Получение кислорода по химии. Кислород газ. Свойства, добыча, применение и цена кислорода

Атомы Кислорода могут образовывать два типа молекул: O 2 - кислород и O 3 - озон.

Явление существования нескольких простых веществ, образованных атомами одного химического элемента, называется алотропією. А простые вещества, образованные одним элементом, называют алотропними модификациями.

Следовательно, озон и кислород - это аллотропные модификации элемента Кислорода.

Свойства

Кислород

Озон

Формула соединения

O 2

O 3

Внешний вид в обычных условиях

Газ

Газ

Цвет

В парах кислород бесцветный. Жидкий - бледно-голубого цвета, а твердый - синего

Пары озона светло-синего цвета. Жидкий - синего цвета, а твердый представляет собой темно-фиолетовые кристаллы

Запах и вкус

Без запаха и вкуса

Резкий характерный запах (в малых концентрациях придает воздуху запах свежести)

Температура плавления

219 °С

192 °С

Температура кипения

183 °С

112 °С

Плотность при н. у.

1,43 г/л

2,14 г/л

Растворимость уводі

4 объемы кислорода в 100 объемах воды

45 объемов озона в 100 объемах воды

Магнитные свойства

Жидкий и твердый кислород - парамагнитные вещества, т.е. втягиваются в магнитное поле

Имеет диамагнитные свойства, то есть не взаимодействует с магнитным полем

Биологическая роль

Необходим для дыхания растений и животных (в смеси с азотом или инертным газом). Вдыхание чистого кислорода приводит к сильному отравлению

В атмосфере образует так называемый озоновый слой, который защищает биосферу от вредного воздействия ультрафиолетового излучения. Ядовитый

Химические свойства кислорода и озона

Взаимодействие кислорода с металлами

Молекулярный кислород - довольно сильный окислитель. Он окисляет практически все металлы (кроме золота и платины). Много металлов медленно окисляются на воздухе, но в атмосфере чистого кислорода сгорают очень быстро, при этом образуется оксид:

Однако некоторые металлы при горении образуют не оксиды, а пероксиды (в таких соединениях степень окисления Кислорода равна -1) или надпероксиди (степень окисления атома Кислорода - дробная). Примером таких металлов могут быть барий, натрий и калий:

Взаимодействие кислорода с неметаллами

Оксиген проявляет степень окисления -2 в соединениях, которые образованы со всеми неметаллами, кроме Фтора, Гелия, Неона и Аргона. Молекулы кислорода при нагревании непосредственно вступают во взаимодействие со всеми неметаллами, кроме галогенов и инертных газов. В атмосфере кислорода фосфор самовоспламеняется и некоторые другие неметаллы:

При взаимодействия кислорода с фтором образуется кислород фторид, а не фтор оксид, поскольку атом Фтора имеет большую электроотрицательности, чем атом Кислорода. Оксиген фторид - это газ бледно-желтого цвета. Его используют как очень сильный окислитель и фторувальний агент. В этой соединении степень окисления Кислорода равна +2.

В избытка фтора может образовываться диоксиген дифторид, в котором степень окисления Кислорода равна +1. По строению такая молекула похожа на молекулу водород пероксида.

Применение кислорода и озона. Значение озонового слоя

Кислород используют все аэробные живые существа для дыхания. В процессе фотосинтеза растения выделяют кислород и поглощают углекислый газ.

Молекулярный кислород применяют для так называемой интенсификации, то есть ускорение окислительных процессов в металлургической промышленности. А еще кислород используют для добывания пламени с высокой температурой. При горении ацетилена (С 2 Н 2) в кислороде температура пламени достигает 3500 °С. В медицине кислород применяют для облегчения дыхания больных. Его также используют в дыхательных аппаратах для работы людей в трудной для дыхания атмосфере. Жидкий кислород применяют как окислитель ракетного топлива.

Озон используют в лабораторной практике как очень сильный окислитель. В промышленности с его помощью дезинфицируют воду, поскольку ему присуща сильная окислительная действие, которая уничтожает различные микроорганизмы.

Пероксиды, надпероксиди и озонидов щелочных металлов применяют для регенерации кислорода в космических кораблях и на подводных лодках, Такое применение основано на реакции этих веществ с углекислым газом СО 2:

В природе озон содержится в высоких слоях атмосферы на высоте около 20-25 км, в так называемом озоновом слое, который защищает Землю от жесткого солнечного излучения. Уменьшение концентрации озона в стратосфере хотя бы на 1 может привести к тяжелым последствиям, таким рост числа онкологических заболеваний кожи в людей и животных, увеличение числа заболеваний, связанных с угнетением иммунной системы человека, замедление роста наземных растений, снижение скорости роста фитопланктона и т.д.

Без озонового слоя жизнь на планете было бы невозможным. Тем временем загрязнение атмосферы различными промышленными выбросами приводят к разрушению озонового слоя. Самыми опасными веществами для озона являются фреоны (их используют как хладагенты в холодильных машинах, а также как наполнители для баллончиков с дезодорантами) и отходы ракетного топлива.

Мировое сообщество очень обеспокоено в связи с образованием дыры в озоновом слое на полюсах нашей планеты, в связи с чем в 1987 г. был принят «Монреальский протокол по веществам, разрушающим озоновый слой», который ограничил использование веществ, вредных для озонового слоя.

Физические свойства веществ, образованных элементом Сульфуром

Атомы Серы, так же, как и Кислорода, могут образовывать различные аллотропные модификации (S ∞ ; S 12 ; S 8 ; S 6 ; S 2 и другие). При комнатной температуре сера находится в виде α -серы (или ромбической серы), что представляет собой желтые хрупкие кристаллы, без запаха, не растворимые в воде. При температуре свыше +96 °С происходит медленный переход α -серы в β -серу (или моноклінну серу), что представляет собой почти белые пластинки. Если расплавленную серу перелить в воду, происходит переохлаждение жидкой серы и образования желто-коричневой резино-подобной пластической серы, которая погодя снова превращается в а-серу. Сера кипит при температуре, равной +445 °С, образуя пары темно-бурого цвета.

Все модификации серы не растворяются в воде, зато достаточно хорошо растворяются в сероуглероде (CS 2 ) и некоторых других неполярных растворителях.

Применение серы

Главный продукт серной промышленности - это сульфатная кислота. На ее производство приходится около 60 % серы, которую добывают. В гумотехнічній промышленности серу используют для превращения каучука в высококачественную резину, то есть для вулканизации каучука. Сера - важнейший компонент любых пиротехнических смесей. Например, в спичечных головках содержится около 5 %, а в намазці на коробке - около 20 % серы по массе. В сельском хозяйстве серу используют для борьбы с вредителями виноградников. В медицине серу применяют при изготовлении различных мазей для лечения кожных заболеваний.


Среди всех веществ на Земле особое место занимает то, что обеспечивает жизнь, - газ кислород. Именно его наличие делает нашу планету уникальной среди всех других, особенной. Благодаря этому веществу в мире живет столько прекрасных созданий: растения, животные, люди. Кислород - это совершенно незаменимое, уникальное и чрезвычайно важное соединение. Поэтому постараемся узнать, что он собой представляет, какими характеристиками обладает.

Особенно часто применяется первый метод. Ведь из воздуха можно выделить очень много этого газа. Однако он будет не совсем чистым. Если же необходим продукт более высокого качества, тогда в ход пускают электролизные процессы. Сырьем для этого является либо вода, либо щелочь. Гидроксид натрия или калия используют для того, чтобы увеличить силу электропроводности раствора. В целом же суть процесса сводится к разложению воды.

Получение в лаборатории

Среди лабораторных методов широкое распространение получил метод термической обработки:

  • пероксидов;
  • солей кислородсодержащих кислот.

При высоких температурах они разлагаются с выделением газообразного кислорода. Катализируют процесс чаще всего оксидом марганца (IV). Собирают кислород вытеснением воды, а обнаруживают - тлеющей лучинкой. Как известно, в атмосфере кислорода пламя разгорается очень ярко.

Еще одно вещество, используемое для получения кислорода на школьных уроках химии, - перекись водорода. Даже 3 % раствор под действием катализатора мгновенно разлагается с высвобождением чистого газа. Его нужно лишь успеть собрать. Катализатор тот же - оксид марганца MnO 2 .

Среди солей чаще всего используются:

  • бертолетова соль, или хлорат калия;
  • перманганат калия, или марганцовка.

Чтобы описать процесс, можно привести уравнение. Кислорода выделяется достаточно для лабораторных и исследовательских нужд:

2KClO 3 = 2KCl + 3O 2 .

Аллотропные модификации кислорода

Существует одна аллотропная модификация, которую имеет кислород. Формула этого соединения О 3 , называется оно озоном. Это газ, который образуется в природных условиях при воздействии ультрафиолета и грозовых разрядов на кислород воздуха. В отличие от самого О 2 , озон имеет приятный запах свежести, который ощущается в воздухе после дождя с молнией и громом.

Отличие кислорода и озона заключается не только в количестве атомов в молекуле, но и в строении кристаллической решетки. В химическом отношении озон - еще более сильный окислитель.

Кислород - это компонент воздуха

Распространение оксигена в природе очень широко. Кислород встречается в:

  • горных породах и минералах;
  • воде соленой и пресной;
  • почве;
  • растительных и животных организмах;
  • воздухе, включая верхние слои атмосферы.

Очевидно, что им заняты все оболочки Земли - литосфера, гидросфера, атмосфера и биосфера. Особенно важным является содержание его в составе воздуха. Ведь именно этот фактор позволяет существовать на нашей планете жизненным формам, в том числе и человеку.

Состав воздуха, которым мы дышим, чрезвычайно неоднороден. Он включает в себя как постоянные компоненты, так и переменные. К неизменным и всегда присутствующим относятся:

  • углекислый газ;
  • кислород;
  • азот;
  • благородные газы.

К переменным можно отнести пары воды, частицы пыли, посторонние газы (выхлопные, продукты горения, гниения и прочие), растительная пыльца, бактерии, грибки и прочие.

Значение кислорода в природе

Очень важно, сколько кислорода содержится в природе. Ведь известно, что на некоторых спутниках больших планет (Юпитер, Сатурн) были обнаружены следовые количества этого газа, однако очевидной жизни там нет. Наша Земля имеет достаточное его количество, которое в сочетании с водой дает возможность существовать всем живым организмам.

Помимо того, что он является активным участником дыхания, кислород еще проводит бесчисленное количество реакций окисления, в результате которых высвобождается энергия для жизни.

Основными поставщиками этого уникального газа в природе являются зеленые растения и некоторые виды бактерий. Благодаря им поддерживается постоянный баланс кислорода и углекислого газа. Кроме того, озон выстраивает защитный экран над всей Землей, который не позволяет проникать большому количеству уничтожающего ультрафиолетового излучения.

Лишь некоторые виды анаэробных организмов (бактерии, грибки) способны жить вне атмосферы кислорода. Однако их гораздо меньше, чем тех, кто очень в нем нуждается.

Использование кислорода и озона в промышленности

Основные области использования аллотропных модификаций кислорода в промышленности следующие.

  1. Металлургия (для сварки и вырезки металлов).
  2. Медицина.
  3. Сельское хозяйство.
  4. В качестве ракетного топлива.
  5. Синтез многих химических соединений, в том числе взрывчатых веществ.
  6. Очищение и обеззараживание воды.

Сложно назвать хотя бы один процесс, в котором не принимает участие этот великий газ, уникальное вещество - кислород.

Ком в горле — это кислород . Выяснено, что в состоянии стресса у расширяется голосовая щель. Она находится посредине гортани, ограничена 2-мя мышечными складками.

Они-то и давят на близлежащие ткани, создавая ощущение кома в горле. Расширение щели – следствие повышенного потребления кислорода. Он помогает справиться со стрессом. Так что, пресловутый ком в горле можно назвать кислородным.

8-ой элемент таблицы привычен в форме . Но, бывает и жидкий кислород. Элемент в таком состоянии магнитится. Впрочем, о свойствах кислорода и плюсах, которые из них можно извлечь, поговорим в основной части .

Свойства кислорода

За счет магнитных свойств кислород перемещают с помощью мощных . Если же говорить об элементе в привычном состоянии, он сам способен перемещать, в частности, электроны.

Собственно, на окислительно-восстановительном потенциале вещества строится система дыхания . Кислород в ней – конечный акцептор, то есть принимающий агент.

Донорами выступают ферменты. Вещества, окисленные кислородом, выделяются во внешнюю среду. Это углекислый . В час его вырабатывается от 5-ти до 18-ти литров.

Еще 50 граммов выходит воды. Так что обильное питье – обоснованная рекомендация медиков. Плюсом, побочными продуктами дыхания служат около 400-от веществ. Среди них есть ацетон. Его выделение усиливается при ряде заболеваний, к примеру, диабете.

В процессе дыхания участвует обычная модификация кислорода – О 2 . Это двухатомная молекула. В ней 2 неспаренных электрона. Оба находятся на разрыхляющих орбиталях.

На них больший энергетический заряд чем на связывающих. Поэтому, молекула кислорода легко распадается на атомы. Энергия диссоциации доходит почти до 500-от килоджоулей на моль.

В естественных условиях кислород – газ с почти инертными молекулами. В них сильная межатомная связь. Процессы окисления протекают едва заметно. Для ускорения реакций нужны катализаторы. В организме ими выступают ферменты. Они провоцируют образование радикалов, которые и возбуждают цепной процесс.

Катализатором химических реакций с кислородом может стать температура. 8-ой элемент реагирует даже на небольшой нагрев. Жар дает реакции с водородом, метаном и прочими горючими газами.

Взаимодействия протекают со взрывами. Не зря же взорвался один из первых в истории человечества дирижаблей. Он наполнялся водородом. Воздушное судно звалось «Гинденбург», крушение потерпело в 1937-ом.

Нагрев позволяет кислороду создавать связи со всеми элементами таблицы Менделеева, кроме инертных газов, то есть аргона, неона и гелия. Кстати, гелий стал заменой для наполнения дирижаблей.

В реакции газ не вступает, только вот стоит дорого. Но, вернемся к герою статьи. Кислород – химический элемент , взаимодействующий с металлами уже при комнатной температуре.

Ее же достаточно для контакта с некоторыми сложными соединениями. К последним относятся оксиды азота. А вот с простым азотом химический элемент кислород реагирует лишь при 1 200-от градусах Цельсия.

Для реакций героя статьи с неметаллами нужен нагрев хотя бы до 60-ти градусов Цельсия. Этого достаточно, к примеру, для контакта с фосфором. С серой герой статьи взаимодействует уже при 250-ти градусах. Кстати, сера входит в элементы подгруппы кислорода . Она главная в 6-ой группе таблицы Менделеева.

С углеродом кислород взаимодействует при 700-800-от градусах Цельсия. Имеется в виду окисление графита. Этот минерал – одна из кристаллических форм углерода.

Кстати, окисление – роль кислорода в любых реакциях. Большинство из них протекает с выделением света и тепла. Попросту говоря, взаимодействие веществ приводит к горению.

Биологическая активность кислорода обусловлена растворимостью в воде. При комнатной температуре в ней диссоциируют 3 миллилитра 8-го вещества. Расчет ведется на 100 миллилитров воды.

Большие показатели элемент показывает в этаноле и ацетоне. В них растворяются 22 грамма кислорода. Максимальная же диссоциация наблюдается в жидкостях, содержащих фтор, к примеру, перфторбутитетрагидрофуране. На 100 его миллилитров растворяются почти 50 граммов 8-го элемента.

Говоря о растворенном кислороде, упомянем его изотопы. Атмосферному причислен 160-ый номер. Его в воздухе 99,7%. 0,3% приходятся на изотопы 170 и 180. Их молекулы тяжелее.

Связываясь с ними, вода с трудом переходит в парообразное состояние. Вот в воздух и поднимается лишь 160-я модификация 8-го элемента. Тяжелые изотопы остаются в морях и океанах.

Интересно, что кроме газообразного и жидкого состояний, кислород бывает твердым. Он, как и жидкая версия, образуется при минусовых температурах. Для водянистого кислорода нужны -182 градуса, а для каменного минимум-223.

Последняя температура дает кубическую решетку кристаллов. От -229-ти до -249-ти градусов Цельсия кристаллическая структура кислорода уже гексагональная. Искусственно получены и прочие модификации. Но, для них кроме пониженных температур требуется повышенное давление.

В привычном состоянии кислород относится к элементам с 2-мя атомами, не имеет цвета и запаха. Однако, существует 3-атомная разновидность героя статьи. Это озон.

У него появляется выражено свежий аромат. Он приятен, но токсичен. Отличием от обычного кислорода является, так же, большая масса молекул. Атомы сходятся воедино при грозовых разрядах.

Поэтому, запах озона чувствуется после ливней. Чувствуется аромат и на больших высотах в 10-30 километров. Там образование озона провоцирует ультрафиолет. Атомы кислорода захватывают излучение солнца, соединяясь в крупные молекулы. Это, собственно, уберегает человечество от радиации.

Добыча кислорода

Промышленники добывают героя статьи из воздуха. Его очищают от паров воды, угарного газа и пыли. Затем, воздух сжижают. После очистки остается лишь азот и кислород. Первый испаряется при -192-ух градусах.

Кислород остается. Но, российские ученые обнаружили кладезь уже сжиженного элемента. Находится он в мантии Земли. Ее еще называют геосферой. Расположен слой под твердой корой планеты и над ее ядром.

Установить там знак элемента кислород помог лазерный пресс. Работали с ним в синхротронном центре DESY. Он находится в Германии. Изыскания проводились совместно с немецкими учеными. Вместе же подсчитали, что содержание кислорода в предполагаемой прослойке мании в 8-10 раз больше, чем в атмосфере.

Уточним практику вычисления глубинных рек кислорода. Физики работали с оксидом железа. Сдавливая и нагревая его, ученые получали все новые оксиды металла, неизвестные ранее.

Когда дело дошло до тысячеградусных температур и давления, превышающего атмосферное в 670 000 раз, получилось соединение Fe 25 O 32 . Описаны условия срединных слоев геосферы.

Реакция преобразования оксидов идет с глобальным выбросом кислорода. Следует предполагать, что тоже происходит внутри планеты. Железо – типичный для мантии элемент.

Соединение элемента с кислородом тоже типично. Нетипична версия, что атмосферный газ – просочившийся за миллионы лет из-под земли и накопившийся у ее поверхности.

Грубо говоря, ученые поставили под сомнение главенствующую роль растений в образовании кислорода. Зелень может давать лишь часть газа. В этом случае бояться нужно не только уничтожения флоры, но и остывания ядра планеты.

Снижение температуры мантии может блокировать процесс образования кислорода. Массовая доля его в атмосфере тоже пойдет на спад, а вместе с тем и жизнь на планете.

Вопрос, как добывать кислород из мании, не стоит. Пробурить землю на глубину свыше 7 000-8 000 километров невозможно. Остается ждать пока герой статьи просочиться к поверхности сам и извлекать его из атмосферы.

Применение кислорода

Активно применять кислород в промышленности начали с изобретением турбодетандеров. Они появились в середине прошлого века. Устройства сжижают воздух и разделяют его. Собственно, это установки для добычи кислорода.

Какими элементами образован круг «общения» героя статьи? Во-первых, это металлы. Речь не о прямом взаимодействии, а о расплавлении элементов. Кислород добавляют в горелки для максимально эффективного сжигания топлива.

В итоге, металлы быстрее размягчаются, смешиваясь в сплавы. Без кислорода, к примеру, не обходится конвекторный способ производства стали. Обычный воздух в качестве розжига малоэффективен. Не обходится без сжиженного газа в баллонах и резка металлов.

Кислород как химический элемент был открыт и фермерами. В сжиженном виде вещество попадает в коктейли для животных. Они активно прибавляют в весе. Связь между кислородом и массой животных прослеживается в Каменноугольном периоде развития Земли.

Эра отмечена жарким климатом, обилием растений, а следовательно, и 8-го газа. В итоге, по планете ползали сороконожки под 3 метра длиной. Найдены окаменелости насекомых. Схема работает и в современности. Дай животному постоянную добавку к привычной порции кислорода, получишь наращивание биологической массы.

Медики запасаются кислородом в баллонах для купирования, то есть остановки приступов астмы. Газ нужен и при устранении гипоксии. Так именуют кислородное голодание. Помогает 8-ой элемент, так же, при недугах желудочно-кишечного тракта.

В этом случае лекарством становятся кислородные коктейли. В остальных случаях вещество подают пациентам в прорезиненных подушках, или через специальные трубки и маски.

В химической промышленности герой статьи – окислитель. О реакциях, в кторых может участвовать 8-ой элемент, уже говорилось. Характеристика кислорода положительно рассмотрена, к примеру, в ракетостроении.

Героя статьи выбрали окислителем топлива кораблей. Самой мощной окислительной смесью признано соединение обеих модификаций 8-го элемента. То есть, ракетное топливо взаимодействует с обычным кислородом и озоном.

Цена кислорода

Героя статьи продают в баллонах. Они обеспечивают связь элемента. С кислородом можно приобрести баллоны в 5, 10, 20, 40, 50 литров. В общем, стандартен шаг между объемами тар в 5-10 литров. Разброс цен на 40-литровый вариант, к примеру, от 3 000 до 8 500 рублей.

Рядом с высокими ценниками, как правило, стоит указание соблюденного ГОСТа. Его номер – «949-73». В объявлениях с бюджетной стоимостью баллонов ГОСТ прописан редко, что настораживает.

Транспортировка кислорода в баллонах

Если же говорить в философском плане, кислород бесценен. Элемент является основой жизни. По организму человека кислород транспортирует железо. Связка элементов зовется гемоглобином. Его нехватка – анемия.

Заболевание имеет серьезные последствия. Первое из них – снижение иммунитета. Интересно, что у некоторых животных кислород крови переносится не железом. У мечехвостов, к примеру, доставку 8-го элемента к органам осуществляет медь.

Кислоро́д - элемент главной подгруппы шестой группы, второго периода периодической системы химических элементов , с атомным номером 8. Обозначается символом O (лат. Oxygenium). Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород (CAS-номер: 7782-44-7) при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.
Существуют и другие аллотропные формы кислорода, например, озон (CAS-номер: 10028-15-6) - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O 3).

История открытия

Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).
2HgO (t) → 2Hg + O 2

Однако Пристли первоначально не понял, что открыл новое простое вещество, он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье. В 1775 году А. Лавуазье установил, что кислород является составной частью воздуха, кислот и содержится во многих веществах.
Несколькими годами ранее (в 1771 году) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.
Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.
Наконец, окончательно разобрался в природе полученного газа А. Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория. Лавуазье провёл опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теорию флогистона.
Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Происхождение названия

Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygène), предложенного А. Лавуазье (от др.-греч. ὀξύς - «кислый» и γεννάω - «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его - «кислота», ранее подразумевавшим окислы, именуемые по современной международной номенклатуре оксидами.

Получение

В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода, является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.
В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.
Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO 4:
2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2

Также используют реакцию каталитического разложения пероксида водорода Н 2 О 2:
2Н 2 О 2 → 2Н 2 О + О 2

Катализатором является диоксид марганца (MnO 2) или кусочек сырых овощей (в них содержатся ферменты, ускоряющие разложение пероксида водорода).
Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:
2KClO 3 → 2KCl + 3O 2

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей.

Физические свойства

При нормальных условиях кислород - это газ без цвета, вкуса и запаха.
1 л его имеет массу 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г при 25 °C). Хорошо растворяется в расплавленном серебре (22 объёма O 2 в 1 объёме Ag при 961 °C). Является парамагнетиком.
При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C - 0,03 %, при 2600 °C - 1 %, 4000 °C - 59 %, 6000 °C - 99,5 %.
Жидкий кислород (темп. кипения −182,98 °C) - это бледно-голубая жидкость.
Твёрдый кислород (темп. плавления −218,79 °C) - синие кристаллы.

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O . Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород]. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).

Нахождение в природе.природный кислород состоит из 3 стабильных изотопов о16,о17,о18.

Кислород в виде простого вещества о2 входит в состав атмосферного воздуха.=21% В связанном виде элемент кислорода составная часть воды различных минералов многих орг веществ.

ПОЛУЧЕНИЕ. В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

2KMNO4 = K2MnO4 + MnO2 + O2

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

2H2O2 =MnO2=2H2O + O2

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

2KClO3 = 2KCl + 3O2

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

2Na2O2 + 2CO2 = 2Na2CO3 + O2

ХИМИЧЕСКИЕ СВ_ВА. Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

4Li + O2 = 2Li2O

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

CH3CH2OH + 3O2 = 2CO2 + 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

CH3CH2OH +O2 = CH3COOH + H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au иинертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #фториды кислорода).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

2Na + O2 = Na2O2

Некоторые оксиды поглощают кислород:

2BaO + O2 = 2BaO2

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Na2O2 + O2 = 2NaO2

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Неорганические озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:

2KOH + 3O3 = 2KO3 + H2O +2O2

В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:

PtF6 +O2 = O2PtF6

Фториды кислорода Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

2F2 + 2NaOH = 2NaF + H2O + OF2

Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.) OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3 ОЗОН. Озо́н - состоящая из трёхатомных молекул O3аллотропная модификация кислорода. При нормальных условиях - голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.

ХИМ.СВ-ВА Озонa - мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины ииридия) до их высших степеней окисления. Окисляет многие неметаллы. Продуктом реакции в основном является кислород.

2Cu2+ + 2H3O+ + O3 = 2Cu3+ + 3H2O + O2

Озон повышает степень окисления оксидов:

NO + O3 =NO2 + O2

Эта реакция сопровождается хемилюминесценцией. Диоксид азота может быть окислен до азотного ангидрида:

2NO2 + O3 = N2O5 + O2

Озон реагирует с углеродом при нормальной температуре с образованием диоксида углерода:

2C +2O3 = 2CO2 + O2

Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:

2NH3 + 4O3 = NH4NO3 + 4O2 + H2O

Озон реагирует с водородом с образованием воды и кислорода:

O3 + H2 = O2 + H2O

Озон реагирует с сульфидами с образованием сульфатов:

PbS + 4O3 = PbSO4 + 4O2

С помощью озона можно получить Серную кислоту как из элементарной серы, так и из диоксида серы:

S + H2O + O3 = H2SO4

3SO2 + 3H2O + O3 = 3H2SO4

Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:

3SnCl2 + 6HCl + O3 = 3SnCl4 + 3H2O

В газовой фазе озон взаимодействует с сероводородом с образованием двуокиси серы:

H2S + O3 = SO2 + H2O

В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:

H2S + O3 = S + O2 + H2O

3H2S + 4O3 = 3H2SO4

Обработкой озоном раствора иода в холодной безводной хлорной кислоте может быть получен перхлорат иода(III):

I2 + 6HClO4 +O3 = 2I(ClO4)3 + 3H2O

Твёрдый нитрилперхлорат может быть получен реакцией газообразных NO2, ClO2 и O3:

2NO2 + 2ClO2 + 2O2 = 2NO2ClO4 + O2

Озон может участвовать в реакциях горения, при этом температуры горения выше, чем с двухатомным кислородом:

3C3N2 + 4O3 = 12CO + 3N2

Озон может вступать в химические реакции и при низких температурах. При 77 K (-196 °C), атомарный водород взаимодействует с озоном с образованием супероксидного радикала с димеризацией последнего:

H + O3 = HO2 . + O

2HO2 . = H2O2 +O2

Озон может образовывать неорганические озониды, содержащие анион O3−. Эти соединения взрывоопасны и могут храниться только при низких температурах. Известны озониды всех щелочных металлов (кроме франция). KO3, RbO3, и CsO3 могут быть получены из соответствующих супероксидов:

KO2 + O3 = KO3 + O2

Озонид калия может быть получен и другим путём из гидроксида калия:

2KOH + 5O3 = 2KO3 + 5O2 + H2O

NaO3 и LiO3 могут быть получены действием CsO3 в жидком аммиаке NH3 на ионообменные смолы, содержащие ионы Na+ или Li+:

CsO3 + Na+ = Cs+ + NaO3

Обработка озоном раствора кальция в аммиаке приводит к образованию озонида аммония, а не кальция:

3Ca + 10NH3 + 7O3 = Ca * 6NH3 + Ca(OH)2 + Ca(NO3)2 + 2NH4O3 + 3O2 + 2H2O

Озон может быть использован для удаления марганца из воды с образованием осадка, который может быть отделён фильтрованием:

2Mn2+ + 2O3 + 4H2O = 2MnO(OH)2 + 2O2 + 4H+

Озон превращает токсичные цианиды в менее опасные цианаты:

CN- + O3 = CNO- + O2

Озон может полностью разлагать мочевину :

(NH2)2CO + O3 = N2 + CO2 + 2H2O

Взаимодействие озона с органическими соединениями с активированным или третичным атомом углерода при низких температурах приводит к соответствующимгидротриоксидам.

ПОЛУЧЕНИЕ. Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п.

В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

В лаборатории озон можно получить взаимодействием охлаждённой концентрированной серной кислоты с пероксидом бария:

3H2SO4 + 3BaO2 = 3BaSO4 + O3 + 3H2O

Пероксиды - сложные вещества, в которых атомы кислорода соединены друг с другом. Пероксиды легко выделяют кислород. Для неорганических веществ рекомендуется использовать термин пероксид, для органических веществ и сегодня в русском языке часто используют термин перекись. Пероксиды многих органических веществ взрывоопасны (пероксид ацетона), в частности, они легко образуютсяфотохимически при длительном освещении эфиров в присутствии кислорода. Поэтому перед перегонкой многие эфиры (диэтиловый эфир, тетрагидрофуран) требуют проверки на отсутствие пероксидов.

Пероксиды замедляют синтез белка в клетке.

В зависимости от структуры различают собственно пероксиды, надпероксиды, неорганические озониды. Неорганические пероксиды в виде бинарных или комплексных соединений известны почти для всех элементов. Пероксиды щелочных и щелочноземельных металлов реагируют с водой, образуя соответствующий гидроксид и пероксид водорода.

Органические пероксиды подразделяются на диалкилпероксиды, алкилгидропероксиды, диацилпероксиды, ацилгидропероксиды (пероксокарбоновые кислоты), циклические пероксиды. Органические пероксиды термически неустойчивы и часто взрывоопасны. Используются как источники свободных радикалов в органическом синтезе и промышленности

Галогени́ды (галоиды) - соединения галогенов с другими химическими элементами или радикалами. При этом галоген, входящий в соединение, должен быть электроотрицательным; так, оксид брома не является галогенидом.

По участвующему в соединении галогену галогениды также называются фторидами, хлоридами, бромидами, иодидами и астатидами. Наиболее известны под этим названием галогениды серебра благодаря массовому распространению плёночной галогеносеребряной фотографии.

Соединения галогенов между собой называются интергалогенидами, или межгалоидными соединениями (например, пентафторид иода IF5).

В галогенидах галоген имеет отрицательную степень окисления, а элемент - положительную.

Галогенид-ион - отрицательно заряженный атом галогена.



Что еще почитать