 2 Гц. Коэффициент полезного действия у многих моделей не превышает 78%. Отличаются также данные блоки своей компактностью. Связано это с тем, что трансформаторы устанавливаются малой мощности. В охлаждении при этом они не нуждаются.

Схема импульсного блока питания 12В дополнительно подразумевает использование резисторов с маркировкой Р23. Сопротивление они способны выдержать только 2 Ом, однако для прибора такой мощности достаточно. Применяется импульсный блок питания 12В чаще всего для ламп.

Как работает блок для телевизора?

Принцип работы импульсных блоков питания данного типа заключается в применении пленочных фильтров. Эти устройства способны справляться с помехами различной амплитуды. Обмотка дросселя у них предусмотрена синтетическая. Таким образом, защита важных узлов обеспечивается качественная. Все прокладки в блоке питания изолируются со всех сторон.

Трансформатор, в свою очередь, имеет отдельный куллер для охлаждения. Для удобства использования он обычно устанавливается бесшумным. Предельную температуру данные устройства выдерживают до 60 градусов. Рабочую частоту импульсный блок питания телевизоров поддерживает на уровне 33 Гц. При минусовых температурах данные устройства также могут использоваться, однако многое в этой ситуации зависит от типа применяемых конденсатов и сечения магнитопровода.

Модели устройств на 24 вольта

В моделях на 24 вольта выпрямители применяются низкочастотные. С помехами успешно справляться могут всего два диода. Коэффициент полезного действия у таких устройств способен доходить до 60%. Регуляторы на блоки питания устанавливаются довольно редко. Рабочая частота моделей в среднем не превышает 23 Гц. Сопротивление резисторы могут выдерживать только 2 Ом. Транзисторы в моделях устанавливаются с маркировкой ПР2.

Для стабилизации напряжения резисторы в схеме не используются. Фильтры импульсный блок питания 24В имеет конденсаторного типа. В некоторых случаях можно встретить разделительные виды. Они необходимы для ограничения предельной частоты тока. Для быстрого запуска выпрямителя динисторы применяются довольно редко. Отрицательный потенциал устройства убирается при помощи катода. На выходе ток стабилизируется благодаря запиранию выпрямителя.

Боки питания на схеме DA1

Блоки питания данного типа от прочих устройств отличаются тем, что способны выдерживать большую нагрузку. Конденсатор в стандартной схеме предусмотрен только один. Для нормальной работы блока питания регулятор используется. Устанавливается контроллер непосредственно возле резистора. Диодов в схеме можно встретить не более трех.

Непосредственно обратный процесс преобразования начинается в динисторе. Для запуска механизма отпирания в системе предусмотрен специальный дроссель. Волны с большой амплитудой гасятся у конденсатора. Устанавливается он обычно разделительного типа. Предохранители в стандартной схеме встречаются редко. Обосновано это тем, что предельная температура в трансформаторе не превышает 50 градусов. Таким образом, балластный дроссель со своими задачами справляется самостоятельно.

Модели устройств с микросхемами DA2

Микросхемы импульсных блоков питания данного типа среди прочих устройств выделяются повышенным сопротивлением. Используют их в основном для измерительных приборов. В пример можно привести осциллограф, который показывает колебания. Стабилизация напряжения для него является очень важной. В результате показатели прибора будут более точными.

Регуляторами многие модели не оснащаются. Фильтры в основном имеются двухсторонние. На выходе цепи транзисторы устанавливаются обычные. Все это дает возможность максимальную нагрузку выдерживать на уровне 30 А. В свою очередь, показатель предельной частоты находится на отметке 23Гц.

Блоки с установленными микросхемами DA3

Данная микросхема позволяет устанавливать не только регулятор, но и котроллер, который следит за колебаниями в сети. Сопротивление транзисторы в устройстве способны выдерживать примерно 3 Ом. Мощный импульсный блок питания DA3 с нагрузкой в 4 А справляется. Подсоединять вентиляторы для охлаждения выпрямителей можно. В результате устройства можно использовать при любой температуре. Еще одно преимущество заключается в наличии трех фильтров.

Два из них устанавливаются на входе под конденсаторами. Один фильтр разделительного типа имеется на выходе и стабилизирует напряжение, которое исходит от резистора. Диодов в стандартной схеме можно встретить не более двух. Однако многое зависит от производителя, и это следует учитывать. Основной проблемой блоков питания данного типа считается то, что они не способны справляться с низкочастотными помехами. В результате устанавливать их на измерительные приборы нецелесообразно.

Как работает блок на диодах VD1?

Данные блоки рассчитаны на поддержку до трех устройств. Регуляторы в них имеются трехсторонние. Кабели для связи устанавливаются только немодульные. Таким образом, преобразование тока происходит быстро. Выпрямители во многих моделях устанавливаются серии ККТ2.

Отличаются они тем, что энергию от конденсатора способны передавать на обмотку. В результате нагрузка от фильтров частично снимается. Производительность у таких устройств довольно высокая. При температурах свыше 50 градусов они также могут использоваться.

Импульсный блок питания 180Вт

Мощность блока питания - около 180 Вт, выходное напряжение 2х25 В при токе нагрузки 3,5 А. Размах пульсации при токе нагрузки 3,5 А не превышает 10 % для частоты преобразования 100 Гц и 2 % для частоты 27 кГц. Выходное сопротивление не превышает 0,6 Ом. Габариты блока - 170х80х35 мм; масса - 450 г.

После выпрямления диодным мостом VD1 сетевое напряжение фильтруют конденсаторы С1-С4 (см. схему). Резистор R1 ограничивает ток зарядки конденсаторов фильтра, протекающий через диоды выпрямителя при включении блока. Отфильтрованное напряжение поступает на преобразователь напряжения, построенный по схеме полумостового инвертора на транзисторах VT1, VT2. Преобразователь нагружен первичной обмоткой трансформатора Т1, преобразующего напряжение и гальванически развязывающего выход блока от сети переменного тока. Конденсаторы С3 и С4 препятствуют проникновению в сеть ВЧ помех от блока питания. Полумостовой инвертор преобразует постоянное напряжение а переменное прямоугольной формы с частотой 27 кГц. Трансформатор Т1 рассчитан так, что его магнитопровод не насыщен. Автоколебательный режим работы обеспечен цепью обратной связи, напряжение которой снимается с обмотки, III трансформатора Т1 и подается на обмотку I вспомогательного трансформатора Т2. Резистор R4 ограничивает напряжение на обмотке I трансформатора Т2. От сопротивления этого резистора зависит в определенных пределах частота преобразования (см. примечание в конце страницы). Подробно о работе преобразователей с ненасыщающимся трансформатором можно прочесть в .

Для обеспечения надежного запуска преобразователя и его устойчивой работы служит узел запуска, представляющий собой релаксационный генератор на транзисторе VTЗ, работающем в лавинном режиме . При включении питания через резистор R5 начинает заряжаться конденсатор С5 и когда напряжение на нем достигает 50...70 В, транзистор VТЗ лавинообразно открывается и конденсатор разряжается. Импульс тока открывает транзистор VТ2 и запускает преобразователь.

Транзисторы VT1 и VT2 установлены на теплоотводах площадью 50 см.кв каждый. Диоды VD2-VD5 тоже снабжены пластинчатыми теплоотводами. Диоды зажаты между пятью дюралюминиевыми пластинами размерами 40x30 мм каждая (три средние пластины толщиной 2 мм, две крайние - 3 мм). Весь пакет стягивают двумя винтами М3x30, пропущенными через отверстия в пластинах. Для предотвращения замыкания пластин винтами на них надеты отрезки поливинилхлоридной трубки.

Намоточные характеристики трансформаторов сведены в таблицу.

Трансформатор

Число витков

Магнитопровод

Феррит 2000НН, два склеенных вместе кольца К31х18,5х7

Феррит 2000НН, кольцо К10х6х5

Провод обмоток - ПЭВ-2. Обмотку I размещают равномерно по длине кольца. Для облегчения запуска преобразователя обмотка III трансформатора Т1должна располагаться на месте, не занятом обмоткой II (см. рисунок). Межобмоточную изоляцию в трансформаторах выполняют лентой из лакоткани. Между обмотками I и II трансформатора Т1 изоляция трехслойная, между остальными обмотками трансформаторов - однослойная.
Конденсаторы С3, С4 в блоке - К73П-3; С1,С2 - К50-12; С5 - К73-11; С8,С9 - КМ-5; С6,С7 -- К52-2. Транзисторы КТ812А можно заменить на КТ812Б, КТ809А, КТ704А-КТ704В, диоды КД213А - на КД213Б.

Правильно собранный блок питания обычно в налаживании не нуждается, однако в отдельных случаях может потребоваться подборка транзистора VТ3. Для проверки его работоспособности временно отключают вывод эмиттера и присоединяют его к минусовому выводу сетевого выпрямителя. На экране осциллографа наблюдают напряжение на конденсаторе С5 - пилообразный сигнал с размахом 20...50 В частотой несколько герц. Если пилообразное напряжение отсутствует, транзистор необходимо заменить.

Применение этого источника питания не исключает необходимости блокирования выходных цепей питания усилителя конденсаторами большой емкости. Подключение таких конденсаторов в еще большей степени уменьшает уровень пульсации.

Литература

1. В. Цибульский Экономичный блок питания. Радио, 1981, № 10, с. 56.
2. Ромаш Э. М. Источники вторичного электропитания радиоэлектронной аппаратуры.- М.: Радио и связь, 1981.
3. Бирюков С. Блок питания цифрового частотомера,- Радио. 1981. № 12, с. 54, 55.

Д. БАРАБОШКИН
Радио, 6/85г.

ПРИМЕЧАНИЕ

При включении блока питания измерьте частоту преобразования (на выводах обмотки II) - она может оказаться значительно ниже, чем 27 кГц (например 9 - 12 кГц). И хотя устройство будет работать, силовые транзисторы выйдут из строя от перегрева. Подгонка частоты осуществляется резистором R4. Причем номинал может отличатся от указанного на схеме на десятки Ом.
Правильно настроенный блок питания отлично работает, при нагрузке в 50 - 70% силовые транзисторы остаются холодными.

От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует. Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться не только с усилителями на базе TDA7293 (TDA7294), но и с любым другим усилителем мощности 3Ч.

Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания. Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2. Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.

Рис. 1

Рис. 2

Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор TV2.

Рис. 1

Емкость конденсатора С2 выбирается из расчета 1... 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150...220 мкФ. Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4...6 А, например RS407 или RS607. При емкости конденсаторов 470... 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.
Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно. Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.
Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования. Изготавливать трансформатор для частот ниже 40 кГц не очень логично - гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами. В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит. Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В - сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения. Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.
Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод. Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скинэффект - потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках. Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток - неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя. Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.
Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора. Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.
Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500...600 Вт при частоте преобразования 50...70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства. Список рекомендуемых транзисторов для силовых ключей VT1, VT2 с краткими характеристиками сведен в таблицу 2.
Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току. Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20...50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120... 150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В. Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.

Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах. Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора. Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт. На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4). На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения. В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока TV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2...0,3 мм. При перегрузке напряжение на вторичной обмотке трансформатора TV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8. Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя. Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.

Об остальных деталях: конденсатор С5 - пленочный на 0,33... 1 мкФ 400В; конденсаторы С9, С10 - пленочные на 0,47...2,2 мкФ минимум на 250В; индуктивности L1...L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8... 1,0 мм до заполнения виток к витку в один слой; С14, С15 - пленочные на 0,33...2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В; конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17; С7 можно и керамический, но лучше пленочный, типа К73-17.

Наибольшее распространение получили двухтактные источники вторичного электропитания, хотя и имеют более сложную электрическую схему по сравнению с однотактными. Они позволяют получать на выходе значительно большую выходную мощность при высоком КПД.
Схемы двухтактных преобразователей-инверторов имеют три вида включения ключевых транзисторов и первичной обмотки выходного трансформатора: полумостовая, мостовая и с первичной обмоткой имеющей отвод от середины.

Полумостовая схема построения ключевого каскада.
Ее особенностью является включение первичной обмотки выходного трансформатора в среднюю точку емкостного делителя С1 — С2.

Амплитуда импульсов напряжения на переходах транзисторов эмиттер-коллектор Т1 и Т2 не превышает Uпит величины питающего напряжения. Это позволяет использовать транзисторы с максимальным напряжением Uэк до 400 вольт.
В то же время напряжение на первичной обмотке трансформатора Т2 не превышает значения Uпит/2, потому, что снимается с делителя С1 — С2 (Uпит/2).
Управляющее напряжение противоположной полярности подается на базы ключевых транзисторов Т1 и Т2 через трансформатор Тр1.


В мостовом преобразователе емкостной делитель (С1 и С2) заменен транзисторами Т3 и Т4. Транзисторы в каждом полупериоде открываются попарно по диагонали (Т1, Т4) и (Т2, Т3).

Напряжение на переходах Uэк закрытых транзисторов не превышает напряжения питания Uпит. Но напряжение на первичной обмотке трансформатора Тр3 увеличится и будет равно величине Uпит, что повышает КПД преобразователя. Ток же через первичную обмотку трансформатора Тр3 при той же мощности, по сравнению с полумостовой схемой, будет меньше.
Из за сложности в наладке цепей управления транзисторов Т1 – Т4, мостовая схема включения применяется редко.

Схема инвертора с так называемым пушпульным выходом наиболее предпочтительна в мощных преобразователях-инверторах. Отличительной особенностью в данной схеме является то, что первичная обмотка выходного трансформатора Тр2 имеет вывод от середины. За каждый полупериод напряжения поочередно работает один транзистор и одна полуобмотка трансформатора.

Данная схема отличается наибольшим КПД, низким уровнем пульсаций и слабым излучением помех. Достигается это за счет уменьшения тока в первичной обмотке и уменьшения рассеиваемой мощности в ключевых транзисторах.
Амплитуда напряжения импульсов в половине первичной обмотки Тр2 возрастает до значения Uпит, а напряжение Uэк на каждом транзисторе достигает значения 2 Uпит (ЭДС самоиндукции + Uпит).
Необходимо использовать транзисторы с высоким значением Uкэmах, равным 600 – 700 вольт.
Средний ток через каждый транзистор равен половине тока потребления от питающей сети.

Обратная связь по току или по напряжению.

Особенностью двухтактных схем с самовозбуждением является наличие обратной связи (ОС) с выхода на вход, по току или по напряжению.

В схеме обратной связи по току обмотка связи w3 трансформатора Тр1 включена последовательно с первичной обмоткой w1 выходного трансформатора Тр2. Чем больше нагрузка на выходе инвертора, тем больше ток в первичной обмотке Тр2, тем больше обратная связь и больше базовый ток транзисторов Т1 и Т2.
Если нагрузка меньше минимально допустимой, ток обратной связи в обмотке w3 трансформатора Тр1 недостаточен для управления транзисторами и генерация переменного напряжения срывается.
Иными словами, при пропадании нагрузки — генератор не работает.

В схеме обратной связи по напряжению обмотка обратной связи w3 трансформатора Тр2 соединена через резистор R с обмоткой связи w3 трансформатора Тр1. По этой цепи осуществляется обратная связь с выходного трансформатора на вход управляющего трансформатора Тр1 и далее в базовые цепи транзисторов Т1 и Т2.
Обратная связь по напряжению слабо зависит от нагрузки. Если же на выходе будет очень большая нагрузка (короткое замыкание), напряжение на обмотке w3 трансформатора Тр2 снижается и может наступить такой момент, когда напряжение на базовых обмотках w1 и w2 трансформатора Тр1 будет недостаточно для управления транзисторами. Генератор перестанет работать.
При определенных обстоятельствах это явление может быть использовано как защита от короткого замыкания на выходе.
На практике широко применяются обе схемы с обратной связью ОС как по току, так и по напряжению.

Двухтактная схема инвертора с ОС по напряжению

Для примера, рассмотрим работу наиболее распространенной схемы преобразователя-инвертора – полумостовой схемы.
Схема состоит из нескольких независимых блоков:

      • — выпрямительный блок – преобразует переменное напряжение 220 вольт 50 Гц в постоянное напряжение 310 вольт;
      • — устройство запускающих импульсов – вырабатывает короткие импульсы напряжения для запуска автогенератора;
      • — генератор переменного напряжения – преобразует постоянное напряжение 310 вольт в переменное напряжение прямоугольной формы высокой частоты 20 – 100 КГц;
      • — выпрямитель – преобразует переменное напряжение 20 -100 КГц в постоянное напряжение.

Сразу после включения питания 220 вольт начинает работать устройство запускающих импульсов, представляющий из себя генератор пилообразного напряжения (R2, С2, Д7). От него запускающие импульсы поступают на базу транзистора Т2. Происходит запуск автогенератора.
Ключевые транзисторы открываются поочередно и в первичной обмотке выходного трансформатора Тр2, включенной в диагональ моста (Т1,Т2 – С3,С4), образуется переменное напряжение прямоугольной формы.
С вторичной обмотки трансформатора Тр2 снимается выходное напряжение, выпрямляется диодами Д9 — Д12 (двухполупериодное выпрямление) и сглаживается конденсатором С5.
На выходе получается постоянное напряжение заданной величины.
Трансформатор Т1 используется для передачи импульсов обратной связи от выходного трансформатора Тр2 на базы ключевых транзисторов Т1 и Т2.


Двухтактная схема ИБП имеет ряд преимуществ перед однотактной схемой:

    • — ферритовый сердечник выходного трансформатора Тр2 работает с активным перемагничиванием (наиболее полно используется магнитный сердечник по мощности);
    • — напряжение коллектор – эмиттер Uэк на каждом транзисторе не превышает напряжение источника постоянного тока в 310 вольт;
    • — при изменении тока нагрузки от I = 0 до Imax, выходное напряжение изменяется незначительно;
    • — выбросы высокого напряжения в первичной обмотке трансформатора Тр2 очень малы, соответственно меньше уровень излучаемых помех.

И еще одно замечание в пользу двухтактной схемы!!

Сравним работу двухтактного и однотактного автогенераторов с одинаковой нагрузкой.
Каждый ключевой транзистор Т1 и Т2 за один такт работы генератора используется всего половину времени (одну полуволну), вторую половину такта «отдыхает». То есть вся вырабатываемая мощность генератора, делится пополам между обоими транзисторами и передача энергии в нагрузку идет непрерывно (то от одного транзистора, то от другого), во время всего такта. Транзисторы работают в щадящем режиме.
В однотактном же генераторе накопление энергии в ферритовом сердечнике происходит во время половины такта, во второй половине такта идет ее отдача в нагрузку.

Ключевой транзистор в однотактной схеме работает в четыре раза более напряженном режиме, чем ключевой транзистор в двухтактной схеме.

Данные часы уже несколько раз обозревались, но я надеюсь, что мой обзор будет тоже Вам интересным. Добавил описание работы и инструкцию.

Конструктор покупался на ebay.com за 1.38 фунтов (0.99+0.39 доставка), что эквивалентно 2.16$. На момент покупки это самая низкая цена из всех предложенных.

Доставка заняла около 3х недель, набор пришел в обычном полиэтиленовом пакетике, который в свою очередь был упакован в небольшой «пупырчатый» пакет. На выводах индикатора был небольшой кусочек пенопласта, остальные детали были без какой либо защиты.

Из документации только небольшой листочек формата А5 со списком радиодеталей с одной стороны и принципиальной электрической схемой с другой.

1. Принципиальная электрическая схема, используемые детали и принцип работы



Основой или «сердцем» часов является 8-ми разрядный КМОП микроконтроллер AT89C2051-24PU оснащенный Flash программируемым и стираемым ПЗУ объемом 2кб.
Узел тактового генератора собран по схеме (рис.1) и состоит из кварцевого резонатора Y1 двух конденсаторов C2 и С3, которые образуют вместе параллельный колебательный контур.


Изменением емкости конденсаторов можно в небольших пределах изменять частоту тактового генератора и соответственно точность хода часов. На рисунке 2 показан вариант схемы тактового генератора с возможностью регулировки погрешности часов.

Узел начального сброса служит для установки внутренних регистров микроконтроллера в начальное состояние. Он служит для подачи после подключения питания на 1 вывод МК единичного импульса длительностью не менее 1 мкс (12 периодов тактовой частоты).
Состоит из RC цепочки, образуемой резистором R1 и конденсатором C1.

Схема ввода состоит из кнопок S1 и S2. Программно сделано так, что при одиночном нажатии любой из кнопок в динамике раздается одиночный сигнал, а при удержании двойной.

Модуль индикации собран на четырехразрядном семисегментном индикаторе с общим катодом DS1 и резистивной сборке PR1.
Резистивная сборка представляет собой набор резисторов в одном корпусе:


Звуковая часть схемы представляет собой схему собранную на резисторе R2 10кОм, pnp транзисторе Q1 SS8550(выполняющего роль усилителя) и пьезоэлемента LS1.

Питание подается через разъем J1 с подключенным параллельно сглаживающим конденсатором C4. Диапазон питающих напряжений от 3 до 6В.

2. Сборка конструктора

Сборка трудностей не вызвала, на плате подписано, куда какие детали паять.

Много картинок - сборка конструктора спрятана под спойлером

Я начал с панельки, так как она единственная не является радиодеталью:

Следующим шагом я припаял резисторы. Перепутать их невозможно, они оба на 10кОм:


После этого установил на плату соблюдая полярность электролитический конденсатор, резисторную сборку (также обращая внимание на первый вывод) и элементы тактового генератора - 2 конденсатора и кварцевый резонатор

Следующим шагом припаиваю кнопки и конденсатор фильтра питания:

После этого очередь за звуковым пьезоэлементом и транзистором. В транзисторе главное установить правильной стороной и не перепутать выводы:

В последнюю очередь припаиваю индикатор и разъем питания:

Подключаю к источнику напряжением 5В. Все работает!!!


3. Установка текущего времени, будильников и ежечасового сигнала.

После включения питания дисплей находится в режиме («ЧАСЫ: МИНУТЫ») и отображает время по умолчанию 12:59. Ежечасный звуковой сигнал включен. Оба будильника включены. Первый установлен на время срабатывания 13:01, а второй – 13:02.


При каждом кратковременном нажатии на кнопку S2 дисплей будет переключаться между режимами («ЧАСЫ: МИНУТЫ») и («МИНУТЫ: СЕКУНДЫ»).
При длительном нажатии кнопки S1 происходит вход в меню настроек, состоящее из 9 подменю, обозначенных буквами A, B, C, D, E, F, G, H, I. Подменю переключаются кнопкой S1, значения изменяются кнопкой S2. После подменю I следует выход из меню настроек.

А: Установка показаний часов текущего времени
При нажатии кнопки S2 значение часов изменяется от 0 до 23. После установки часов необходимо нажать S1 для перехода в подменю B.

B: Установка показаний минут текущего времени


C: Включение ежечасного звукового сигнала
По умолчанию включено (ON) – каждый час с 8:00 до 20:00 подается звуковой сигнал. При нажатии кнопки S2 значение изменяется между ON (Вкл.) и OFF (Выкл.). После установки значения необходимо нажать S1 для перехода в подменю D.

D: Включение\выключение первого будильника
По умолчанию будильник включен (ON). При нажатии кнопки S2 значение изменяется между ON (Вкл.) и OFF (Выкл.). После установки значения необходимо нажать S1 для перехода в следующее подменю. Если будильник выключен, то подменю E и F пропускаются.

E: Установка показаний часов первого будильника
При нажатии кнопки S2 значение часов изменяется от 0 до 23. После установки часов необходимо нажать S1 для перехода в подменю F.

F: Установка показаний минут первого будильника
При нажатии кнопки S2 значение минут изменяется от 0 до 59. После установки минут необходимо нажать S1 для перехода в подменю С.

G: Включение\выключение второго будильника
По умолчанию будильник включен (ON). При нажатии кнопки S2 значение изменяется между ON (Вкл.) и OFF (Выкл.). После установки значения необходимо нажать S1 для перехода в следующее подменю. Если будильник выключен, то подменю H и I пропускаются и происходит выход из меню настроек.

H: Установка показаний часов второго будильника
При нажатии кнопки S2 значение часов изменяется от 0 до 23. После установки часов необходимо нажать S1 для перехода в подменю I.

I: Установка показаний минут второго будильника
При нажатии кнопки S2 значение минут изменяется от 0 до 59. После установки минут необходимо нажать S1 для выхода из меню настроек.

Коррекция секунд
В режиме («МИНУТЫ: СЕКУНДЫ») необходимо удержать кнопку S2 для обнуления секунд. Далее коротким нажатием на кнопку S2 запустить отсчет секунд.

4. Общие впечатления от часов.

Плюсы:
+ Низкая цена
+ Легкая сборка, минимум деталей
+ Удовольствие от самостоятельной сборки
+ Достаточно низкая погрешность (у меня за сутки отстали на несколько секунд)

Минусы:
- После отключения питания не держит время
- Отсутствие какой либо документации, кроме схемы (данная статья частично решила этот минус)
- Прошивка в микроконтроллере защищена от считывания

5. Дополнительно:

1) На безграничных просторах интернета нашел инструкцию к этим часам на английском языке и перевел ее на русский. Скачать ее можно

Что еще почитать