Схема защиты лабораторного блока питания от кз. Схема защиты источника питания от перегрузки на КУ202. Принцип работы защиты по току

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:

Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве . Материал подготовил AKV.

Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.

Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² R; P = 10 10 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье « ». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.

Схема электронного предохранителя

В данной схеме в качестве ключа использован полевой транзистор с р каналом IRF4905, имеющий сопротивление в открытом состоянии 0,02 Ом, при напряжении на затворе = 10В.

В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.

Преобразователь ток — напряжения

В качестве датчика тока в схеме применен резистор R2, чтобы уменьшить мощность, выделяющуюся на этом резисторе, его номинал выбран всего в одну сотую Ома. При использовании SMD элементов его можно составить из 10 резисторов по 0,1 Ом типоразмера 1206, имеющих мощность 0,25Вт. Применение датчика тока с таким малым сопротивление повлекло за собой применение усилителя сигнала с этого датчика. В качестве усилителя применен ОУ DA1.1 микросхемы LM358N.

Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.

Компаратор напряжения

На втором ОУ, входящем в состав данной МС, собран компаратор напряжения. На инвертирующий вход этого компаратора подано регулируемое резистором R6 опорное напряжение со стабилизатора DA2. На неинвертирующий вход 3 DA1.2 подается усиленное напряжение с датчика тока. Нагрузкой компаратора служит последовательная цепь, светодиод оптрона и гасящий регулировочный резистор R7. Резистором R7 выставляют ток, проходящий через эту цепь, порядка 15 мА.

Работа схемы

Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.

Предлагаю несколько несложных схем универсальных блоков питания для наладки, проверки и ремонта различного радио и электрооборудования. Предлагаемые блоки питания двухполярные, но можно использовать, конечно, и только один канал. Все блоки содержат схемы защиты от перегрузки и короткого замыкания (К.З.) на выходе. Здесь представлены разные варианты схем защиты – схема на реле, тиристоре и вообще без реле и тиристоров. Даны также варианты использования так называемых «составных» транзисторов для значительного увеличения выходного тока блока питания, которые можно использовать и в других схемах.

Блок питания с плавной регулировкой выходного напряжения

Блок питания выдает двухполярное напряжение от 1 до 15..18 В при токе нагрузки до 1 А и содержит схему защиты от перегрузки и короткого замыкания на выходе. Им удобно пользоваться при наладке радиосхем и аппаратуры, так как практически исключается возможность вывода из строя различных активных элементов схемы (транзисторов, микросхем и т.д.) при случайной переплюсовке или неправильном монтаже, а также случайных коротких замыканий.

Принципиальная схема блока представлена на рисунке ниже

При изготовлении блока питания у меня стояла задача сделать его размеры минимально возможными, что послужило причиной достаточно плотной компоновки элементов внутри корпуса. Тем не менее этот блок питания используется уже 3 года и работает без каких либо нареканий. Управляющие транзисторы практически не греются и не требуют, поэтому, применения больших теплоотводов. В качестве теплоотвода используется корпус блока, сделанный из пластин фольгированного двухстороннего текстолита. Транзисторы (VT1) крепятся к задней стенке через изоляционные прокладки из слюды.

В целях экономии места, также, применяется один вольтметр и один амперметр на оба канала. При помощи переключателя типа П2К они могут подключаться к выходу одного из каналов. Применение на выходе постоянно включенного амперметра очень удобно, так как позволяет в любой момент контролировать потребление тока налаживаемой схемы или устройства и, таким образом, вовремя заметить отклонения от нормального режима работы.

В качестве индикаторов рабочего режима и срабатывания защиты от перегрузки или короткого замыкания используются светодиоды соответственно зеленого и красного цвета свечения подключенные на выходе схемы последовательно с резисторами 2 кОм. (подключение светодиодов показано на принципиальной схеме блока питания).

Никакого налаживания собранная схема блока питания не требует. Подстроечным резистором R3 устанавливается порог срабатывания схемы защиты. Для этого к выходу каждого канала подключается нагрузка (резистор), соответствующая нужному току, например 0,9А и поворотом движка резистора R3 добиваются срабатывания реле. Чтобы вернуть блок питания в рабочий режим после срабатывания защиты, нужно на несколько секунд выключить блок питания. В схеме можно применить любые другие реле с рабочим напряжением 6 – 12 В и соответствующей группой контактов, например РЭК-53. Тиристоры КУ202 могут быть с любой буквой, можно поставить и КУ101, 104, 105. Операционный усилитель К153УД5 можно заменить на другой, из серии К140 (например К140УД7, К140УД8).

Простой блок питания с дискретным переключением

Эта схема проще, но также содержит узел защиты от перегрузки и К.З. на выходе. Выходное напряжение здесь задается дискретно, при помощи подключения опорных стабилитронов на разное напряжение стабилизации


Рис. 2

Характеристики:
- Uвых = 6 … 25 В (зависит от примененных стабилитронов);
- Iмакс (без теплоотводов) = 200 мА. При применении теплоотводов и «составных» регулирующих транзисторов (описаны далее) – до 2 .. 3 А;
- Уровень пульсаций - около 1 мВ;
- Кстаб = 700.

Стабилитроны VD2 – VD5 задают нужные значения выходного напряжения и переключаются при помощи подходящего кнопочного или галетного преключателя на нужное количество позиций. Ниже приведена примерная таблица соответствия типа стабилитрона и выходного напряжения блока:

Если нет стабилитрона на более высокие напряжения, можно использовать последовательное включение двух или трех. Например два включенных последовательно стабилитрона типа Д814А (или КС168) дадут напряжение стабилизации около 15 В. И так далее. Напряжение на входе (с трансформатора и выпрямителя, как и в схеме на рис.1) должно быть на 3 … 9 В больше выходного. Резисторы R4, R6 подбираются из расчета: Uвых. среднее х 100 (значение получается в Омах).

Блок питания защищает от перегрузки и К.З. как нагрузку, так и сам себя. Защита отключает оба канала при превышении тока даже в одном из них. В отключенном состоянии блок может находиться сколь угодно долго, для включения его нужно на несколько секунд выключить. Схема защиты (выделена на рис.2 пунктирной линией) может быть собрана и без тиристора, как показано на рис.3. В этом случае при срабатывании защиты блок питания будет переходить в рабочее состояние сам, без выключения, после устранения причины перегрузки.

При использовании для транзисторов VT1 и VT4 радиаторов площадью 100 … 200 кв. см. выходной ток блока может быть до 1 А. Транзистор VT1 можно заменить на П201 – П203, КТ816, КТ626, КТ837, а VT4 на КТ817, КТ605АМ, КТ805АМ, КТ603, КТ801. Чтобы значительно повысить выходной ток (до 2 … 3 А) можно заменить эти транзисторы на «составные», то есть состоящие из соответствующих пар. Как это сделать, показано на рис.4. Транзисторы в паре обозначены буквами «а», «б», «в» и «г». При этом транзистор, обозначенный буквой «а» может быть типа:
- П213 – П217, КТ806, КТ814, КТ816, КТ818;
«б»: - КТ203Б, КТ626Б,В; КТ209Г-М;
«в»: - П702, КТ805А, КТ803А, КТ817, КТ819;
«г»: - КТ315Г, КТ342А, КТ605А, КТ603А, КТб08А-Б.
Любой из вариантов составного транзистора VT1 может работать совместно с любым вариантом составного VT4.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Рисунок 1.
D1 x2 Микросхема К153УД5 2 В блокнот
VT1 x2 Биполярный транзистор

КТ805АМ

2 В блокнот
VT2 x2 Биполярный транзистор

КТ837А

2 В блокнот
VS1 x2 Тиристор & Симистор

КУ202И

2 В блокнот
D1-D4 x2 Диод

Д242

8 В блокнот
VD5 x2 Светодиод

АЛ307В

2 Или любой другой зеленый В блокнот
VD6 x2 Диод

Д223

2 В блокнот
VD7 x2 Стабилитрон

Д814А

2 В блокнот
VD8, VD9 x2 Стабилитрон

Д814В

4 В блокнот
VD10 x2 Светодиод

АЛ307Б

2 Или любой другой красный В блокнот
С1 x2 2000 мкФ 2 В блокнот
C2 x2 Конденсатор 200 пФ 2 В блокнот
C3 x2 Конденсатор 4700 пФ 2 В блокнот
С4 x2 Электролитический конденсатор 500 мкФ 2 В блокнот
С5 x2 Электролитический конденсатор 200 мкФ 2 В блокнот
R1, R12 x2 Резистор

2 кОм

4 0.5 Вт В блокнот
R2 x2 Резистор

2 Ом

2 2 Вт В блокнот
R3 x2 Подстроечный резистор 4.7 кОм 2 В блокнот
R4, R5 x2 Резистор

300 Ом

4 0.5 Вт В блокнот
R6 x2 Резистор

910 Ом

2 0.5 Вт В блокнот
R7 x2 Резистор

100 Ом

2 0.5 Вт В блокнот
R8 x2 Резистор

3.9 кОм

2 0.5 Вт В блокнот
R9 x2 Подстроечный резистор 1.5 кОм 2 В блокнот
R10 x2 Резистор

1 кОм

2 0.5 В В блокнот
R11 x2 Резистор

510 Ом

2 0.5 Вт В блокнот
Амперметр 1-3 А 2 В блокнот
Вольтметр 15-30 В 2 В блокнот
Трансформатор 2x15 В 1 В блокнот
SA1 Выключатель 1 В блокнот
FU1 Предохранитель 1 А 1 В блокнот
Рисунок 2.
VT1 Биполярный транзистор

КТ814Б

1 В блокнот
VT2 Биполярный транзистор

КТ315Б

1 В блокнот
VT3 Биполярный транзистор

КТ361Б

1 В блокнот
VT4 Биполярный транзистор

КТ815Б

1 В блокнот
VS Тиристор & Симистор

КУ101А

1 В блокнот
VD1 Диод

Д220

1 В блокнот
VD2, VD2.1 Стабилитрон

КС133А

1 В блокнот
VD3, VD3.1 Стабилитрон

КС156А

1 В блокнот
VD4, VD4.1 Стабилитрон

КС168А

1 Можно Д814А В блокнот
VD5, VD5.1 Стабилитрон

Д814В

1 В блокнот
VD6, VD6.1 Стабилитрон

Д814Д

1 Можно КС107А, на схеме показан VD6, VD6.1

Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых . Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Чтобы спаять схему вам понадобится:

  1. 1 - TL082 сдвоенный ОУ
  2. 2 - 1n4148 диод
  3. 1 - tip122 транзистор NPN
  4. 1 - BC558 PNP транзистор BC557, BC556
  5. 1 - резистор 2700 ом
  6. 1 - резистор 1000 ом
  7. 1 - резистор 10 ком
  8. 1 - резистор 22 ком
  9. 1 - потенциометр 10 ком
  10. 1 - конденсатор 470 мкф
  11. 1 - конденсатор 1 мкф
  12. 1 - нормально закрытый выключатель
  13. 1 - реле модели Т74 "G5LA-14"

Подключение схемы к БП

Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается "высокий" уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается "низкий" уровень.

Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в "высоком уровне", его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, "высокий уровень" будет приближаться к +12 В. Когда ОУ находится в "низком уровне", его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт - 3 или 5 Вт резистора будет более чем достаточно.

Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта .

Сигнал Power Good

Когда мы включаем , напряжения на выходе не сразу достигают нужного значения, а примерно через 0.02 секунды, и чтобы исключить подачу пониженного напряжения на компоненты ПК, существует специальный сигнал «power good», также иногда называемый «PWR_OK» или просто «PG», который подаётся, когда напряжения на выходах +12В, +5В и +3.3В достигают диапазона корректных значений. Для подачи этого сигнала выделена специальная линия на ATX разъёме питания, подключаемого к (№8, серый провод).

Ещё одним потребителем этого сигнала является схема защиты от подачи пониженного напряжения (UVP) внутри БП, о которой ещё пойдёт речь – если она будет активна с момента включения на БП, то она просто не даст компьютеру включиться, сразу отключая БП, поскольку напряжения будут заведомо ниже номинальных. Поэтому эта схема включается только с подачей сигнала Power Good.

Этот сигнал подаётся схемой мониторинга или ШИМ-контроллером (широтно-импульсная модуляция, применяемая во всех современных импульсных БП, из-за чего они и получили своё название, английская аббревиатура – PWM, знакомая по современным кулерам – для управления их частотой вращения подаваемый на них ток модулируется подобным образом.)

Диаграмма подачи сигнала Power Good согласно спецификации ATX12V.
VAC - входящее переменное напряжение, PS_ON# - сигнал "power on", который подаётся при нажатии кнопки включения на системном блоке."O/P" - сокращение для "operating point", т.е. рабочее значение. И PWR_OK - это и есть сигнал Power Good. T1 меньше чем 500 мс, T2 находится между 0.1 мс и 20 мс, T3 находится между 100 мс and 500 мс, T4 меньше или равно 10 мс, T5 больше или равно 16 мс и T6 больше или равно 1 мс.

Защита от подачи пониженного и повышенного напряжения (UVP/OVP)

Защита в обоих случаях реализована при помощи одной и той же схемы, мониторящей выходные напряжения +12В, +5В и 3.3В и отключающей БП в случае если одно из них окажется выше (OVP - Over Voltage Protection) или ниже (UVP - Under Voltage Protection) определённого значения, которое также называют «точкой срабатывания». Это основные типы защиты, которые в настоящее время присутствуют фактически во всех , более того, стандарт ATX12V требует наличия OVP.

Некоторую проблему составляет то, что и OVP, и UVP обычно сконфигурированы так, что точки срабатывания находятся слишком далеко от номинального значения напряжения и в случае с OVP это является прямым соответствием стандарту ATX12V:

Выход Минимум Обычно Максимум
+12 V 13.4 V 15.0 V 15.6 V
+5 V 5.74 V 6.3 V 7.0 V
+3.3 V 3.76 V 4.2 V 4.3 V

Т.е. можно сделать БП с точкой срабатывания OVP по +12В на 15.6В, или +5В на 7В и он всё ещё будет совместим со стандартом ATX12V.

Такой будет длительное время выдавать, допустим, 15В вместо 12В без срабатывания защиты, что может привести к выходу из строя компонентов ПК.

С другой стороны, стандарт ATX12V чётко оговаривает, что выходные напряжения не должны отклоняться более чем на 5% от номинального значения, но при этом OVP может быть конфигурирована производителем БП на срабатывание при отклонении в 30% по линиям +12В и +3.3В и в 40% - по линии +5В.

Производители выбирают значения точек срабатывания используя ту или иную микросхему мониторинга или ШИМ-контроллера, потому что значения этих точек жёстко заданы спецификациями той или иной конкретной микросхемы.

Как пример возьмём популярную микросхему мониторинга PS223 , которая используется в некоторых , которые до сих присутствуют на рынке. Эта микросхема имеет следующие точки срабатывания для режимов OVP и UVP:

Выход Минимум Обычно Максимум
+12 V 13.1 V 13.8 V 14.5 V
+5 V 5.7 V 6.1 V 6.5 V
+3.3 V 3.7 V 3.9 V 4.1 V

Выход Минимум Обычно Максимум
+12 V 8.5 V 9.0 V 9.5 V
+5 V 3.3 V 3.5 V 3.7 V
+3.3 V 2.0 V 2.2 V 2.4 V

Другие микросхемы предоставляют другой набор точек срабатывания.

И ещё раз напоминаем вам, насколько далеко от нормальных значений напряжения обычно сконфигурированы OVP и UVP. Для того, чтобы они сработали, блок питания должен оказаться в весьма сложной ситуации. На практике, дешёвые БП, не имеющие кроме OVP/UVP других типов защиты, выходят из строя раньше, чем срабатывает OVP/UVP.

Защита от перегрузки по току (OCP)

В случае с этой технологией (англоязычная аббревиатура OCP - Over Current Protection) есть один вопрос, который следовало бы рассмотреть более подробно. По международному стандарту IEC 60950-1 в компьютерном оборудовании ни по одному проводнику не должно передаваться более 240 Вольт-ампер, что в случае с постоянным током даёт 240 Ватт. Спецификация ATX12V включает в себя требование о защите от превышения по току во всех цепях. В случае с наиболее нагруженной цепью 12Вольт мы получаем максимально допустимый ток в 20Ампер. Естественно, такое ограничение не позволяет изготовить БП мощностью более 300Ватт, и для того, чтобы его обойти, выходную цепь +12В стали разбивать на две или более линий, каждая из которых имела собственную схему защиты от перегрузки по току. Соответственно, все выводы БП, имеющие +12В контакты, разбиваются на несколько групп по количеству линий, в некоторых случая на них даже наносится цветовая маркировка, чтобы адекватно распределять нагрузку по линиям.

Однако во многих дешёвых БП с заявленными двумя линиями +12В на практике используется только одна схема защиты по току, а все +12В провода внутри подключаются к одному выходу. Для того, чтобы реализовать адекватную работу такой схемы, защита от нагрузки по току срабатывает не при 20А, а при, например, 40А, и ограничение максимального тока по одному проводу достигается тем, что в реальной системе нагрузка в +12В всегда распределена по нескольким потребителям и ещё большему количеству проводов.

Более того, иногда разобраться, используется ли в данном конкретном БП отдельная защита по току для каждой линии +12В можно, только разобрав его и посмотрев на количество и подключение шунтов, используемых для измерения силы тока (в некоторых случаях количество шунтов может превышать количество линий, поскольку для измерения силы тока на одной линии могут использоваться несколько шунтов).


Различные типы шунтов для измерения силы тока.

Ещё одним интересным моментом является то, что в отличие от защиты от повышенного/пониженного напряжения допустимый уровень тока регулируется производителем БП, путём подпаивания резисторов того или иного номинала к выходам управляющей микросхемы. А на дешёвых БП, несмотря на требования стандарта ATX12V, эта защита может быть установлена только на линии +3.3В и +5В, либо отсутствовать вовсе.

Защита от перегрева (OTP)

Как следует из её названия (OTP - Over Temperature Protection), защита от перегрева выключает блок питания, если температура внутри его корпуса достигает определённого значения. Ей оснащены далеко не все блоки питания.

В блоках питания можно увидеть термистор, прикреплённый к радиатору (хотя в некоторых БП он может быть припаян прямо к печатной плате). Этот термистор соединён с цепью управления скоростью вращения вентилятора, он не используется для защиты от перегрева. В БП, оборудованных защитой от перегрева, обычно используется два термистора – один для управления вентилятором, другой, собственно для защиты от перегрева.

Защита от короткого замыкания (SCP)

Защита от короткого замыкания (SCP - Short Circuit Protection) – вероятно, самая старая из подобных технологий, потому что её очень легко реализовать при помощи пары транзисторов, не задействуя микросхему мониторинга. Эта защита обязательно присутствует в любом БП и отключает его в случае короткого замыкания в любой из выходных цепей, во избежание возможного пожара.



Что еще почитать