Уравнение бернулли дифференциальные уравнения примеры. Уравнение бернулли - основное уравнение гидравлики. Смотреть что такое "Бернулли уравнение" в других словарях

Для стабильно текущего потока (газа или жидкости) сумма кинетической и потенциальной энергии, давления на единицу объема является постоянной в любой точке этого потока.

Первое и второе слагаемое в Законе Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. А третье слагаемое в нашей формула является работой сил давления и не запасает какую-либо энергию. Из этого можно сделать вывод, что размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости или газа.

Постоянная в правой части уравнения Бернулли называется полным давлением и зависит в общих случаях, только от линии потока.

Если у вас горизонтальная труба, то Уравнение Бернулли принимает некий другой вид. Так как h=0, то потенциальная энергия будет равняться нулю, и тогда получится:

Из Уравнения Бернулли можно сделать один важный вывод . При уменьшении сечения потока возрастает скорость движения газа или жидкости (возрастает динамическое давление ), но в этот же момент уменьшает статическое давление следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает.

Давайте узнаем, как же летают самолеты. Даниил Бернулли объединил законы механики Ньютона с законом сохранения энергии и условием неразрывности жидкости, и смог вывести уравнение (), согласно которому давление со стороны текучей среды (жидкость или газ) падает с увеличением скорости потока этой среды. В случае с самолетом воздух обтекает крыло самолета снизу медленне, чем сверху. И благодаря этому эффекту обратной зависимости давления от скорости давление воздуха снизу, направленное вверх, оказывается больше давления сверху, напрвленного вниз. В результате, по мере набора самолетом скорости, возрастает направленная вверх разность давлений, и на крылья самолета действует нарастающая по мере разгона подъемная сила. Как только она начинает превышать силу гравитационного притяжения самолета к земле, самолет в буквальном смысле взмывает в небо. Эта же сила удерживает самолет в горизонтальном полете: на крейсерской скорости и высоте подъемная сила уравновешивает силу тяжести.

В Формуле мы использовали:

Плотность жидкости или воздуха

Дата: 2009-10-20

Для двух сечений потока 1-1 и 2-2 реальной жидкости (рисунок 1) при установившемся плавно изменяющемся движении уравнение Бернулли имеет вид:

z 1 + p 1 /γ + α 1 υ 1 2 /(2g) = z 2 + p 2 /γ + α 2 υ 2 2 /(2g) + Σh п (1)

где z - ордината, определяющая высоту положения центра выбранного сечения над произвольной горизонтальной плоскостью сравнения 0-0; p/γ - пьезометрическая высота; z + p/γ = H п - гидростатический напор; αυ 2 /(2g) = h v - скоростная высота, или скоростной напор; α - коэффициент Кориолиса, учитывающий неравномерность распределения скоростей в живом сечении потока.

Сумма трех членов:

z + p/γ + αυ 2 /(2g) = H

есть полный напор; Σh п - потеря напора между выбранными сечениями потока. Вместо выражения (1) можно написать:

H 1 = H 2 + Σh п

Все члены уравнения Бернулли в формуле (1) имеют линейную размерность и в энергетическом смысле представляют удельную энергию жидкости, т. е. энергию, отнесенную к единице веса жидкости.

Так, z и p/γ - удельная потенциальная энергия соответственно положения и давления;
z + p/γ - удельная потенциальная энергия жидкости;
αυ 2 /(2g) - удельная кинетическая энергия, выраженная через среднюю скорость потока в данном сечении. Сумма всех трех членов z + p/γ + αυ 2 /(2g) = H представляет полный запас удельной механической энергии жидкости в данном сечении потока;
Σh п - удельная механическая энергия, затрачиваемая на преодоление сопротивления движению жидкости между сечениями потока и переходящая в тепловую энергию, которая состоит из следующих слагаемых:

Σh п = Σh дл + Σh мест

где Σh дл - потери энергии (напора) на трение по длине; Σh мест - местные потери энергии (напора).

Если уравнение (1) умножить на γ, то получим:

γz 1 + p 1 + γα 1 υ 1 2 /(2g) = γz 2 + p 2 + γα 2 υ 2 2 /(2g) + γΣh п (2)

Члены уравнения (2) имеют размерность давления и представляют энергию, отнесенную к единице объема.

Если уравнение (1) умножить на g, то получим

gz 1 + p 1 /ρ + α 1 υ 1 2 /2 = gz 2 + p 2 /ρ + α 2 υ 2 2 /2 + gΣh п (3)

Члены уравнения (3) имеют размерность м 2 /с 2 и представляют энергию, отнесенную к единице массы.

РИСУНОК 1

На рисунке 1 приведена диаграмма уравнения Бернулли для потока реальной жидкости. Здесь 0-0 - плоскость сравнения; N-N - плоскость начального напора; Н-Н - напорная линия, или линия полной удельной энергии. Падение ее на единицу длины представляет гидравлический уклон J ; Р-Р - пьезометрическая линия, или линия удельной потенциальной энергии. Падение ее на единицу длины представляет пьезометрический уклон J п .

Так как общий запас удельной энергии вдоль потока непрерывно уменьшается, линия Н-Н всегда нисходящая, а гидравлический уклон всегда положительный (J>0 ). Пьезометрическая линия может быть и нисходящей, и восходящей (последнее имеет место на расширяющихся участках, когда средняя скорость потока уменьшается), поэтому пьезометрический уклон может быть и положительным (J>0 ), и отрицательным(J).

На участках с равномерным движением жидкости, где имеют место только потери напора на трение по длине, линии Н-Н и Р-Р представляют взаимно параллельные прямые, поэтому J = J п =h дл /L . В этом случае потеря напора может быть определена по разности гидростатических напоров:

h дл = (z 1 + p 1 /γ) - (z 2 + p 2 /γ)

РИСУНОК 2

Для горизонтальных участков потоков (z 1 =z 2 ) или в случае, если плоскость сравнения 0-0 проведена по оси потока (z 1 =z 2 = 0) (рисунок 2), потеря напора на трение по длине может быть определена непосредственно по разности показаний пьезометров:

h дл = (p 1 - p 2)/γ

На рисунке 3 показаны линия энергии Н-Н и пьезометрическая линия P-P для трубопровода переменного сечения, соединяющего два открытых резервуара.

РИСУНОК 3

Источник: Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Комментарии к этой статье!!

Что хорошо то? типо вы что то из этого поняли! Люди уже отупели а это всё было выведено еще в 1697 году! Сейчас бы никто до этого не додумался!

вьезжаю но медленно столько всего интересного

уравнение бернулли и в 23 веке таким же и останется справедливым

Тема 7

Анализ и применение уравнения Бернулли

1. Уравнение неразрывности в гидравлике. Расход.

2. Анализ уравнения Бернулли.

3. Энергетический смысл уравнения Бернулли.

4. Предел применимости уравнения Бернулии.

5. Примеры применения уравнения Бернулли.

5.1. Расходомер Вентури.

5.2. Измерение скорости (Трубка Пито).

5.3. Кавитация.

5.4. Формула Торичелли.

6. Уравнение неразрывности в гидравлике. Расход.

7.1. Расход. Уравнение неразрывности в гидравлике

Рассмотрим установившийся поток между живыми сечениями 1,2 (рис. 26).

где - площадь живого сечения, - средняя скорость в сечении.

Через живое сечение 2 за это время вытекает объем жидкости

где - площадь живого сечения 2, - средняя скорость в сечении 2.

Поскольку форма объема 1-2 с течением времени не изменяется, жидкость несжимаемая, объем жидкости должен равняться объему вытекающему .

Поэтому можно записать

Это уравнение называется уравнением неразрывности .

Из уравнения неразрывности следует, что

Средние скорости обратно пропорциональны площадям соответствующих сечений.

7.2. Анализ уравнения Бернулли

Запишем уравнение Бернулли для установившегося движения идеальной сжимаемой жидкости при условии ее баротропности () в поле массовых сил

,

проинтегрировав имеем

.

Для потенциального течения константа уравнения Бернулли постоянна для всей области течения. При вихревом движении идеальной жидкости константа С в интеграле Бернулли сохраняет постоянное значение только для данной вихревой линии, а не для всего пространства, как при безвихревом течении.

Уравнение Бернулли является одним из основных в гидрогазодинамике, так как определяет изменение основных параметров течения - давления, скорости и высоты положения жидкости.

Проинтегрируем дифференциальное уравнение Бернулли для конечного участка струйки 1-2

.

Интеграл выражает работу сил давления по перемещению килограмма жидкости из области 1 с давлением р 1 в область 2 с давлением р 2 .

Значение интеграла изменяется зависимости от типа процесса (термодинамического) который совершает жидкость, то есть от вида зависимости .

Рассмотрим изобарный процесс (рис. 27)

При изохорном процессе

Для несжимаемой жидкости при течении без обмена механической работой с внешней средой, получим, при из уравнения Бернулли

,

или умножив на r

,

или разделив на r g

,

где константы имеют следующий физический смысл:

С - полная механическая энергия килограмма жидкости или полный напор , ,

Полная механическая энергия массы жидкости объёмом в кубический метр или полный напор , или Па. ,

- полная механическая энергия или полный напор в метрах столба данной жидкости.

Все три величины имеют одинаковый физический смысл любой из них присваивают название полного напора .

Составляющие полной механической энергии жидкости наиболее наглядно изображаются и измеряются в метрах столба жидкости,

gz, r gz, z - потенциальная энергия положения жидкости, отсчитываемая от произвольно выбранной горизонтальной нивелирной плоскости, или геометрический напор , ,

Потенциальная энергия давления жидкости или пьезометрический напор ,,

-потенциальная энергия жидкости или гидростатический напор ,,

- кинетическая энергия жидкости или скоростной напор , .

Пьезометрический напор р может измеряться от полного вакуума р=0 или, например, от давления окружающей среды. В обеих частях равенств должно подставляться абсолютное или избыточное давление.

Начало отсчета энергии произвольно, но должно быть одинаково для обеих частей равенств.

7.3. Энергетический смысл уравнения Бернулли

Заключается в утверждении закона сохранения полной механической энергии единицы массы несжимаемой жидкости

а) при потенциальном течении для любой точки пространства,

б) при вихревом - только вдоль вихревой линии тока и элементарной

Этот закон иногда формулируется в виде теоремы трех высот.

В приведенных условиях сумма трех высот - геометрической, пьезометрической и динамической сохраняет неизменное значение.

При этом составляющие полной энергии могут взаимопревращаться.

Следует иметь в виду, что изменение кинетической энергии несжимаемой жидкости вдоль элементарной струйки не может задаваться произвольно: в соответствии с уравнением неразрывности это изменение однозначно определяется изменением площади поперечного сечения канала

Течение в горизонтальной струйке имеет большое практическое значение, оно реализуется в соплах двигателей. Запишем уравнение Бернулли при z = const

.

Итак, увеличение скорости несжимаемой жидкости в горизонтальной элементарной струйке всегда сопровождается уменьшением давления, а уменьшение скорости – увеличением давления вплоть до при v= 0. Поэтому скоростной напор широко используется, например, для подачи воды в систему охлаждения, разрушения горных пород и т.д.

В связи с тем, что скорость несжимаемой жидкости может уменьшаться только вследствие изменения площади сечения, приходим к важному выводу о том, что картина линий тока при течении несжимаемой жидкости однозначно определяет не только изменение скорости, но и статического давления: при сгущении линий тока давление уменьшается, при расширении - увеличивается. Это правило широко используется при анализе движения жидкости и ее взаимодействии с телами.

7.4. Предел применимости уравнений неразрывности и Бернулли

При течении жидкости по каналу при постоянстве , и при произвольно изменяемой площади 2. Казалось бы, что

.

Однако по уравнению Бернулли при

,

давление должно было бы принять значение минус бесконечность, что лишено смысла: абсолютное давление не может быть меньше нуля.

Таким образом уравнения неразрывности и Бернулли справедливы лишь до тех пор, пока минимальное давление в потоке остается большим нуля.

Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».

Кто такой Бернулли?

Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».

Д. Бернулли (1700-1782)

Идеальная жидкость и течение идеальной жидкости

Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость . Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.

Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.

Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.

– совокупность частиц движущейся жидкости.


Вывод уравнения Бернулли

Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.

Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.

Данное уравнение – уравнение неразрывности струи.


Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

Дифференциальное уравнение Бернулли - это уравнение вида:
, где n ≠ 0 , n ≠ 1 , p и q - функции от x .

Решение дифференциального уравнения Бернулли приведением к линейному уравнению

Рассмотрим дифференциальное уравнение Бернулли:
(1) ,
где n ≠ 0 , n ≠ 1 , p и q - функции от x .
Разделим его на y n . При y ≠ 0 или n < 0 имеем:
(2) .
Это уравнение сводится к линейному с помощью замены переменной:
.
Покажем это. По правилу дифференцирования сложной функции:
;
.
Подставим в (2) и преобразуем:
;
.
Это - линейное , относительно z , дифференциальное уравнение. После его решения, при n > 0 , следует рассмотреть случай y = 0 . При n > 0 , y = 0 также является решением уравнения (1) и должно входить в ответ.

Решение методом Бернулли

Рассматриваемое уравнение (1) также можно решить методом Бернулли . Для этого ищем решение исходного уравнения в виде произведения двух функций:
y = u·v ,
где u и v - функции от x . Дифференцируем по x :
y′ = u′ v + u v′ .
Подставляем в исходное уравнение (1) :
;
(3) .
В качестве v возьмем любое, отличное от нуля, решение уравнения:
(4) .
Уравнение (4) - это уравнение с разделяющимися переменными . Решаем его и находим частное решение v = v(x) . Подставляем частное решение в (3) . Поскольку оно удовлетворяет уравнению (4) , то выражение в круглых скобках обращается в нуль. Получаем:
;
.
Здесь v - уже известная функция от x . Это уравнение с разделяющимися переменными. Находим его общее решение, а вместе с ним и решение исходного уравнения y = uv .

Пример решения дифференциального уравнения Бернулли

Решить уравнение

Решение

На первый взгляд, кажется, что это дифференциальное уравнение не похоже на уравнение Бернулли. Если считать x независимой переменной, а y - зависимой (то есть если y - это функция от x ), то это так. Но если считать y независимой переменной, а x - зависимой, то легко увидеть, что это - уравнение Бернулли.

Итак, считаем что x является функцией от y . Подставим и умножим на :
;
;
(П.1) .
Это - уравнение Бернулли с n = 2 . Оно отличается от рассмотренного выше, уравнения (1) , только обозначением переменных (x вместо y ). Решаем методом Бернулли. Делаем подстановку:
x = u v ,
где u и v - функции от y . Дифференцируем по y :
.
Подставим в (П.1) :
;
(П.2) .
Ищем любую, отличную от нуля функцию v(y) , удовлетворяющую уравнению:
(П.3) .
Разделяем переменные :
;
;
.
Положим C = 0 , поскольку нам нужно любое решение уравнения (П.3) .
;
.
Подставим в (П.2) учитывая, что выражение в скобках равно нулю (ввиду (П.3) ):
;
;
.
Разделяем переменные. При u ≠ 0 имеем:
;
(П.4) ;
.
Во втором интеграле делаем подстановку :
;
.



Что еще почитать