Морфология вирусов, особенности классификации. Морфология и структура вирусов Морфология и классификация вирусов

ЛЕКЦИЯ № 5.

ВИРУСОЛОГИЯ.

Все вирусы существуют в двух качественно разных формах. Внеклеточная форма – вирион – включает в себя все составные элементы вирусной частицы. Внутриклеточная форма – вирус – может быть представлена лишь одной молекулой нуклеиновой кислоты, т.к. попадая в клетку, вирион распадается на составные элементы. В то же время внутриклеточный вирус есть самореплицирующаяся форма, не способная к делению. На этом основании определение вируса предполагает принципиальное различие между клеточными формами существования (бактерии, грибы, простейшие), размножающихся делением, и реплицирующейся формой, воспроизводящейся из вирусной нуклеиновой кислоты. Но этим не ограничиваются отличительные признаки вирусов от про- и эукариот. К принципиальным отличиям относятся:

1. наличие одного типа нуклеиновой кислоты (ДНК или РНК);

2. отсутствие клеточного строения и белоксинтезирующих систем;

3. возможность интеграции в клеточный геном и синхронной с ним репликации.

Форма вириона может быть самой различной (палочковидные, эллипсоидные, сферические, нитевидные, в виде сперматозоида), что является одним из признаков таксономической принадлежности данного вируса.

Размеры вирусов настолько малы, что сопоставимы с толщиной клеточной оболочки. Наиболее мелкие (парвовирусы) имеют размер 18 нм, а наиболее крупные (вирус натуральной оспы) – около 400 нм.

В основу классификации вирусов положен тип нуклеиновой кислоты, образующей геном, что позволило выделить два подцарства:

рибовирусы – РНК-содержащие или РНК-вирусы;

дезоксирибовирусы – ДНК-содержащие или ДНК-вирусы.

Подцарства делятся на Семейства, Подсемейства, Роды и Виды.

При систематизации вирусов выделены следующие основные критерии: сходство нуклеиновых кислот, размеры, наличие или отсутствие суперкапсида, тип симметрии нуклеокапсида, характеристика нуклеиновых кислот, полярность, количество нитей в молекуле, наличие сегментов, наличие ферментов, внутриядерная или цитоплазматическая локализация, антигенная структура и иммуногенность, тропизм к тканям и клеткам, способность образовывать тельца включений. Дополнительный критерий – симптоматология поражений, т.е. способность вызывать генерализованные или органоспецифические инфекции.

По структурной организации различают простоорганизованные ("голые") и сложноорганизованные ("одетые") вирусы.

Структура простого вириона устроена таким образом, что вирусная нуклеиновая кислота, т.е. генетический материал вируса надежно защищен симметричной белковой оболочкой – капсидом , функциональная и морфологическая совокупность которых образует нуклеокапсид .

Капсид имеет строго упорядоченную структуру, в основе которой лежат принципы спиральной или кубической симметрии. Его образуют одинаковые по строению субъединицы – капсомеры , организованные в один или два слоя. Число капсомеров строго специфично для каждого вида и зависит от размеров и морфологии вирионов. Капсомеры, в свою очередь, образованы молекулами белка – протомерами . Они могут быть мономерными - составлены одним полипептидом или полимерными - составлены несколькими полипептидами. Симметричность капсида объяснима тем, что для упаковки генома требуется большое количество капсомеров, а компактное их соединение возможно только при симметричном расположении субъединиц. Формирование капсида напоминает процесс кристаллизации и протекает по принципу самосборки. Основные функции капсида определяются защитой вирусного генома от внешних воздействий, обеспечением адсорбции вириона на клетке, проникновением генома в клетку в результате взаимодействия капсида с клеточными рецепторами, обуславливают антигенные и иммуногенные свойства вирионов.

Нуклеокапсид повторяет симметрию капсида. При спиральной симметрии взаимодействие нуклеиновой кислоты и белка в нуклеокапсиде осуществляется по одной оси вращения. Каждый вирус со спиральной симметрией обладает характерной длиной, шириной и периодичностью. Большинство патогенных для человека вирусов, в том числе вирус гриппа, имеют спиральную симметрию. Организация по принципу спиральной симметрии придает вирусам палочковидную или нитевидную форму. Такое расположение субъединиц образуется полый канал, внутри которого компактно уложена молекула вирусной нуклеиновой кислоты. Ее длина может во много раз превышать длину вириона. У вируса табачной мозаики, например, длина вириона составляет 300 нм, а его РНК достигает величины 4000 нм. При такой организации белковый чехол лучше защищает наследственную информацию, но требует большего количества белка, т.к. покрытие состоит из сравнительно крупных блоков. При кубической симметрии нуклеиновая кислота окружена капсомерами, образующими икосаэдр – многогранник с 12 вершинами, 20 треугольными гранями и 30 углами. Организация вириона по этому принципу придает вирусам сферическую форму. Принцип кубической симметрии – самый экономичный для формирования замкнутого капсида, т.к. для его организации используются небольшие белковые блоки, образующие большое внутреннее пространство, в которое свободно укладывается нуклеиновая кислота.

Некоторые бактериофаги имеют двойную симметрию , когда головка организована по принципу кубической, а отросток – по принципу спиральной симметрии.

Для вирусов больших размеров характерно отсутствие постоянной симметрии .

Неотъемлемым структурно-функциональным компонентом нуклеокапсида являются внутренние белки , обеспечивающие правильную суперспирализованную упаковку генома, выполняющие структурную и ферментативную функции.

Функциональная специфичность вирусных ферментов определяется местом их локализации и механизмом образования. На основании этого вирусные ферменты разделяют на вирусиндуцированные ивирионные . Первые закодированы в вирусном геноме, вторые – входят в состав вирионов. Вирионные ферменты также разделяют на две функциональные группы: ферменты первой группы обеспечивают проникновение вирусных нуклеиновых кислот в клетку и выход дочерних популяций; ферменты второй группы участвуют в процессах репликации и транскрипции вирусного генома. Наряду с собственными, вирусы активно используют клеточные ферменты, которые не являются вирусоспецифическими. Но их активность может модифицироваться в процессе репродукции вируса.

Существует группа т.н. сложноорганизованных или "одетых" вирусов , которые, в отличие от "голых" , имеют поверх капсида особую липопротеиновую оболочку – суперкапсид или пеплос , организованный двойным слоем липидов и специфичными вирусными гликопротеинами, пронизывающими липидный бислой и образующими выросты-шипы (пепломеры или суперкапсидные белки ). Поверхностные суперкапсидные белки – важный компонент, облегчающий проникновение вирусов в чувствительные клетки. Именно этими специальными белками, названными F-белками (fusio - слияние), обеспечивается слияние вирусных суперкапсидов и клеточных мембран. Суперкапсид формируется на поздних этапах репродуктивного цикла при отпочковывании дочерних популяций и является производной структурой от мембран вирус-инфицированной клетки. Так, состав липидов зависит от характера "почкования" вирусной частицы. Например, у вируса гриппа состав липидного бислоя аналогичен таковому клеточных мембран. Т.к. герпесвирусы почкуются через ядерную мембрану, то набор липидов их суперкапсида отражает состав ядерной мембраны. Сахара, входящие в состав гликопротеинов, также происходят от клетки-хозяина.

На внутренней поверхности суперкапсида т.н. матричными белками (М-белки ) сформирован структурный слой, способствующий взаимодействию суперкапсида с нуклеокапсидом, что исключительно важно на заключительных этапах самосборки вирионов.

Тем не менее, главным структурным и функциональным компонентом вируса является его геном, определяющий все свойства вирусной частицы, как внутри, так и вне клетки-мишени. В геноме зашифрована информация о морфологических, биохимических, патогенных и антигенных свойствах его носителя. Геном вирусной частицы гаплоидный. Нуклеиновые кислоты представлены однонитевыми молекулами РНК или двунитевыми молекулами ДНК. Исключение составляют реовирусы, геном которых образован двумя нитями РНК и парвовирусы, у которых геном представлен в виде одной нити ДНК. Вирусы содержат только один тип нуклеиновой кислоты.

Вирусные ДНК организованы как циркулярные ковалентно сцепленные суперспирализованные или линейные структуры с молекулярной массой от 1 · 10 6 до 1 ·10 8 , что от 10 до 100 раз меньше молекулярной массы бактериальных ДНК. Геном содержит до нескольких сотен генов. Транскрипция вирусной ДНК осуществляется в ядре зараженной клетки. Нуклеотидные последовательности встречаются однократно, но на концах молекулы имеются прямые и инвертированные (развернутые на 180 о) повторяющиеся нуклеотидные последовательности. Этим обеспечивается способность молекулы ДНК замыкаться в кольцо. Кроме того, они являются своеобразными маркерами вирусной ДНК.

Вирусные РНК представлены одно- и двунитевыми молекулами и по своему химическому составу не отличаются от РНК клеточного происхождения. Однонитевые молекулы могут быть сегментированы, что ведет к увеличению кодирующей ёмкости генома. Кроме того, в них имеются спиральные участки типа двойной спирали ДНК, образующиеся за счет спаривания комплементарных азотистых оснований. Двунитевая РНК может быть линейной и кольцевой.

В зависимости от специфики внутриклеточного поведении и выполняемых функций вирусные РНК делят на группы:

1. Плюс-нити РНК , обладающие способностью транслировать закодированную в ней информацию на рибосомы клетки-мишени, т.е. выполнять функцию мРНК. РНК плюс-нитевых вирусов имеют характерные модифицированные концы в виде "шапочки", необходимые для специфического распознавания рибосом. Их называют плюс-нитями или позитивным геномом.

2. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомы и не могут функционировать как мРНК. Однако являются матрицей для синтеза мРНК. Их называют минус-нитями или негативный геном.

3. Двойные нити, одна из которых функционирует как –РНК, другая, комплементарная ей – как +РНК.

Многие вирусные нуклеиновые кислоты +РНК и ДНК-содержащих вирусов инфекционны сами по себе, т.к. содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Двунитевые РНК и большинство –РНК инфекционных свойств проявлять не могут.

Взаимодействие вируса с клеткой-мишенью – сложный и многоступенчатый процесс сосуществования двух форм живой материи – доклеточной и клеточной. Здесь проявляется весь комплекс воздействий вирусного генома на генетически закодированные биосинтетические процессы клетки хозяина.

Реализация репродуктивного цикла в значительной степени зависит от типа инфицирования клетки и характера взаимодействия вируса с чувствительной (могущей быть инфицированной) клеткой.

В вирус-инфицированной клетке возможно пребывание вирусов в различных состояниях:

1. воспроизводство многочисленных новых вирионов;

2. пребывание нуклеиновой кислоты вируса в интегрированном состоянии с хромосомой клетки в виде провируса;

3. существование в цитоплазме клетки в виде кольцевых нуклеиновых кислот, напоминающих плазмиды бактерий.

Именно этими состояниями определяется широкий диапазон нарушений, вызываемых вирусом: от выраженной продуктивной инфекции, завершающейся гибелью клетки, до продолжительного взаимодействия вируса с клеткой в виде латентной (скрытой) инфекции или злокачественной трансформации клетки.

Выделено четыре типа взаимодействия вируса с чувствительной клеткой:

1. Продуктивный тип – завершается образованием нового поколения вирионов и выход их в результате лизиса зараженных клеток (цитолитическая форма ), либо выход из клетки без ее разрушения (нецитолитическая форма ). По нецитолитическому типу взаимодействия чаще всего протекают персистирующие хронические инфекции , характеризующиеся образованием дочерних популяций возбудителя после завершения острой фазы болезни. Гибель клетки вызывается ранним подавлением синтеза клеточных белков, накоплением токсических и специфически повреждающих вирусных компонентов, повреждением лизосом и высвобождением их ферментов в цитоплазму;

2. Интегративный тип , или вирогения – характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и последующим функционированием как ее составная часть с совместной репликацией. По такому типу взаимодействия протекают латентное инфицирование , лизогения бактерий и вирусная трансформация клеток ;

3. Абортивный тип – не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов. Происходит при взаимодействии вируса с покоящейся клеткой, либо при инфицировании клетки дефектным вирусом.

Дефектными могут быть как вирусы, так и вирионы.

Дефектные вирусы существуют как самостоятельные виды и функционально неполноценны, т.к. для их репликации необходим "вирус-помошник", т.е. дефект определяется неполноценностью генома. Делятся на 3 группы:

1. Дефектные интерферирующие частицы , представляющие собой вирионы, содержащие только часть генетической информации исходного вируса и реплицируется только при участии родственного "вируса-помощника";

2. Вирусы-спутники от предыдущих отличаются тем, что для своей репродукции требуют участия любого "вируса-помощника", не обязательно родственного;

3. Интегрированные геномы представляют собой провирусы, т.е. вирусные геномы, встроенные в хромосому клетки, но утратившие способность к превращению в полноценный вирус;

Дефектные вирионы составляют группу, формирующуюся при образовании больших дочерних популяций, и их дефектность определяется главным образом морфологической неполноценностью (пустые капсиды, безоболочечные нуклеокапсиды и др.). Особая форма дефектных вирионов – псевдовирионы, имеющие нормальный капсид, содержащий часть собственной нуклеиновой кислоты и фрагменты нуклеиновой кислоты хозяина, либо часть хромосомы клетки хозяина и часть нуклеиновой кислоты другого вируса.

Значение дефектных вирусов состоит в их способности переносить генетический материал из клетки-донора в клетку-реципиент.

4. Интерференция вирусов – происходит при инфицировании клетки двумя вирусами и возникает не при всякой комбинации возбудителей. Интерференция реализуется либо за счет индукции одним вирусом клеточных ингибиторов, подавляющих репродукцию другого, либо за счет повреждения рецепторного аппарата или метаболизма клетки первым вирусом, что исключает возможность репродукции второго. Различают гомологичную (родственные вирусы) и гетерологичную (неродственные вирусы) интерференцию.

По характеру взаимодействия генома вируса с геномом клетки различают автономное и интеграционное инфицирование . При автономном инфицировании геном вируса не интегрирован в геном клетки, тогда как при интеграционном происходит интеграция вирусного генома в клеточный.

Продуктивный тип взаимодействия вируса с клеткой , т.е. репродукция вируса представляет собой уникальную форму выражения чужеродной (вирусной) генетической информации в клетках человека, животных, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации. Это сложнейший процесс взаимодействия двух геномов протекающий в 6 стадий:

1. адсорбция вирионов;

2. проникновение вируса в клетку;

3. "раздевание" и высвобождение вирусного генома;

4. синтез вирусных компонентов;

5. формирование вирионов;

6. выход вирионов из клетки.

Первая стадия репродукции – адсорбция , т.е. прикрепление вириона к поверхности клетки. Она протекает в две фазы. Первая фаза – неспецифическая , обусловленная ионным притяжением и другими механизмами взаимодействия между вирусом и клеткой. Вторая фаза – высокоспецифическая , обусловленная гомологией и комплементарностью рецепторов чувствительных клеток и узнающих их белковых лигандов вирусов. Узнающие и взаимодействующие вирусные белки называются прикрепительными и представлены гликопротеинами, в составе липопротеиновой оболочки капсида или суперкапсида вируса.

Специфические рецепторы клеток имеют различную природу, являясь белками, липидами, углеводными компонентами белков и липидов. Одна клетка может нести от десяти до ста тысяч специфических рецепторов, что позволяет закрепиться на ней десяткам и сотням вирионов. Количество инфекционных вирусных частиц, адсорбированных на клетке, определяет термин "множественность заражения" . Тем не менее, инфицированная вирусом клетка в большинстве случаев толерантна к повторному заражению гомологичным вирусом.

Наличие специфических рецепторов лежит в основе тропизма вирусов к определенным клеткам, тканям и органам.

Вторая стадия – проникновение вируса в клетку может происходить несколькими путями.

1. Рецепторно-зависимый эндоцитоз происходит в результате захватывания и поглощения вириона чувствительной клеткой. При этом клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эндосомы), содержащей вирус. Далее происходит слияние липопротеиновой оболочки вируса с мембраной эндосомы и выход вируса в цитоплазму клетки. Эндосомы объединяются с лизосомами, которые разрушают оставшиеся вирусные компоненты.

2. Виропексис – заключается в слиянии вирусного суперкапсида с клеточной или ядерной мембраной и происходит при помощи специального белка слияния F-белка , входящего в состав суперкапсида. В результате виропексиса капсид оказывается внутри клетки, а суперкапсид вместе с белком интегрирует (встраивается) в плазматическую или ядерную мембрану. Присущ только сложно устроенным вирусам.

3. Фагоцитоз – по средствам которого вирусы проникают в фагоцитирующие клетки, что приводит к незавершенному фагоцитозу.

Третья стадия – "раздевания" и высвобождения вирусного генома происходит в результате депротеинизации, модификации нуклеокапсида, удаления поверхностных вирусных структур и высвобождения внутреннего компонента, способного вызвать инфекционный процесс. Первые этапы "раздевания" начинаются еще в процессе проникновения в клетку путем слияния вирусных и клеточных мембран или при выходе вируса из эндосомы в цитоплазму. Последующие этапы тесно связаны с их внутриклеточным транспортом к местам депротеинизации. Для разных вирусов существуют свои специализированные участки "раздевания". Транспорт к ним осуществляется с помощью внутриклеточных мембранных пузырьков, в которых вирус переносится на рибосомы, эндоплазматическую сеть или в ядро.

Четвертая стадия – синтез вирусных компонентов начинается в момент теневой или эклипс-фазы, которая характеризуется исчезновением вириона. Теневая фаза заканчивается после образования составных компонентов вируса, необходимых для сборки дочерних популяций. Вирус использует для этого генетический аппарат клетки, подавляя необходимые ей самой синтетические реакции. Синтез белков и нуклеиновых кислот вируса, т.е. его репродукция, разобщен во времени и пространстве, осуществляется в разных частях клетки и называется дизъюнктивным.

В зараженной клетке вирусный геном кодирует синтез двух групп белков:

- неструктурных белков , обслуживающих внутриклеточную репродукцию вируса на разных его этапах к которым относятся РНК- или ДНК-полимерезы, обеспечивающие транскрипцию и репликацию вирусного генома, белки-регуляторы, предшественники вирусных белков, ферменты, модифицирующие вирусные белки;

- структурных белков , входящих в состав вириона (геномные, капсидные и суперкапсидные).

Синтез белков в клетке осуществляется в соответствии с процессами транскрипции путем "переписывания" генетической информации с нуклеиновой кислоты в нуклеотидную последовательность информационной РНК (иРНК) и трансляции (считывания) иРНК на рибосомах с образованием белков. Термином "трансляция" называют механизмы, при помощи которых последовательность нуклеиновых оснований иРНК переводится в специфическую последовательность аминокислот в синтезируемом полипептиде. При этом происходит дискриминация клеточных иРНК и синтетические процессы на рибосомах переходят под вирусный контроль. Механизмы передачи информации в отношении синтеза иРНК у разных групп вирусов неодинаковы.

Двунитевые ДНК-содержащие вирусы реализуют генетическую информацию так же, как и клеточный геном, по схеме: геномная ДНК вируса транскрипция иРНК трансляция вирусного белка . При этом, ДНК-содержащие вирусы, геномы которых транскрибируются в ядре, используют для этого процесса клеточную полимеразу, а геномы которых транскрибируются в цитоплазме – собственную вирусоспецифическую РНК-полимеразу.

Геном –РНК-содержащих вирусов служит матрицей, с которой транскрибируется иРНК, при участии вирусоспецифической РНК-полимеразы. Синтез белка у них происходит по схеме: геномная РНК вируса транскрипция иРНК трансляция белка вируса .

Особняком стоит группа РНК-содержащих ретровирусов, к которой относятся вирусы иммунодефицита человека и онкогенные ретровирусы. Они имеют уникальный путь передачи генетической информации. Геном этих вирусов состоит из двух идентичных молекул РНК, т.е. является диплоидным. В составе ретровирусов есть особый вирусоспецифический фермент – обратная транскриптаза , или ревертаза , с помощью которой осуществляется процесс обратной транскрипции. Заключается он в следующем: на матрице геномной РНК синтезируется комплементарная однонитевая ДНК (кДНК). Она копируется с образованием двунитевой комплементарной ДНК, которая интегрирует в клеточный геном и в его составе транскрибируется в иРНК с помощью клеточной ДНК-зависимой РНК-полимеразы. Синтез белков этих вирусов осуществляется по схеме: геномная РНК вируса комплементарная ДНК транскрипция иРНК трансляция белка вируса .

Регуляция транскрипции осуществляется клеточными и вирусоспецифическими механизмами. Она заключается в последовательном считывании информации с т.н. "ранних" и "поздних" генов . В первых закодирована информация для синтеза вирусоспецифических ферментов транскрипции и репликации, во вторых – для синтеза капсидных белков.

Синтез вирусных нуклеиновых кислот, т.е. репликация вирусных геномов , приводит к накоплению в клетке копий исходных вирусных геномов, которые используются при сборке вирионов. Способ репликации зависит от типа нуклеиновой кислоты вируса, наличия вирусоспецифических и клеточных полимераз, от способности вирусов индуцировать образование полимераз в клетке.

Двунитевые ДНК-вирусы реплицируются обычным полуконсервативным способом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной синтезированной нити.

Однонитевые ДНК-вирусы в процессе репликации используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, т.н. репликативной формы . При этом на исходной +ДНК-нити комплементарно синтезируется –ДНК-нить, служащая матрицей для +ДНК-нити нового вириона.

Однонитевые +РНК-вирусы индуцируют в клетке синтез РНК-зависимой РНК-полимеразы. С ее помощью на основе геномной +РНК-нити синтезируется –РНК-нить, формируется временная двойная РНК, названная промежуточным репликативным звеном . Оно состоит из полной +РНК-нити и многочисленных частично завершенных –РНК-нитей. Когда сформированы все –РНК-нити, они используются как шаблоны для синтеза новых +РНК-нитей.

Однонитевые –РНК-вирусы имеют в своем составе РНК-зависимую РНК-полимеразу. Геномная –РНК-нить трансформируется вирусной полимеразой в неполные и полные +РНК-нити. Неполные копии выполняют роль иРНК для синтеза вирусных белков, а полные – являются матрицей для синтеза геномной –РНК-нити потомства.

Двунитевые РНК-вирусы реплицируются аналогично однонитевым –РНК-вирусам. Отличие в том, что образовавшиеся в процессе транскрипции +РНК-нити функционируют не только как иРНК, но и участвуют в репликации. Они являются матрицей для синтеза –РНК-нитей. В комплексе они образуют геномные двунитевые РНК вирионов.

Диплоидные +РНК-вирусы или ретровирусы реплицируются с помощью вирусной обратной транскриптазы, синтезирующей на матрице РНК-вируса –ДНК-нить, с которой копируется +ДНК-нить с образованием двойной нити ДНК, замкнутой в кольцо. Далее двойная нить ДНК интегрируется с хромосомой клетки, образуя провирус. Многочисленные вирионные РНК образуются в результате транскрипции одной из нитей интегрированной ДНК при участии клеточной ДНК-зависимой РНК-полимеразы.

Пятая стадия – сборка вирионов происходит путем упорядоченной самосборки , когда составные части вириона транспортируются в места сборки вируса. Таковыми являются специфические участки ядра и цитоплазмы, называемые репликативными комплексами . Соединение компонентов вириона обусловлено наличием гидрофобных, ионных, водородных связей и стереохимическим соответствием.

Формирование вирусов это многоступенчатый, строго последовательный процесс, с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов. Сборка просто устроенных вирусов происходит на репликативных комплексах и заключается во взаимодействии вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов. У сложноустроенных вирусов сначала на репликативных комплексах формируются нуклеокапсиды, которые затем взаимодействуют с модифицированными мембранами клеток, являющихся будущей липопротеиновой оболочкой вириона. При этом сборка вирусов, реплицирующихся в ядре, происходит с участием мембраны ядра, а сборка вирусов, репликация которых происходит в цитоплазме, осуществляется с участием мембран эндоплазматической сети или цитоплазматической мембраны, куда встраиваются гликопротеины и другие белки оболочки вириона. У некоторых сложноустроенных –РНК-вирусов в сборку вовлекается матричный белок – М-белок – который расположен под модифицированной этим белком клеточной мембраной. Обладая гидрофобными свойствами, он исполняет роль посредника между нуклеокапсидом и суперкапсидом. Сложноустроенные вирусы в процессе формирования включают в свой состав компоненты клетки хозяина. При нарушениях процесса самосборки образуются "дефектные" вирионы.

Шестая стадия – выход вирусных частиц из клетки завершает процесс репродукции вирусов и происходит двумя путями.

Взрывной путь , когда вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают во внеклеточное пространство. Из погибшей клетки одновременно выходит большое число вирионов.

Почкование или экзоцитоз , характерный для сложноустроенных вирусов, суперкапсид которых является производной от клеточных мембран. Сначала нуклеокапсид транспортируется к клеточным мембранам, в которые уже встроены вирусоспецифические белки. В области контакта начинается выпячивание этих участков с образованием почки. Сформировавшаяся почка отделяется от клетки в виде сложноустроенного вириона. Процесс не летален для клетки и клетка способна длительно сохранять жизнеспособность, продуцируя вирусное потомство.

Почкование вирусов, формирующихся в цитоплазме, может происходить либо через плазматическую мембрану, либо через мембраны эндоплазматической сети и аппарата Гольджи с последующим выходом на поверхность клетки.

Вирусы, формирующиеся в ядре, почкуются в перинуклеарное пространство через модифицированную ядерную оболочку и в составе цитоплазматических везикул транспортируются на поверхность клетки.

Интегративный тип взаимодействия вируса с клеткой (вирогения) представляет собой сосуществование вируса и клетки в результате интеграции нуклеиновой кислоты вируса в хромосому клетки хозяина, при котором геном вируса реплицируется и функционирует как основная часть генома клетки.

Такой тип взаимодействия характерен для умеренных ДНК-содержащих бактериофагов, онкогенных вирусов и некоторых инфекционных ДНК- и РНК-содержащих вирусов.

Для интеграции необходимо наличие кольцевой форму двунитевой ДНК вируса. Такая ДНК прикрепляется к клеточной ДНК в месте гомологии и встраивается в определенный участок хромосомы. У РНК-вирусов процесс интеграции более сложный и начинается с механизма обратной транскрипции. Интеграция происходит после образования двунитевого ДНК-транскрипта и замыкания его в кольцо.

Дополнительная генетическая информация при вирогении сообщает клетке новые свойства, что может стать причиной онкогенной трансформации клеток, аутоиммунных и хронических заболеваний.

Абортивный тип взаимодействия вируса с клеткой не завершается образованием вирусного потомства и может возникнуть при следующих условиях:

1. заражение чувствительной клетки происходит дефектным вирусом или дефектным вирионом;

2. заражение вирулентным вирусом генетически резистентных к нему клеток;

3. заражение вирулентным вирусом чувствительной клетки в непермиссивных (неразрешающих) условиях.

Чаще абортивный тип взаимодействия наблюдается при заражении стандартным вирусом нечувствительной клетки. При этом механизм генетической резистентности не одинаков. Он может быть связан с отсутствием на плазматической мембране специфических рецепторов, неспособность данного вида клеток инициировать трансляцию вирусной иРНК, с отсутствием специфических протеаз или нуклеаз, необходимых для синтеза вирусных макромолекул.

К абортивному взаимодействию могут привести и изменения условий, в которых происходит репродукция вирусов: повышение температуры организма, изменение рН в очаге воспаления, введение противовирусных препаратов и др. Однако, при устранении неразрешающих условий абортивный тип взаимодействия переходит в продуктивный со всеми вытекающими последствиями.

Интерферирующее взаимодействие определяется состоянием невосприимчивости к вторичному заражению клетки, уже инфицированной вирусом.

Гетерологичная интерференция происходит в том случае, когда инфицирование одним вирусом полностью блокирует возможность репликации второго вируса в пределах одной клетки. Один из механизмов связан с угнетением адсорбции другого вируса путем блокирования или разрушения специфических рецепторов. Другой механизм связан с ингибированием трансляции иРНК любой гетерологичной иРНК в инфицированной клетке.

Гомологичная интерференция типична для многих дефектных вирусов, особенно для повторно пассируемых in vitro и с высокой множественностью инфицирования. Их репродукция возможна только при заражении клетки нормальным вирусом. Иногда дефектный вирус может вмешиваться в репродуктивный цикл нормального вируса и образовывать дефектные интерферирующие вирусные частицы (ДИ). ДИ-частицы содержат лишь часть генома нормального вируса. По природе дефекта ДИ-частицы делеционны и их можно рассматривать как летальных мутантов. Основное свойство ДИ-частиц – способность к интерференции с нормальным гомологичным вирусом и даже способны играть роль помощников при репликации. Способность к адсорбции и проникновению в клетку связана с нормальной структурой капсида. Высвобождение и экспрессия дефектной нуклеиновой кислоты приводит к различным биологическим эффектам: тормозит синтетические процессы в клетке, за счет гомологичной интерференции ингибирует синтез и трансформацию белков нормальных вирусов. Циркулирование ДИ-частиц и коинфекция с нормальным гомологичным вирусом вызывает появление вялотекущих, длительных форм заболеваний, что связано со способностью ДИ-частиц за счет простоты генома реплицироваться значительно быстрее, тогда как дефектная популяция обладает заметным снижением выраженности цитопатического эффекта, характерного для нормального вируса.

Процесс взаимодействия вируса с организмом в большинстве случаев цитоспецифичен и определяется способностью возбудителя размножаться в определенных тканях. Однако некоторые вирусы отличаются более широким спектром тропизма и репродуцируют в самых различных клетках и органах.

К факторам специфичности вируса, ответственным за его тропизм и разнообразие поражаемых клеток относится количество специфических рецепторов (как у вириона, так и у клетки) обеспечивающих полноценное взаимодействие вируса с клеткой. Количество таких рецепторов обычно ограничено.

В некоторых случаях сама физиологическая специфика клеток, а значит и их бимолекулярная организация, способствует проявлению вирулентности возбудителя. Например, G-белок оболочки вируса бешенства обладает высоким сродством к ацетилхолиновым рецепторам нейронов, что обеспечивает его способность проникать в клетки нервной ткани. Следует отметить, что нейротропные вирусы вызывают особенно тяжелые заболевания, т.к. нервные клетки не регенерируют. Более того, репродукция возбудителя делает их мишенями для цитотоксических иммунных реакций.

Довольно часто вирулентность вирусов повышается за счет мутаций. Особое значение в данном случае приобретает способность вирусов к обратной мутации генов (реверсии). Гены, кодирующие структуру белка, могут восстановить свою структуру и трансформировать ранее авирулентные штаммы вирусов в вирулентные.

Не менее важное значение имеют и особенности восприимчивого макроорганизма.

Возраст является о

Микробиология: конспект лекций Ткаченко Ксения Викторовна

1. Морфология и структура вирусов

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

Из книги О происхождении видов путем естественного отбора или сохранении благоприятствуемых пород в борьбе за жизнь автора Дарвин Чарльз

Морфология. Мы видели, что члены одного и того же класса, независимо от их образа жизни, сходны между собой по общему плану организации. Это сходство часто выражается термином «единство типа» или указанием на то, что некоторые части и органы у различных видов одного и того

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

ГЛИЯ – МОРФОЛОГИЯ И ФУНКЦИЯ Головной мозг человека состоит из сотен миллиардов клеток, причем нервные клетки (нейроны) не составляют большинство. Большая часть объема нервной ткани (до 9/10 в некоторых областях мозга) занята клетками глии (от греч. склеивать). Дело в том, что

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 2. Морфология и ультраструктура бактерий 1. Особенности строения бактериальной клетки. Основные органеллы и их функции Отличия бактерий от других клеток1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.2. В клеточной стенке бактерий

Из книги Микробиология автора Ткаченко Ксения Викторовна

3. Культивирование вирусов Основные методы культивирования вирусов:1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных

Из книги Общая экология автора Чернова Нина Михайловна

1. Морфология и культуральные свойства Возбудитель относится к роду Carinobakterium, виду C. difteria.Это тонкие палочки, прямые или слегка изогнутые, грамположительные. Для них характерен выраженный полиморфизм. На концах булавовидные утолщения – метахроматические зерна волютина.

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

1. Морфология и культуральные свойства Возбудитель относится к роду Mycobakterium, вид M. tuberculesis.Это тонкие палочки, слегка изогнутые, спор и капсул не образуют. Клеточная стенка окружена слоем гликопептидов, которые называются микозидами (микрокапсулами).Туберкулезная палочка

Из книги Путешествие в страну микробов автора Бетина Владимир

4. Морфология бактерий, основные органы Размеры бактерий колеблются от 0,3–0,5 до 5-10 мкм.По форме клеток бактерии подразделяются на кокки, палочки и извитые.В бактериальной клетке различают:1) основные органеллы: (нуклеоид, цитоплазма, рибосомы, цитоплазматическая

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

5. Морфология бактерий, дополнительные органеллы Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий.

Из книги Клематисы автора Бескаравайная Маргарита Алексеевна

10. Морфология вирусов, типы взаимодействия вируса с клеткой Вирусы – микроорганизмы, составляющие царство Vira.Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).По форме вирионы могут быть: округлыми, палочковидными, в виде

Из книги Логика случая [О природе и происхождении биологической эволюции] автора Кунин Евгений Викторович

Глава 6. АДАПТИВНАЯ МОРФОЛОГИЯ ОРГАНИЗМОВ Среди приспособлений животных и растений к среде немаловажную роль играют морфологические адаптации, т. е. такие особенности внешнего строения, которые способствуют выживанию и успешной жизнедеятельности организмов в обычных

Из книги автора

Из книги автора

Инфекционная РНК и реконструкция вирусов Доказательства того, что РНК вирусов является генетическим материалом, предоставил нам все тот же ВТМ. Прежде всего ученым удалось изменить частицы ВТМ, устранив из их состава белковый компонент. В таком состоянии вирусы

Из книги автора

Угроза вирусов Одна из книг о вирусах очень метко названа «Вирусы - враги жизни». И не только у вирусов гриппа, но и у других вирусов, поражающих человека, «на совести» десятки тысяч, а может быть, и миллионы жизней.Небезопасной болезнью следует считать краснуху. Это

Из книги автора

Из книги автора

Морфология и биология клематисов Клематисы? многолетние, в подавляющем большинстве листопадные, реже вечнозелёные, растения.Корневая система. Взрослые клематисы имеют два основных типа корневой системы: стержнекорневую и мочковатую. При ограниченном поливе (на юге)

Из книги автора

Глава 10 Мир вирусов и его эволюция Пер. Г. ЯнусаВирусы были открыты как нечто совсем непримечательное, а именно необычная разновидность инфекционных агентов, а возможно, и особый род токсинов, вызывающих болезни растений, например табачную мозаику. Так как эти агенты

Морфологию и структуру вирусов изучают с помощью электронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги).

Размеры вирусов определяют с помощью электронной микроскопии, методом ультрафильтрации через фильтры с известным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным – натуральной оспы (около 350 нм).

Различают просто устроенные (например, вирус полиомиелита) и сложно устроенные (например, вирусы гриппа, кори) вирусы. У просто устроенных вирусов нуклеиновая кислота связана с белковой оболочкой, называемой капсидом (от лат. capsa – футляр). Капсид состоит из повторяющихся морфологических субъединиц – капсомеров. Нуклеиновая кислота и капсид, взаимодействуя друг с другом, образуют нуклеокапсид. У сложно устроенных вирусов капсид окружен дополнительной липопротеидной оболочкой – суперкапсидом (производное мембранных структур клетки-хозяина), имеющей «шипы». Для вирионов характерен спиральный, кубический и сложный тип симметрии капсида. Спиральный тип симметрии обусловлен винтообразной структурой нуклеокапсида, кубический тип симметрии – образованием изометрически полого тела из капсида, содержащего вирусную нуклеиновую кислоту.

Капсид и суперкапсид защищают вирионы от влияния окружающей среды, обусловливают избирательное взаимодействие (адсорбцию) с клетками, определяют антигенные и иммуногенные свойства вирионов. Внутренние структуры вирусов называются сердцевиной.В вирусологии используют следующие таксономические категории: семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus).

Однако названия родов и особенно подсемейств сформулированы не для всех вирусов. Вид вируса биноминального названия, как у бактерий, не получил.

В основу классификации вирусов положены следующие категории:

§ тип нуклеиновой кислоты (ДНК или РНК), ее структура, количество нитей (одна или две),

§ особенности воспроизводства вирусного генома;

§ размер и морфология вирионов, количество капсомеров и тип симметрии;

§ наличие суперкапсида;

§ чувствительность к эфиру и дезоксихолату;

§ место размножения в клетке;

§ антигенные свойства и пр.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить к постинфекционным осложнениям – развитию миокардитов, панкреатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые неканонические вирусы – прионы – белковые инфекционные частицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10.20x100.200 нм. Прионы, по-видимому, являются одновременно индукторами и продуктами автономного гена человека или животного и вызывают у них энцефалопатии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта.Якоба, куру и др.). Другими необычными агентами, близкими к вирусам, являются вироиды – небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений.


Глава 3

ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ

Физиология микроорганизмов изучает жизнедеятельность микробных клеток, процессы их питания, дыхания, роста, размножения, закономерности взаимодействия с окружающей средой.

Предметом изучения медицинской микробиологии является физиология патогенных и условно-патогенных микроорганизмов, способных вызывать заболевания человека. Выяснение физиологии этих микроорганизмов важно для постановки микробиологического диагноза, понимания патогенеза, проведения лечения и профилактики инфекционных заболеваний, регуляции взаимоотношений человека с окружающей средой и т.д.

Химический состав бактерий

В состав микроорганизмов входят вода, белки, нуклеиновые кислоты, углеводы, липиды, минеральные вещества.

Вода – основной компонент бактериальной клетки, составляющий около 80 % ее массы. Она находится в свободном или связанном состоянии со структурными элементами клетки. В спорах количество воды уменьшается до 18.20 %. Вода является растворителем для многих веществ, а также выполняет механическую роль в обеспечении тургора. При плазмолизе – потере клеткой воды в гипертоническом растворе – происходит отслоение протоплазмы от клеточной оболочки. Удаление воды из клетки, высушивание приостанавливают процессы метаболизма. Большинство микроорганизмов хорошо переносят высушивание. При недостатке воды микроорганизмы не размножаются. Высушивание в вакууме из замороженного состояния (лиофилизация) прекращает размножение и способствует длительному сохранению микробных особей.

Белки (40.80 % сухой массы) определяют важнейшие биологические свойства бактерий и состоят обычно из сочетаний 20 аминокислот. В состав бактерий входит диаминопимелиновая кислота (ДАП), отсутствующая в клетках человека и животных. Бактерии содержат более 2000 различных белков, находящихся в структурных компонентах и участвующих в процессах метаболизма. Большая часть белков обладает ферментативной активностью. Белки бактериальной клетки обусловливают антигенность и иммуногенность, вирулентность, видовую принадлежность бактерий.

Нуклеиновые кислоты бактерий выполняют функции, аналогичные нуклеиновым кислотам эукариотических клеток: молекула ДНК в виде хромосомы отвечает за наследственность, рибонуклеиновые кислоты (информационная, или матричная, транспортная и рибосомная) участвуют в биосинтезе белка.

Бактерии можно характеризовать (таксономически) по содержанию суммы гуанина и цитозина (ГЦ) в молярных процентах (М%) от общего количества оснований ДНК. Более точной характеристикой микроорганизмов является гибридизация их ДНК. Основа метода гибридизации

ДНК – способность денатурированной (однонитчатой) ДНК ренатурироваться, т.е. соединяться с комплементарной нитью ДНК и образовывать двухцепочечную молекулу ДНК.

Углеводы бактерий представлены простыми веществами (моно- и дисахариды) и комплексными соединениями. Полисахариды часто входят в состав капсул. Некоторые внутриклеточные полисахариды (крахмал, гликоген и др.) являются запасными питательными веществами.

Липиды в основном входят в состав цитоплазматической мембраны и ее производных, а также клеточной стенки бактерий, например наружной мембраны, где, кроме биомолекулярного слоя липидов, имеется ЛПС. Липиды могут выполнять в цитоплазме роль запасных питательных веществ. Липиды бактерий представлены фосфолипидами, жирными кислотами и глицеридами. Наибольшее количество липидов (до 40 %) содержат микобактерии туберкулеза.

Минеральные вещества бактерий обнаруживают в золе после сжигания клеток. В большом количестве выявляются фосфор, калий, натрий, сера, железо, кальций, магний, а также микроэлементы (цинк, медь, кобальт, барий, марганец и др.).Они участвуют в регуляции осмотического давления, рН среды, окислительно-восстановительного потенциала, активируют ферменты, входят в состав ферментов, витаминов и структурных компонентов микробной клетки.

Питание бактерий

Особенности питания бактериальной клетки состоят в поступлении питательных субстратов внутрь через всю ее поверхность, а также в высокой скорости процессов метаболизма и адаптации к меняющимся условиям окружающей среды.

Типы питания . Широкому распространению бактерий способствует разнообразие типов питания. Микроорганизмы нуждаются в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы (от греч. autos – сам, trophe – пища), использующие для построения своих клеток диоксид углерода СО 2 и другие неорганические соединения, и гетеротрофы (от греч. heteros – другой, trophe – пища), питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобактерии, живущие в воде с закисным железом, и др.

В зависимости от окисляемого субстрата, называемого донором электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров водорода неорганические соединения, называют литотрофны-ми (от греч. lithos – камень), а микроорганизмы, использующие в качестве доноров водорода органические соединения, – органотрофами.

Учитывая источник энергии, среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые водоросли, использующие энергию света), и хемотрофы, нуждающиеся в химических источниках энергии.

Факторы роста . Микроорганизмам для роста на питательных средах необходимы определенные дополнительные компоненты, которые получили название факторов роста. Факторы роста – необходимые для микроорганизмов соединения, которые они сами синтезировать не могут, поэтому их необходимо добавлят в питательные среды. Среди факторов роста различают: аминокислоты, необходимые для построения белков; пурины и пиримидины, которые требуются для образования нуклеиновых кис лот; витамины, входящие в состав некоторых ферментов. Для обозначения отношения микроорганизмов к факторам роста используют термины «ауксотрофы» и «прототрофы». Ауксотрофы нуждаются в одном или нескольких факторах роста, прототрофы могут сами синтезировать необходимые для роста соединения. Они способны синтезировать компоненты из глюкозы и солей аммония.

Механизмы питания. Поступление различных веществ в бактериальную клетку зависит от величины и растворимости их молекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая макромолекулы массой более 600 Д. Основным регулятором поступления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения питательных веществ в бактериальную клетку: это простая диффузия, облегченная диффузия, активный транспорт, транслокация групп. Наиболее простой механизм поступления веществ в клетку – простая диффузия, при которой перемещение веществ происходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молекулы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазматической мембраны. Однако этот процесс осуществляется с помощью молекул-переносчиков, локализующихся в цитоплазматической мембране и обладающих специфичностью. Каждый переносчик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембраны – собственно переносчику.

Белками-переносчиками могут быть пермеазы, место синтеза которых – цитоплазматическая мембрана. Облегченная диффузия протекает без затраты энергии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сторону большей, т.е. как бы против течения, поэтому данный процесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных реакций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видоизменяется в процессе переноса, например фосфорилируется. Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем-ферменты бактерий. Ферменты распознают соответствующие им метаболиты (субстраты), вступают с ними во взаимодействие и ускоряют химические реакции. Ферменты являются белками, участвуют в процессах анаболизма (синтеза) и катаболизма (распада), т.е. метаболизма. Многие ферменты взаимосвязаны со структурами микробной клетки. Например, в цитоплазматической мембране имеются окислительно-восстановительные ферменты, участвующие в дыхании и делении клетки; ферменты, обеспечивающие питание клетки, и др. Окислительно-восстановительные ферменты цитоплазматической мембраны и ее производных обеспечивают энергией интенсивные процессы биосинтеза различных структур, в том числе клеточной стенки. Ферменты, связанные с делением и аутолизом клетки, обнаруживаются в клеточной стенке. Так называемые эндоферменты катализируют метаболизм, проходящий внутри клетки.

Экзоферменты выделяются клеткой в окружающую среду, расщепляя макромолекулы питательных субстратов до простых соединений, усваиваемых клеткой в качестве источников энергии, углерода и др. Некоторые экзоферменты (пенициллиназа и др.) инактивируют антибиотики, выполняя защитную функцию.

Различают конститутивные и индуцибельные ферменты. К конститутивным ферментам относят ферменты, которые синтезируются клеткой непрерывно, вне зависимости от наличия субстратов в питательной среде. Индуцибельные (адаптивные) ферменты синтезируются бактериальной клеткой только при наличии в среде субстрата данного фермента. Например, р-галактозидаза кишечной палочкой на среде с глюкозой практически не образуется, но её синтез резко увеличивается при выращивании на среде с лактозой или другим р-галактозидозом.

Некоторые ферменты (так называемые ферменты агрессии) разрушают ткань и клетки, обусловливая широкое распространение в инфицированной ткани микроорганизмов и их токсинов. К таким ферментам относят гиалуронидазу, коллаге-назу, дезоксирибонуклеазу, нейраминидазу, лецитовителлазу и др. Так, гиалуронидаза стрептококков, расщепляя гиалуроновую кислоту соединительной ткани, способствует распространению стрептококков и их токсинов.

Известно более 2000 ферментов. Они объединены в шесть классов: оксидоредуктазы – окислительно-восстановительные ферменты (к ним относят дегидрогеназы, оксидазы и др.); трансферазы, переносящие отдельные радикалы и атомы от одних соединений к другим; гидролазы, ускоряющие реакции гидролиза, т.е. расщепления веществ на более простые с присоединением молекул воды (эстеразы, фосфатазы, глкжозидазы и др.); лиазы, отщепляющие от субстратов химические группы негидролитическим путем (карбоксилазы и др.); изомеразы, превращающие органические соединения в их изомеры (фосфогексои-зомераза и др.); лигазы, или синтетазы, ускоряющие синтез сложных соединений из более простых (аспарагинсинтетаза, глю-таминсинтетаза и др.).

Различия в ферментном составе используются для идентификации микроорганизмов, так как они определяют их различные биохимические свойства: сахаролитические (расщепление сахаров), протеолитические (разложение белков) и другие, выявляемые по конечным продуктам расщепления (образование щелочей, кислот, сероводорода, аммиака и др.).

Ферменты микроорганизмов используют в генетической инженерии (рестриктазы, лигазы и др.) для получения биологически активных соединений, уксусной, молочной, лимонной и других кислот, молочнокислых продуктов, в виноделии и других отраслях. Ферменты применяют в качестве биодобавок в стиральные порошки («Ока» и др.) для уничтожения загрязнений белковой природы.

Дыхание бактерий

Дыхание, или биологическое окисление, основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления: окисление – отдача донорами (молекулами или атомами) водорода или электронов; восстановление – присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным – нитратным, сульфатным, фумаратным). Анаэробиоз (от греч. аег – воздух + bios – жизнь) – жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, т.е. обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.

Облигатные аэробы могут расти только при наличии кислорода. Облигатные анаэробы (клостридии ботулизма, газовой гангрены, столбняка, бактероиды и др.) растут только на среде без кислорода, который для них токсичен. При наличии кислорода бактерии образуют перекисные радикалы кислорода, в том числе перекись водорода и супероксид-анион кислорода, токсичные для облигатных анаробных бактерий, поскольку они не образуют соответствующие инактивирующие ферменты. Аэробные бактерии инактивируют перекись водорода и супероксид-анион соответствующими ферментами (каталазой, пероксидазой и супероксиддисмутазой). Факультативные анаэробы могут расти как при наличии, так и при отсутствии кислорода, поскольку они способны переключаться с дыхания в присутствии молекулярного кислорода на брожение в его отсутствие. Факультативные анаэробы способны осуществлять анаэробное дыхание, называемое нитратным: нитрат, являющийся акцептором водорода, восстанавливается до молекулярного азота и аммиака.Среди облигатных анаэробов различают аэротолерантные бактерии, которые сохраняются при наличии молекулярного кислорода, но не используют его.

Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты – специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода. Воздух можно удалять из питательных сред путем кипячения, с помощью химических адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.

Рост и размножение бактерий

Жизнедеятельность бактерий характеризуется ростом – формированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размножением – самовоспроизведением, приводящим к увеличению количества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, Реже путем почкования.

Актиномицеты, как и грибы, могут размножаться спорами. Актиномицеты, являясь ветвящимися бактернями, размножаются путем фрагментации нитевидных клеток. Грамположительные бактерии делятся путем врастания синтезирующихся перегородок деления внутрь клетки, а грамотрицательные – путем перетяжки, в результате образования гантелевид-ных фигур, из которых образуются две одинаковые клетки.

Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной нитью), приводящая к удвоению молекул ДНК бактериального ядра – нуклеоида. Репликация хромосомной ДНК осуществляется от начальной точки огі (от англ, origin – начало).

Хромосома бактериальной клетки связана в области огі с цитоплазматической мембраной. Репликация ДНК катализируется ДНК-полимеразами. Сначала происходит раскручивание (деспирализация) двойной цепи ДНК, в результате чего образуется репликативная вилка (разветвленные цепи); одна из цепей, достраиваясь, связывает нуклеоти-ды от 5"- к З"-концу, другая – достраивается посегментно.

Репликация ДНК происходит в три этапа: инициация, элонгация, или рост цепи, и терминация. Образовавшиеся в результате репликации две хромосомы расходятся, чему способствует увеличение размеров растущей клетки: прикрепленные к цитоплазматической мембране или ее производным (например, мезосомам) хромосомы по мере увеличения объема клетки удаляются друг от друга. Окончательное их обособление завершается образованием перетяжки или перегородки деления. Клетки с перегородкой деления расходятся в результате действия аутоли-тических ферментов, разрушающих сердцевину перегородки деления. Аутолиз при этом может проходить неравномерно: делящиеся клетки в одном участке остаются связанными частью клеточной стенки в области перегородки деления. Такие клетки располагаются под углом друг к другу, что характерно для дифтерийных коринебактерий.

Размножение бактерий в жидкой питательной среде. Бактерии, засеянные в определенный, не изменяющийся объем питательной среды, размножаясь, потребляют питательные элементы, что приводит в дальнейшем к истощению питательной среды и прекращению роста бактерий. Культивирование бактерий в такой системе называют периодическим культивированием, а культуру – периодической. Если же условия культивирования поддерживаются путем непрерывной подачи свежей питательной среды и оттока такого же объема культуральной жидкости, то такое культивирование называется непрерывным, а культура – непрерывной.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры. Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:

§ лаг-фаза;

§ фаза логарифмического роста;

§ фаза стационарного роста, или максимальной концентрации

§ бактерий;

§ фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кривой размножения бактерий, отражающей зависимость логарифма числа живых клеток от времени их культивирования. Лаг-фаза (от англ, lag – запаздывание) – период между посевом бактерий и началом размножения. Продолжительность лаг-Фазы в среднем 4.5 ч. Бактерии при этом увеличиваются в размерах и готовятся к делению; нарастает количество нуклеиновых кислот, белка и других компонентов. Фаза логарифмического (экспоненциального) роста является периодом интенсивного деления бактерий.

Продолжительность ее около 5. 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин. Во время этой фазы бактерии наиболее ранимы, что объясняется высокой чувствительностью компонентов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др. Затем наступает фаза стационарного роста, при которой количество жизнеспособных клеток остается без изменений, составляя максимальный уровень (М-концентрация). Ее продолжительность выражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования. Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бактерий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжительность ее колеблется от 10 ч до нескольких недель. Интенсивность роста и размножения бактерий зависит от многих факторов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Размножение бактерий на плотной питательной среде. Бактерии, растущие на плотных питательных средах, образуют изолированные колонии округлой формы с ровными или неровными краями (S- и R-формы; см. главу 5), различной консистенции и цвета, зависящего от пигмента бактерий.

Пигменты, растворимые в воде, диффундируют в питательную среду и окрашивают ее, например синегнойная палочка (Pseudomonas aeruginosa) окрашивает среду в синий цвет. Другая группа пигментов нерастворима в воде, но растворима в органических растворителях. Так, колонии «чудесной палочки» имеют кроваво-красный пигмент, растворимый в спирте. И, наконец, существуют пигменты, не растворимые ни в воде, ни в органических соединениях.

Наиболее распространены среди микроорганизмов такие пигменты, как каротины, ксантофиллы и меланины. Меланины являются нерастворимыми пигментами черного, коричневого или красного цвета, синтезирующимися из фенольных соединений. Меланины наряду с каталазой, супероксидцисмутазой и перок-сидазами защищают микроорганизмы от воздействия токсичных перекисных радикалов кислорода. Многие пигменты обладают антимикробным, антибиотикоподобным действием.

Вид, форма, цвет и другие особенности колоний на плотной питательной среде могут учитываться при идентификации бактерий, а также отборе колоний для получения чистых культур.

В промышленных условиях при получении биомассы микроорганизмов с целью приготовления антибиотиков, вакцин, диагностических препаратов, эубиотиков культивирование бактерий и грибов осуществляют в ферментерах при строгом соблюдении оптимальных параметров для роста и размножения культур (см. главу 6).

Рис. 4.1

Морфологию вирусов изучают с помощью электронной микроскопии, так как их размеры малы (18-400 нм) и сравнимы с толщиной оболочки бактерий. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиелита, ВИЧ), нитевидной (филовирусы), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы (табл. 4.1).

Просто устроенные вирусы (без оболочки)

Пример просто устроенных вирусов - вирус гепатита А и папилломавирус с икосаэдрическим типом симметрии (рис. 4.1 и 4.2). Нуклеиновая кислота вирусов связана с белковой оболочкой - капсидом, состоящим из капсомеров.

Рис. 4.2. Схема строения папилломавируса (содержит двунитевую кольцевую ДНК)

Сложно устроенные вирусы (с оболочкой)

У сложно устроенных вирусов (например, у вирусов герпеса, гриппа, флавивирусов) от липопротеиновой оболочки отходят гликопротеиновые шипы, например, гемагглютинины, участвующие в реакциях гемагглютинации и гемадсорбции. Вирус герпеса и флавивирус имеют икосаэдрический тип симметрии, а вирус гриппа - спиральный тип симметрии нуклеокапсида.

Таблица 4.1. Просто устроенные (без оболочки) и сложно устроенные (с оболочкой) вирусы

Простые, или безоболочечные, вирусы состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом (от лат. capsa - футляр). Капсид состоит из повторяющихся морфологических субъединиц - капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Тип симметрии
Капсид или нуклеокапсид могут иметь спиральный, икосаэдрический (кубический) или сложный тип симметрии. Икосаэдрический тип симметрии обусловлен образованием изометрически полого тела из капсида,

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболочка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые шипы, или шипики (пепломеры). Под оболочкой некоторых вирусов находится матриксный М-белок.


Рис. 4.3.


Рис. 4.4.


Рис. 4.5


Рис. 4.6.

Репродукция вирусов

Различают три типа взаимодействия вируса с клеткой:
- продуктивный тип, при котором образуются новые вирионы, по-разному выходящие из клетки: при ее лизисе, т. е. «взрывным» механизмом (безоболочечные вирусы); путем «почкования» через мембраны клетки (оболочечные вирусы), в результате экзоцитоза;
- абортивный тип, характеризующийся прерыванием инфекционного процесса в клетке, поэтому новые вирионы не образуются;
- интегративный тип, или вирогения, заключающийся в интеграции, т. е. встраивании вирусной ДНК в виде провируса в хромосому клетки и их совместном сосуществовании (совместная репликация).
Продуктивный тип взаимодействия вируса с клеткой - репродукция вируса проходит несколько стадий: 1) адсорбция вирионов на клетке; 2) проникновение вируса в клетку;
3) «раздевание» и высвобождение вирусного генома (депротеинизация вируса); 4) синтез вирусных компонентов;
5) формирование вирусов; 6) выход вирионов из клетки.

Механизм репродукции вирусов

Механизм репродукции отличается у вирусов, имеющих: 1) двунитевую ДНК; 2) однонитевую ДНК; 3) плюс-однонитевую РНК; 4) минус-однонитевую РНК; 5) двунитевую РНК;
6) идентичные плюс-нитевые РНК (ретровирусы).
Двунитевые ДНК-вирусы - вирусы, содержащие двунитевую ДНК в линейной (например, герпесвирусы, аденовирусы и поксвирусы) или в кольцевой форме (как папилломавирусы).
Репликация двунитевых вирусных ДНК проходит обычным полуконсервативным механизмом: после расплетения нитей ДНК к ним комплементарно достраиваются новые нити. У всех вирусов, кроме поксвирусов, транскрипция вирусного генома происходит в ядре.
Уникальна по механизму репродукция гепаднавирусов (вируса гепатита В).
Геном гепаднавирусов (рис. 4.7) представлен двунитевой кольцевой ДНК, одна нить которой короче (неполная плюснить) другой нити. После проникновения в клетку сердцевины вируса (1) неполная нить ДНК-генома достраивается; формируется полная двунитевая кольцевая ДНК (2) и созревающий геном (3) попадает в ядро клетки. Здесь клеточная ДНК-зависимая РНК-полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК-прегеном (4) - матрицу для репликации генома вируса. Далее иРНК перемещаются в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома. Под действием РНК-зависимой ДНК-полимеразы вируса на матрице прегенома синтезируется минус-нить ДНК (5), на которой образуется плюс-нить ДНК (6). Оболочка вириона формируется на HBs-содержащих мембранах эндоплазматической сети или аппарата Гольджи (7). Вирион выходит из клетки экзоцитозом.


Рис. 4.7.

Однонитевые ДНК-вирусы. Представителями однонитевых ДНК-вирусов являются парвовирусы (рис. 4.8).

Поглощенный вирус поставляет геном в ядро клетки. Парвовирусы используют клеточные ДНК-полимеразы для создания двунитевого вирусного генома, так называемой репликативной формы последнего. При этом на исходной вирусной ДНК (плюс-нить) комплементарно синтезируется минус-нить ДНК, служащая матрицей в синтезе плюс-нити ДНК для новых поколений вирусов. Параллельно синтезируется иРНК, происходит трансляция вирусных белков, которые возвращаются в ядро, где собираются вирионы.
Плюс-однонитевые РНК-вирусы. Это большая группа вирусов (пикорнавирусы, флавивирусы, тогавирусы и др.), у которых геномная плюс-нить РНК выполняет функцию иРНК (рис. 4.9).

Вирус (1), после эндоцитоза, освобождает в цитоплазме (2) геномную плюс-РНК, которая как иРНК связывается с рибосомами (3): транслируется полипротеин (4), который расщепляется на 4 структурных белка (NSP 1-4), включая РНК-зависимую РНК-полимеразу. Эта полимераза транскрибирует геномную плюс-РНК в минус-нить РНК (матрицу), на которой (5) синтезируются копии РНК двух размеров: полная плюс-нить 49S геномной РНК; неполная нить 26S иРНК, кодирующая С-белок капсида (6) и гликопротеины оболочки Е1-3. Гликопротеины синтезируются на рибосомах, связанных с мембранами эндоплазматического ретикулума, затем включаются в мембрану и гликозилируются. Дополнительно гликозилируясь в аппарате Гольджи (7), они встраиваются в плазмалемму. С-белок образует с геномной РНК нуклеокапсид который взаимодействует с модифицированной плазмалеммой (8). Вирусы выходят из клетки почкованием (9).
Минус-однонитевые РНК-вирусы (рабдовирусы, парамиксовирусы, ортомиксовирусы) имеют в своем составе РНК-зависимую РНК-полимеразу.
Проникшая в клетку геномная минус-нить РНК парамиксовируса (рис. 4.10) трансформируется вирусной РНК-зависимой РНК-полимеразой в неполные и полные плюс-нити РНК. Неполные копии выполняют роль иРНК для синтеза вирусных белков. Полные копии являются промежуточной матрицей для синтеза минус-нитей геномной РНК потомства.

Рис.4.8.

Рис. 4.9.


Рис. 4.10

Вирус связывается гликопротеинами оболочки с поверхностью клетки и сливается с плазмалеммой (1). С геномной минус-нити РНК вируса транскрибируются неполные плюс-нити РНК, являющиеся иРНК (2) для отдельных белков и полная минус-нить РНК - матрица для синтеза геномной минус-РНК вируса (3). Нуклеокапсид связывается с матриксным белком и гликопротеин-модифицированной плазмалеммой. Выход вирионов - почкованием (4).

Двунитевые РНК-вирусы . Механизм репродукции этих вирусов (реовирусов и ротавирусов) сходен с репродукцией минус-однонитевых РНК-вирусов.
Особенность репродукции состоит в том, что образовавшиеся в процессе транскрипции плюс-нити функционируют не только как иРНК, но и участвуют в репликации: они являются матрицами для синтеза минус нитей РНК. Последние в комплексе с плюс-нитями РНК образуют геномные двунитевые РНК вирионов. Репликация вирусных нуклеиновых кислот этих вирусов происходит в цитоплазме клеток.
Ретровирусы (плюс-нитевые диплоидные РНК-вирусы, обратнотранскрибирующиеся), например вирус иммунодефицита человека (ВИЧ).

ВИЧ связывается гликопротеином gp120 (1) с рецептором CD 4 Т-хелперов и других клеток. После слияния оболочки


Рис. 4.11.

ЦПД - видимые под микроскопом морфологические изменения клеток (вплоть до их отторжения от стекла), возникающие в результате внутриклеточной репродукции вирусов.
ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную ми- нус-нить ДНК (линейная кДНК). С последней (2) копируется плюс-нить с образованием двойной нити кольцевой кДНК (3), которая интегрирует с хромосомной ДНК клетки. С рекомбинантной ДНК-провируса (4) синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов. Вирионы выходят их клетки почкованием (5): сердцевина вируса «одевается» в модифицированную плазмалемму клетки.

Культивирование и индикация вирусов

Вирусы культивируют в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей). Индикацию вирусов проводят на основе следующих феноменов: цитопатогенного действия (ЦПД) вирусов, образования внутриклеточных включений, образования бляшек, реакции гемагглютинации, гемадсорбции или «цветной» реакции.


Рис. 4.13

Включения - скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выявляемые под микроскопом при специальном окрашивании. Вирус натуральной оспы образует цитоплазматические включения - тельца Гварниери; вирусы герпеса и аденовирусы - внутриядерные включения.


Рис. 4.14.

«Бляшки», или «негативные» колонии - ограниченные участки разрушенных вирусами клеток, культивируемых на питательной среде под агаровым покрытием, видимые как светлые пятна на фоне окрашенных живых клеток. Один вирион образует потомство в виде одной «бляшки». «Негативные» колонии разных вирусов отличаются по размеру, форме, поэтому метод «бляшек» используют для дифференциации вирусов, а также для определения их концентрации.

Рис. 4.12.


Рис.4.15.

Реакция гемагглютинации основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов за счет вирусных гликопротеиновых шипов - гемагглютининов.

Способность культур клеток, инфицированных вирусами, адсорбировать на своей поверхности эритроциты.


Рис. 4.16.

«Цветная» реакция оценивается по изменению цвета индикатора, находящегося в питательной среде культивирования. Если вирусы не размножаются в культуре клеток, то живые клетки в процессе метаболизма выделяют кислые продукты, что ведет к изменению pH среды и, соответственно, цвета индикатора. При продукции вирусов нормальный метаболизм клеток нарушается (клетки гибнут), и среда сохраняет свой первоначальный цвет.

Вирусы – микроорганизмы, составляющие царство Vira.

Отличительные признаки:

2) не имеют собственных белоксинтезирующих и энергетических систем;

3) не имеют клеточной организации;

4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);

6) вирусы проходят через бактериальные фильтры.

Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).

По форме вирионы могут быть:

1) округлыми;

2) палочковидными;

3) в виде правильных многоугольников;

4) нитевидными и др.

Размеры их колеблются от 15–18 до 300–400 нм.

В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.

Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.

Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.

ДНК может быть:

1) двухцепочечной;

2) одноцепочечной;

3) кольцевой;

4) двухцепочечной, но с одной более короткой цепью;

5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.

РНК может быть:

1) однонитевой;

2) линейной двухнитевой;

3) линейной фрагментированной;

4) кольцевой;

Вирусные белки подразделяют на:

1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;

2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;

3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.

Среди белков суперкапсидной оболочки выделяют:

а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);

б) ферменты (могут разрушать мембраны);

в) гемагглютинины (вызывают гемагглютинацию);

г) элементы клетки хозяина.

2. Взаимодействие вирусов с клеткой хозяина

Взаимодействие идет в единой биологической системе на генетическом уровне.

Существует четыре типа взаимодействия:

1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);

2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);

3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);

4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).

После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.

Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).

После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.

Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.



Что еще почитать