Узлы компьютерных блоков питания и схема. Описание принципа работы блока питания формата атх. Мощность блока питания

Выполнять ремонт компьютерного «железа» самостоятельно – дело достаточно сложное. При этом, пользователь должен точно знать, какой именно из всех компонентов нуждается в ремонте. Ремонтировать блок питания компьютера имеет смысл, если он (как минимум) снят с гарантии, а также – стоимость замены делает такой ремонт действительно целесообразным. Качественный ремонт в СЦ может по цене доходить до стоимости «бюджетных» БП. Обычно, кое-что пользователь может сделать и сам… При условии, что имеет навыки работы с электрооборудованием (220 Вольт), и хорошо понимает опасность ошибки в подобной работе.

Рекомендации по самостоятельному ремонту компьютерных блоков питания:

  1. Подключение к сети 220 В любого блока питания необходимо осуществлять через «быстрый» предохранитель на ток не более 2А.
  2. Первый запуск после ремонтных работ производится последовательно с лампой накаливания. О коротком замыкании на входе устройства скажет накал лампы. Такой БП, включать в сеть – нельзя.
  3. В процессе как диагностики, так и ремонта, необходимо проводить разряд всех электролитических емкостей (после каждого включения/отключения). Нужно ждать 3-5 минут, либо использовать электролампу на 220В – вспышка укажет, что разряд действительно произведен.
  4. Все ремонтные операции проводятся при полностью отключенном от сети блоке питания.

Желательно, чтобы рядом с рабочим местом не было заземленных предметов (таких как: отопительные радиаторы, трубы и т.д.)

Собственно, в высоковольтную часть схемы БП – мы не «полезем». Самостоятельный ремонт сводится к: поиску «кольцевых» трещин; замене силовых диодов (если необходимо); замене «плохих» конденсаторов (если необходимо).

В любом случае, ремонт блока питания компьютераначинается с его демонтажа из ПК. Конечно, это стоит сделать, если вы на 100% уверены, что ремонтировать нужно именно БП.

Разбор корпуса самого БП осуществляется откручиванием саморезов (винтов), крепящих две половинки друг к другу. Используется крестовая отвертка.

Примечание: выполняя самостоятельный разбор БП, вы повреждаете пломбу изготовителя – что влечет лишение дальнейшей гарантии на это устройство.

Непосредственно о том, как производится ремонт блока питания и об основных неисправностях – рассказано далее. Чаще всего, отказы, которые встречаются, могут быть обнаружены и устранены достаточно просто:

  • Проверьте, присутствует ли «дежурное» напряжение (+5В SB). Это – фиолетовый провод 24-контактного (основного) разъема блока питания. Между «черным» и «фиолетовым» – должно быть напряжение +5 Вольт. Проверить его наличие можно и до разбора корпуса блока, при этом, сам БП должен быть включен в сеть.

  • Разобрали блок питания – смотрим на плату. Часто встречаются неисправные (вспухшие) электролитические конденсаторы. Это можно определить визуально, чаще всего подвержены дефекту именно электролитические конденсаторы не очень большой емкости (470-220 мкФ, и меньше). Такой конденсатор необходимо отпаять с платы (для этого, ее придется снять), а новый, должен быть той же емкости и рассчитан на то же (или – большее) напряжение. Внимание: соблюдайте полярность выводов! На импортных, «полосой» обозначен «минус».

  • Следующая неисправность – это выход из строя низковольтных диодов (12 или 5В). Они могут быть конструктивно выполнены как сборки из двух диодов (плоский корпус с тремя выводами), бывает и раздельная установка.


  • С проверкой/заменой диодов – немного сложнее, чем с конденсаторами. Для проверки, нужно выпаивать один вывод каждого диода (можно – и всю деталь). Как «звонится» исправный диод – все знают. При прямом подключении, тестер покажет значение (близкое к «0»), при обратном – ничего не показывает (сам тестер – включен в режиме «диод»):

  • На замену, рекомендуется устанавливать диоды Шоттки, имеющие аналогичный (или – больший) заявленный ток/напряжение.
  • Осуществляя ремонт блока питания самостоятельно, отверните винты самой платы и снимите ее (убедитесь еще раз, блок – должен быть обесточен). Внимательно смотря на монтаж, довольно быстро можно будет заметить дефекты «кольцевых трещин»:

Их нужно «пропаять», затем – все собрать и включить (возможно – все заработает).

Отдельно нужно сказать про «дежурное» питание. Как правило, ремонт блока питания путем просто замены сгоревших транзисторов, результата не даст – транзисторы снова сгорают, причем – те же. Виновником поломки может являться и трансформатор. Это – деталь дефицитная, которую трудно купить и найти. В редких случаях, причиной отсутствия 5В «дежурного» напряжения может быть изменение рабочей частоты, за которую отвечают «частотозадающие» детали: резистор и конденсатор (не электролитический).

Примечание: чтобы произвести отпайку детали, установленной на теплоотводе, предварительно демонтируют (откручивают) ее крепление. Установка – производится в обратном порядке (сначала – крепление, затем – пайка). Старайтесь не нарушать изоляцию детали от теплоотвода (как правило, используется слюда).

Запуск блока питания: проверьте наличие +5V SB. Если оно есть – попробуем запустить блок питания (соединяют «салатовый» провод, PS-ON, с «черным», общим).

На этом, возможности пользователя по самостоятельному ремонту – можно сказать, исчерпываются.

Внимание! Не занимайтесь самостоятельным ремонтом блока питания, если вы не имеете опыта в электротехнике! После каждого отключения, необходимо разряжать высоковольтные конденсаторы (ждать 3-5 минут)!

Подробнее: «вспухшие» конденсаторы и их замена

Надеемся, по фотографии – понятно, какие конденсаторы «вспухли», какие – нет.

Если на плате есть несколько одинаковых (или – набор параллельно соединенных), из которых «вспух» хотя бы один – менять лучше все. Фирмы, производящие надежную продукцию: Nichicon, Rubycon. Но такие вы – вряд ли найдете. Из бюджетных, можно посоветовать Teapo, Samsung.

При установке, необходимо соблюдать полярность (рабочее напряжение – должно быть таким же или больше, чем обозначено на заменяемом).

На фото – конденсатор на 16 Вольт, 470 МикроФарад (Rubycon, самая дорогая серия).

Технология пайки

Производя монтаж и демонтаж деталей на плате компьютерного БП, рекомендуется использовать паяльник мощностью 40 Ватт. В отдельных случаях, для громоздких деталей («мощных» выводов), можно пользоваться паяльником и на 60 Ватт (но – не более).

Самый простой припой (типа ПОС-60) – в данном случае, подходит. Лучше взять в виде тонкой проволоки.

Флюс – не используется (достаточно иметь в наличии обычную канифоль).

Демонтаж детали:

  • Греть паяльником, до полного расплавления припоя;
  • Используя устройство для отпайки (из пластика), быстро произвести откачку жидкого припоя:

  • Повторить пункты 1 и 2.

Правильно отпаянная деталь, легко самостоятельно выходит из платы (не нужно «поддавливать» вывод паяльником).

Если демонтируется конденсатор – предварительно можно «откусывать» выступающий вывод бокорезами.

Если отпаивается силовой элемент – необходимо полностью выкрутить винт крепления.

Замена предохранителя

В схеме любого БП, предохранитель идет сразу после розетки питания (последовательно с одной из фаз 220 В). Сами предохранители, как детали, различаются по силе тока (то есть, сколько ампер он выдержит в максимуме). Также, предохранители делятся на «F»-тип («быстрые»), «T»-тип («тепловые»).

Если предохранитель необходимо заменить – вы должны выяснить, на какой номинал (силу тока) он был рассчитан. Также, желательно знать «тип».

Замена на предохранитель с большим номиналом – не допускается. Замена F на T – тоже.

Примечание: если вы знаете, какой нужен «ток», но не знаете «тип», можете устанавливать новый предохранитель типа «F».

Именно так. А чтобы не было вопросов, почему он чаще сгорает – проще будет все же узнать достоверные данные (как номинал, так и тип).

Если предохранитель – в стеклянном цилиндрическом корпусе, то в любом случае он рассчитан на 220В электросети. Применение других типов конструкции – не допускается.

Что используется (приборы и материалы)

При выполнении ремонта блока питания компьютера, не понадобятся какие-то «нестандартные» устройства или оборудование:

Но то, что на рис. – подразумевает, что вы как минимум умеете обращаться с: паяльником, тестером (щипцами, бокорезами…). Для профессионального ремонта, здесь должен был быть осциллограф (достаточно полосы пропускания 3 МГц). Вот только, цена его… (как 2-3 новых БП).

Надеемся, приведенная здесь информация – будет полезна для выполнения «начального» ремонта. Более сложные операции (ремонт трансформатора, работа с высоковольтной «обвязкой», восстановление генерации) – под силу профессионалам (имеющим опыт именно в ремонте БП).

Импульсный блок питания – не очень «простое» устройство, в некоторых случаях восстановление жизнеспособности – производится полной заменой деталей (того или иного узла). Более сложный, «самостоятельный» ремонт – не обязан в каждом случае «увенчаться успехом»…

Характеристики диодов

Сам по себе диод, как отдельный элемент, бывает одного из трех типов: просто диод (p-n переход), СВЧ-диод, и диод Шоттки (квантовый). Нас интересует только последний из них.

Задача диода – пропускать ток в одну сторону (и не пропускать – в другую). Если падение напряжения в прямом включении на обычных диодах – 1 или 2 вольта, то на диодах Шоттки – близко к нулю. Напряжения, получаемые в компьютерном БП – невысокие (12 Вольт и 5), вот почему используются только Шоттки.

Вы можете посмотреть, чему равно падение напряжения на диоде. Тестер должен быть в режиме «диод» (как говорилось выше). Если он «покажет» от 0,015 до 0,7 – то, все правильно. Такие значения – типичны для Шоттки-диода (меньше – это уже «пробой»).

Внутри схем блоков питания, используют пару диодов, включая их встречно:

Для положительного напряжения – используют «сборки» (трехвыводные, в них – 2 диода). Одиночные диоды (круглый корпус) – обычно используют для получения отрицательных напряжений. При замене, одиночные диоды (даже если «полетел» один), рекомендуется менять «парой».

Как лучше подобрать замену? Если на «прямоугольном» пластмассовом корпусе (3-х выводном) – написана марка:

То, с «круглыми» – будет сложнее. Полоска на корпусе означает лишь «направление».

Если мы знаем марку диодов – ищем такие же, или – смотрим параметры (напряжение, ток), и ищем аналог (с таким же или чуть большим значением).

Если не знаем – что ж, надо «скачать» схему вашего блока питания, и посмотреть. Между прочим, в СЦ тоже так поступают (а вот думать, гадать, какая там сила тока – не очень благодарное занятие). Не забывая, что компьютерные БП – содержат только диоды Шоттки.

Примечание: устанавливать диодные сборки/диоды с заведомо большими параметрами тока и напряжения – не рекомендуется (допустим: было 50 Вольт 12 А, а ставят 50 Вольт 20 А). Не нужно этого делать, так как: может быть другой корпус. Кроме чего, есть «дополнительные» параметры (которые в более «мощном» случае – отличаются «не в лучшую» сторону).

Типичный пример (сборки, маломощный БП): 12CTQ040 (40В, 12А); 10CTQ150 (150В, 10А).

Пример одиночных диодов: 90SQ045 (45В, 9А); SR350 (50В, 3А).

Замена вентилятора БП

Как выбрать новый вентилятор для БП? Он, то есть вентилятор, должен быть: с гидро-подшипником, трехпиновый (3 провода в кабеле), и – подходящих размеров (12см/8 см).

Еще – важно, что в БП используется низкооборотистый «вент», обычно это 1200-1400 (для 12 см) и 1600-2000 (для 8).

При старте БП, на вентилятор подается не все напряжение (не 12 Вольт), а, скажем так, 3-5 Вольт. Важно, чтобы вентилятор умел «стартовать» при таких напряжениях (иначе, он не раскрутится после включения). Уточняйте «стартовое напряжение» вентилятора, будьте внимательны.

Способ подключения вентилятора к БП:

  1. Два проводка (черный, красный) припаяны к плате блока питания.
  2. Два проводка (черный, красный) присоединяются коннектором 2-пин к коннектору платы.
  3. Три проводка (черный, красный + желтый) присоединяются коннектором 3-пин к плате.

В первых двух случаях, желтый провод – тахометр – можно вывести из корпуса БП для мониторинга самой материнской платой.

Обратите внимание на такой параметр, как высота вентилятора. Если взять больше, чем нужно, корпус БП – «не закроется».

При замене, важно, чтобы производительность нового вентилятора (в «литрах в минуту»), была бы как минимум, той же, что и у старого вентилятора. Пожалуй, этот параметр – является основным (в описании товара, он обычно – указывается).

Таким образом, можно сразу провести «мод» блока питания, установив не менее производительный, но более «тихий» пропеллер (гидро-подшипник в бюджетных БП – не часто идет «по умолчанию»).

Вот пожалуй и все, что можно сказать про вентиляторы. Выбирайте.

Эквивалент нагрузки

Блок питания, при запуске «проводком», стартовал. Не спешите устанавливать его в компьютер. Попробуем протестировать БП на эквиваленте нагрузки.

Берутся такие резисторы:

Они называются «ПЭВ» (марка медного провода, из которого сделаны). Можно взять на 25 Ватт, или на 10 (на 7,5):

Главное здесь – составить схему из них (соединяя: параллельно, последовательно), чтобы получилось «мощное» сопротивление (3 Ома и 5-6 Ом).

5-омную нагрузку, мы будем включать в «12В» линию, 3-омную – к «5В». Для подсоединения к БП, используется Molex-разъем (желтый провод – это 12 В):

Примечание: при создании «эквивалента», учитывайте мощность, которая приходится на каждый резистор (она не должна превосходить значение, на которое он рассчитан).

Зная напряжение на резисторе, мощность находится по закону: напряжение в квадрате / сопротивление.

Пример: 4 резистора по 20 Ом – «в параллель», мощность каждого – 7,5 Ватт (пойдет на тестирование линии «12-вольт»).

Можно использовать и галогенные лампочки на 12V (допустим: две по 10 Ватт, в параллель).

Итак, подключив эквивалент нагрузки к Molex-разъему, пробуем включить блок питания («салатовый»/«черный», разъем ATX). Шнур «220 Вольт», тоже должен быть «штатный».

Если включение произошло – подождите 10 секунд. Не уходит ли блок в защиту? Вентилятор должен вращаться, все напряжения – находиться в нужном диапазоне (допускается отклонение не более 5-6%).

Собственно, в таком, «щадящем» для него режиме, любой БП должен работать сколь угодно долго.

Можно сделать и более мощный «эквивалент». То есть, сопротивление в Омах – будет еще ниже. Главное – не «переборщить» (для каждого БП, максимальная сила тока – указана):

Сила тока через нагрузку равна напряжению, деленному на ее сопротивление (в Омах). Ну, это – вы и так знаете…

При тестировании, «нагрузка» будет включаться только в две линии («плюс 5», «плюс 12»). Этого, в общем, достаточно. Другие напряжения («минусы»), можно промерить вольтметром (на 24-пиновом штекере).

Примечание: если линию «+12» вы хотите «испытывать» с силой тока выше 6А – не используйте Molex-разъемы! 4-пиновый разъем питания процессора (+12 В) – держит до 10 Ампер. При необходимости, нагрузка «раскидывается» между двумя разъемами (процессорным, «молексом»).

Примечание 2: При выполнении любых соединений, используйте провод достаточного сечения (на 1 мм кв. – ток 10 А).

На эквиваленте нагрузки, будет выделяться тепло (тепловая мощность равна электрической). Позаботьтесь об охлаждении (притоке воздуха). В процессе тестирования, первые 2-3 минуты – лучше следить, не перегреется ли один из резисторов.

На фото – «серьезный» подход к созданию «эквивалента».

Ремонт блока питания

Работа любого компьютера невозможна без блока питания. Поэтому стоит отнестись серьезно к выбору. Ведь от стабильной и надежной работы БП будет зависеть работоспособность самого компьютера.

Что это такое

Главной задачей блока питания является преобразование переменного тока и дальнейшее формирование требуемого напряжения, для нормальной работы всех комплектующих ПК.

Напряжение, требуемое для работы комплектующих:

  • +12В;
  • +3,3В.

Кроме этих заявленных величин существует и дополнительное величины:

  • -12В;

БП выполняет роль гальванической развязки между электрическим током из розетки и комплектующими потребляющие ток. Простой пример, если произошла утечка тока и человек дотронулся до корпуса системного блока его ударило бы током, но благодаря блоку питания этого не происходит. Часто используются источники питания (ИП) формата ATX.

Обзор схем источников питания

Главной частью структурной схемы ИП, формата ATX, является полумостовой преобразователь. Работа преобразователей этого типа заключается в использовании двухтактного режима.

Стабилизация выходных параметров ИП осуществляется применением широтно-импульсной модуляции (ШИМ-контроллер) управляющих сигналов.

В импульсных источниках питания часто используется микросхема ШИМ-контроллера TL494, которая обладает рядом положительных свойств:

  • приемлемые рабочие характеристики микросхемы. Это – малый пусковой ток, быстродействие;
  • наличие универсальных внутренних элементов защиты;
  • удобство использования.

Простой импульсный БП

Принцип работы обычного импульсного БП можно увидеть на фото.

Первый блок выполняет изменение переменного тока в постоянный. Преобразователь выполнен в виде диодного моста, который преобразовывает напряжение, и конденсатора, сглаживающего колебания.

Кроме этих элементов могут присутствовать еще дополнительные комплектующие: фильтр напряжения и термисторы. Но, из-за дороговизны, эти комплектующие могут отсутствовать.

Генератор создает импульсы с определенной частотой, которые питают обмотку трансформатора. Трансформатор выполняет главную работу в БП, это – гальваническая развязка и преобразование тока до требуемых величин.

Видео: Принцип работы ШИМ контроллера БП

АТХ без коррекции коэффициента

Простой импульсный БП хоть и рабочее устройство, но на практике его использовать неудобно. Многие из его параметров на выходе «плавают», в том числе и напряжение. Все эти показатели изменяются из-за нестабильного напряжения, температуры и загруженности выхода преобразователя.

Но если осуществлять управление этими показателями с помощью контроллера, который будет выполнять роль стабилизатора и дополнительные функции, то схема будет вполне пригодной для применения.

Структурная схема БП с использованием контроллера широтно-импульсной модуляции проста и представляет генератор импульсов на ШИМ-контроллере.

Фото: ИП для компьютера с ШИМ-контроллером

ШИМ-контроллер регулирует амплитуду изменения сигналов проходящих через фильтр низких частот (ФНЧ). Главным достоинством являются высокие показатели КПД усилителей мощности и широкие возможности в использовании.

АТХ с коррекцией коэффициента мощности

В новых источниках питания для ПК появляется дополнительный блок – корректор коэффициента мощности (ККМ). ККМ убирает появляющиеся погрешности мостового выпрямителя переменного тока и повышает коэффициент мощности (КМ).

Поэтому производителями активно изготавливаются БП с обязательной коррекцией КМ. Это означает, что ИП на компьютере будет работать в диапазоне от 300Вт и более.

Фото: схема блока питания компьютера 300w

В этих БП используют специальный дроссель с индуктивностью выше чем на входе. Такой ИП называют PFC или пассивным ККМ. Имеет внушительный вес из-за дополнительного использования конденсаторов на выходе выпрямителя.

Из недостатков можно выделить невысокую надежность ИП и некорректную работу с ИБП во время переключения режима работы «батарея/сеть».


Это связано с маленькой емкостью фильтра сетевого напряжения и в момент падения напряжения повышается ток ККМ, и в этот момент включается защита от короткого замыкания.

На двухканальном ШИМ-контролере

Часто используют в современных источниках питания для компьютера двухканальные ШИМ-контроллеры. Единственная микросхема способна выполнять роль преобразователя и корректора КМ, что сокращает общее количество элементов в схеме БП.

Фото: схема БП с использованием двухканального ШИМ-котроллера

В приведенной схеме первая часть выполняет формирование стабилизированного напряжение +38В, а вторая часть является преобразователем, который формирует стабилизированное напряжение +12В.

Схема подключения блока питания компьютера

Для подключения блока питания к компьютеру следует выполнить ряд последовательных действий:


Конструктивные особенности

Для подключения комплектующих персонального компьютера на БП предусмотрены различные разъемы. На задней его части расположен разъем под сетевой кабель и кнопка выключателя.

Кроме этого может находится еще на задней стенке БП и разъем для подключения монитора.

В различных моделях могут быть и другие разъемы:


В современных источниках питания для ПК реже устанавливают вентилятор на задней стенке, который вытягивал горячий воздух из БП. В замен этого решения начали использовать вентилятор на верхней стенке, который был больше и работал тише.

На некоторых моделях возможно встретить сразу два вентилятора. Из стенки, которая находится внутри системного блока, выходит провод со специальным разъемом для подачи тока на материнскую плату. На фото указаны возможные разъемы подключения и обозначение контактов.

Фото: обозначение контактов разъемов БП

Каждый цвет провода подает определенное напряжение:

  • желтый — +12 В;
  • красный — +5 В;
  • оранжевый — +3,3 В;
  • черный – заземление.

У различных производителей могут изменяться значения для этих цветов проводов.

Также есть разъемы для подачи тока комплектующим компьютера.

Фото: специальные разъемы для комплектующих

Параметры и характеристики

БП персонального компьютера имеет много параметров, которые могут не указываться в документации. На боковой этикетке указываются несколько параметров – это напряжение и мощность.

Мощность – основной показатель

Эта информация пишется на этикетке крупным шрифтом. Показатель мощности БП указывает на общее количество электроэнергии доступной для внутренних комплектующих.

Казалось бы, выбрать БП с требуемой мощностью будет достаточным просуммировать потребляемые показатели комплектующими и выбрать БП с небольшим запасом. Поэтому большой разницы между 200w и 250w не будет существенной.

Фото: Импульсный блок питания компьютера (ATX) на з00 Вт

Но на самом деле ситуация выглядит сложнее, потому что выдаваемое напряжение может быть разным — +12В, -12В и другим. Каждая линия напряжения потребляет определенную мощность. Но в БП расположен один трансформатор, который генерирует все напряжения, используемые ПК. В редких случаях может быть размещено два трансформатора. Это дорогой вариант и используется в качестве источника на серверах.

В простых же БП используется 1 трансформатор. Из-за этого мощность на линиях напряжений может меняться, увеличиваться при малой нагрузке на других линиях и наоборот уменьшаться.

Рабочие напряжение

При выборе БП следует обратить внимание на максимальные значения рабочих напряжений, а также диапазон входящих напряжений, он должен быть от 110В до 220В.

Правда большинство из пользователей на это не обращают своего внимания и выбирая БП с показателями от 220В до 240В рискуют к появлению частых отключений ПК.

Фото: параметры блока питания компьютера

Такой БП будет выключаться при падении напряжения, которые не редкость для наших электросетей.Превышение заявленных показателей приведет к выключению ПК, сработает защита. Чтобы включить обратно БП придется отключить его от сети и подождать минуту.

Следует помнить, что процессор и видеокарта потребляю самое большее рабочее напряжение в 12В. Поэтому следует обращать внимание на эти показатели.Для снижения нагрузки на разъемы, линию 12В разделяют на пару параллельных с обозначением +12V1 и +12V2. Эти показатели должны быть указаны на этикетке.

Перед тем как выбрать для покупки БП, следует обратить внимание на потребляемую мощность внутренними компонентами ПК.

Но некоторые видеокарты требуют особый потребляемый ток +12В и эти показатели следует учитывать при выборе БП. Обычно для ПК, в котором установлена одна видеокарта, достаточно источника с мощностью в 500вт или 600.

Также следует ознакомится с отзывами покупателей и обзорами специалистов о выбранной модели, и компании производителе. Лучшие параметры, на которые следует обратить внимание, это: мощность, тихая работа, качество и соответствие написанным характеристикам на этикетке.

Экономить при этом не следует, ведь от работы БП будет зависеть работа всего ПК. Поэтому чем качественнее и надежнее источник, тем дольше прослужит компьютер. Пользователь может быть уверен, что сделал правильный выбор и не беспокоится о внезапных выключениях своего ПК.

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера мало кто обращает внимание на марку предустановленного в системе БП. Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК. Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр , в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения . В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц. Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности. Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600-700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой .

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе . Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений. Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей. Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Кроме силовых узлов в блоке есть дополнительные - сигнальные. Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах , и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме . Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания. В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался. Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами . При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания. Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них - двухрядный - служит для питания материнской платы. Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора. Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V). Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»). Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 - для последовательных портов RS-232 на плате.

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей. Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В. Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10-15 А, а видеокарты до 20-25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500-700 Вт. Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15-25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания. Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току. Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. Простая математика: 240 ВА/12 В = 20 А. Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18-20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя. Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, - не более чем умелая маркетинговая уловка для непосвященных.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования. Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой. Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Краткий словарь терминов

Суммарная мощность - долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит - устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель - свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод - электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.

Трансформатор - элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX - международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации - импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) - соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) - импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) - пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

Добрый день, друзья!

А вы хотели бы узнать, как устроен блок питания компьютера? Сейчас мы попытаемся разобраться в этом вопросе.

Для начала отметим, что , как и любому электронному устройству, необходим источник электрической энергии . Вспомним, что бывают

Первичные и вторичные источники электропитания

Первичные - это, в частности, химические источники тока (элементы питания и аккумуляторы) и генераторы электрической энергии, находящиеся на электростанциях.

В компьютерах могут применяться:

  • литиевые элементы напряжением 3 В для питания КМОП микросхемы, в которой хранятся установки BIOS,
  • литий-ионные аккумуляторы (в ноутбуках).

Литиевые элементы 2032 питают микросхему структуру CMOS, хранящую настройки Setup компьютера.

Потребление тока при этом невелико (порядка единиц микроампер), поэтому энергии батареи хватает на несколько лет .

После исчерпания энергии такие источник энергии восстановлению не подлежат.

В отличие от элементов литий-ионные аккумуляторы являются возобновляемыми источниками. Они периодически то запасают энергию, то отдают ее. Сразу отметим, что любые аккумуляторы имеют ограниченное количество циклов заряд-разряд.

Но большая часть стационарных компьютеров питается не от аккумуляторов, а от сети переменного напряжения.

В настоящее время в каждом доме имеются розетки с переменным напряжением 220 В (в некоторых странах 110 — 115 В) частотой 50 Герц (в некоторых странах – 60 Герц), которые можно считать первичными источниками .

Но основные компоненты компьютера не могут непосредственно использовать такое напряжение.

Его необходимо преобразовать. Выполняет эту работу источник вторичного электропитания (народное название — «блок питания ») компьютера. В настоящее время почти все блоки питания (БП) - импульсные. Рассмотрим более подробно, как устроен импульсный блок питания.

Входной фильтр, высоковольтный выпрямитель и емкостный фильтр

На входе импульсного БП имеется входной фильтр. Он не пропускает помехи, которые всегда есть в электрической сети, в блок питания.

Помехи могут возникать при коммутации мощных потребителей энергии, сварке и т.п.

В то же время он задерживает помехи и самого блока, не пропуская их в сеть.

Если быть более точным, помехи в БП и из него проходят, но достаточно сильно ослабляются .

Входной фильтр представляет собой фильтр нижних частот (ФНЧ).

Он пропускает низкие частоты (в том числе сетевое напряжение, частота которого равна 50 Гц) и ослабляет высокие.

Отфильтрованное напряжение поступает на высоковольтный выпрямитель (ВВ). Как правило, ВВ выполнен по мостовой схеме из четырех полупроводниковых диодов.

Диоды могут быть как отдельными, так и смонтированными в одном корпусе. Существует и другое название такого выпрямителя — «диодный мост ».

Выпрямитель превращает переменное напряжение в пульсирующее, т. е. одной полярности.

Грубо говоря, диодный мост «заворачивает» отрицательную полуволну, превращая ее в положительную.

Пульсирующее напряжение представляет собой ряд полуволн положительной полярности. На выходе ВВ стоит емкостной фильтр - один или два последовательно включенных электролитических конденсатора.

Конденсатор - это буферный элемент, который может заряжаться, запасая энергию и разряжаться, отдавая ее.

Когда напряжение на выходе выпрямителя ниже некоей величины («провал»), конденсатор разряжается, поддерживая его на нагрузке. Если же оно выше, конденсатор заряжается, обрезая пики напряжения.

В курсе высшей математике доказывается, что пульсирующее напряжение представляет собой сумму постоянной составляющей и гармоник , частоты которых кратны основной частоте сети.

Таким образом, емкостный фильтр можно рассматривать здесь как фильтр нижних частот, выделяющий постоянную составляющую и ослабляющий гармоники. В том числе и основную гармонику сети — 50 Гц.

Источник дежурного напряжения

В компьютерном блоке питания имеется так называемый источник дежурного напряжения (+5 VSB).

Если вилка кабеля вставлена в питающую сеть, это напряжение присутствует на соответствующем контакте разъема блока питания. Мощность этого источника небольшая, он способен отдавать ток 1 — 2 А.

Именно этот маломощный источник и запускает гораздо более мощный инвертор. Если разъем блока питания вставлен в материнскую плату, то часть ее компонентов находится под напряжением + 5 VSB.

Сигнал на запуск инвертора подается с материнской платы. Причем для включения можно использовать маломощную кнопку.

В более старых моделях компьютеров устанавливались БП старого стандарта АТ. Они имели громоздкие выключатели с мощными контактами, что удорожало конструкцию. Использование нового стандарта АТХ позволяет «будить» компьютер одним движением или кликом «мышки». Или нажатием клавиши на клавиатуре. Это, конечно, удобно.

Но при этом надо помнить, что конденсаторы в источнике дежурного напряжения всегда находятся под напряжением . Электролит в них подсыхает, срок службы уменьшается.

Большинство пользователей традиционно включает компьютер кнопкой на корпусе, питая его через фильтр-удлинитель. Таким образом, можно рекомендовать после отключения компьютера исключать подачу напряжения на блок питания выключателем фильтра.

Выбор - удобство или надежность - за вами, уважаемый читатели.

Устройство источника дежурного напряжения

Источник дежурного напряжения (ИДН) содержит в себе маломощный инвертор.

Этот инвертор превращает высокое постоянное напряжение, полученное с высоковольтного фильтра, в переменное. Это напряжение понижается до необходимой величины маломощным трансформатором.

Инвертор работает на гораздо более высокой частоте, чем частота сети, поэтому размеры его трансформатора невелики. Напряжение со вторичной обмотки подается на выпрямитель и низковольтный фильтр (электролитические конденсаторы).

Напряжение ИДН должно находиться в пределах 4,75 - 5,25 В. Если оно будет меньше - основной мощный инвертор может не запуститься. Если оно будет больше, компьютер может «подвисать» и сбоить.

Для поддержания стабильного напряжения в ИДН часто используется регулируемый стабилитрон (иначе называемый источником опорного напряжения) и обратная связь. При этом часть выходного напряжения ИДН подается во входные высоковольтные цепи.

Заканчивая первую часть статьи, отметим, что для гальванической развязки входных и выходных цепей используется оптопара .

Оптопара содержит источник и приемник излучения. В чаще всего используется оптопара, содержащая в себе светодиод и фототранзистор.

Инвертор в ИДН собран чаще всего на мощном высоковольтном полевом или биполярном транзисторе. Мощный транзистор отличается от маломощных тем, что рассеивает бОльшую мощность и имеет бОльшие габариты.

В этом месте сделаем паузу. Во второй части статьи мы рассмотрим основной инвертор и низковольтную часть компьютерного блока питания.

С вами был Виктор Геронда.

До встречи на блоге!

P.S. Фото кликабельны, кликайте, рассматривайте внимательно схемы и удивляйте знакомых своей эрудицией!

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами .

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.


После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.


Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых не надежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера
измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных БП компьютеров разных мощностей, производителей и годов выпуска.

Для возможности подключения БП для проверки без нагрузки внутри блока на некоторых выходах устанавливают нагрузочные резисторы, номинал которых зависит от мощности блока питания и решения производителя. Поэтому измеренное сопротивление может колебаться в большом диапазоне, но не должно быть ниже допустимого.

Если нагрузочный резистор в цепи не установлен, то показания омметра будут изменяться от малой величины до бесконечности. Это связано с зарядкой фильтрующего электролитического конденсатора от омметра и свидетельствует о том, что конденсатор исправный. Если поменять местами щупы, то будет наблюдаться аналогичная картина. Если сопротивление велико и не изменяется, то возможно в обрыве находится конденсатор.

Сопротивление меньше допустимого свидетельствует о наличии короткого замыкания, которое может быть вызвано пробоем изоляции в электролитическом конденсаторе или выпрямляющего диода. Для определения неисправной детали придется вскрыть блок питания и отпаять от схемы один конец фильтрующего дросселя этой цепи. Далее проверить сопротивление до и после дросселя. Если после него, то замыкание в конденсаторе, проводах, между дорожками печатной платы, а если до него, то пробит выпрямительный диод.

Поиск неисправности БП внешним осмотром

Первоначально следует внимательно осмотреть все детали, обратив особое внимание на целостность геометрии электролитических конденсаторов. Как правило, из-за тяжелого температурного режима электролитические конденсаторы, выходят из строя чаще всего. Около 50% отказов блоков питания связано именно с неисправностью конденсаторов. Зачастую вздутие конденсаторов является следствием плохой работы кулера. Смазка подшипников кулера вырабатывается и обороты падают. Эффективность охлаждения деталей блока питания снижается, и они перегреваются. Поэтому при первых признаках неисправности кулера блока питания, обычно появляется дополнительный акустический шум, нужно почистить от пыли и смазать кулер.

Если корпус конденсатора вздулся или видны следы вытекшего электролита, то отказ конденсатора очевиден и его следует заменить исправным. Вздувается конденсатор в случае пробоя изоляции. Но бывает, внешних признаков отказа нет, а уровень пульсаций выходного напряжения большей. В таких случаях конденсатор неисправен по причине отсутствия контакта между его выводом и обкладки внутри него, как говорят, конденсатор в обрыве. Проверить конденсатор на обрыв можно с помощью любого тестера в режиме измерения сопротивления. Технология проверки конденсаторов представлена в статье сайта «Измерение сопротивления» .

Далее осматриваются остальные элементы, предохранитель, резисторы и полупроводниковые приборы. В предохранителе внутри вдоль по центру должна проходить тонкая металлическая проволочка, иногда с утолщением в середине. Если проволочки не видно, то, скорее всего она перегорела. Для точной проверки предохранителя нужно его прозвонить омметром . Если предохранитель перегорел, то его нужно заменить новым или отремонтировать . Прежде, чем производить замену, для проверки блока питания можно перегоревший предохранитель не выпаивать из платы, а припаять к его выводам жилку медного провода диаметром 0,18 мм. Если при включении блока питания в сеть проводок не перегорит, то тогда уже есть смысл заменять предохранитель исправным.

Как проверить исправность БП замыканием контактов PG и GND

Если материнскую плату можно проверить только подключив ее к заведомо исправному БП, то блок питания можно проверить отдельно с помощью блока нагрузок или запустить с помощью соединения контактов +5 В PG и GND между собой.

От блока питания на материнскую плату питающие напряжения подаются с помощью 20 или 24 контактного разъема и 4 или 6 контактного. Для надежности разъемы имеют защелки. Для того, чтобы вынуть разъемы из материнской платы нужно пальцем нажать наверх защелки одновременно, прилагая довольно большое усилие, покачивая из стороны в сторону, вытащить ответную часть.

Далее нужно закоротить между собой, отрезком провода, можно и металлической канцелярской скрепкой, два вывода в разъеме, снятой с материнской платы. Провода расположены со стороны защелки. На фотографиях место установки перемычки обозначено желтым цветом.

Если разъем имеет 20 контактов 14 (провод зеленого цвета, в некоторых блоках питания может быть серый , POWER ON) и вывод 15 (провод черного цвета, GND).

Если разъем имеет 24 контакта , то соединять между собой нужно вывод 16 (зеленого зеленого , в некоторых блоках питания провод может быть серого цвета, POWER ON) и вывод 17 (черный провод GND).

Если крыльчатка в кулере блока питания завращается, то блок питания АТХ можно считать работоспособным, и, следовательно, причина неработящего компьютера находится в других блоках. Но такая проверка не гарантирует стабильную работу компьютера в целом, так как отклонения выходных напряжений могут быть больше допустимых.

Проверка БП компьютера
измерением напряжений и уровня пульсаций

После ремонта БП или в случае нестабильной работы компьютера для полной уверенности в исправности блока питания, необходимо его подключить к блоку нагрузок и измерять уровень выходных напряжений и размах пульсаций. Отклонение величин напряжений и размахов пульсаций на выходе блока питания не должны превышать значений, приведенных в таблице.

Можно обойтись и без блока нагрузок измеряв напряжение и уровннь пульсаций непосредственно на выводах разъемов БП в работающем компьютере.

Таблица выходных напряжений и размаха пульсаций БП АТХ
Выходное напряжение, В +3,3 +5,0 +12,0 -12,0 +5,0 SB +5,0 PG GND
Цвет провода оранжевый красный желтый синий фиолетовый серый черный
Допустимое отклонение, % ±5 ±5 ±5 ±10 ±5
Допустимое минимальное напряжение +3,14 +4,75 +11,40 -10,80 +4,75 +3,00
Допустимое максимальное напряжение +3,46 +5,25 +12,60 -13,20 +5,25 +6,00
Размах пульсации не более, мВ 50 50 120 120 120 120

При измерении напряжений мультиметром «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» к нужным контактам разъема.

Напряжение +5 В SB (Stand-by), фиолетовый провод – вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.

Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.

Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютерах отсутствует. Поэтому в блоках питания последних моделей этого напряжения может не быть.

Как заменить предохранитель в БП компьютера

Обычно в компьютерных блоках питания устанавливается трубчатый стеклянный плавкий предохранитель, рассчитанный на ток защиты 6,3 А. Для надежности и компактности предохранитель впаивают непосредственно в печатную плату. Для этого применяются специальные предохранители, имеющие выводы для запайки. Предохранитель обычно устанавливают в горизонтальном положении рядом с сетевым фильтром и его легко обнаружить по внешнему виду.

Но иногда встречаются блоки питания, в которых предохранитель установлен в вертикальном положении и на него надета термоусаживаемая трубка, как на фотографии выше. В результате обнаружить его затруднительно. Но помогает надпись, нанесенная на печатной плате рядом с предохранителем: F1 – так обозначается предохранитель на электрических схемах. Рядом с предохранителем может быть также указан ток, на который он рассчитан, на представленной плате указан ток 6,3 А.

При ремонте блока питания и проверке вертикально установленного предохранителя с помощью мультиметра был обнаружен его обрыв. После выпаивания предохранителя и снятия термоусаживаемой трубки стало очевидно, что он перегорел. Стеклянная трубка изнутри вся была покрыта черным налетом от перегоревшей проволоки.

Предохранители с проволочными выводами встречается редко, но их можно с успехом заменить обычными 6,3 амперными, припаяв к чашечкам с торцов одножильные кусочки медного провода диаметром 0,5-0,7 мм.

Останется только запаять подготовленный предохранитель в печатную плату блока питания и проверить его на работоспособность.

Если при включении блока питания предохранитель сгорел повторно, то значит, имеет место отказ других радиоэлементов, обычно пробой переходов в ключевых транзисторах. Ремонтировать блок питания с такой неисправностью требует высокой квалификации и экономически не целесообразен. Замена предохранителя, рассчитанного на больший ток защиты, чем 6,3 А не приведет к положительному результату. Предохранитель все равно перегорит.

Поиск в БП неисправных электролитических конденсаторов

Очень часто отказ блока питания, и как результат нестабильная работа компьютера в целом, происходит по причине вздутия корпусов электролитических конденсаторов. Для защиты от взрыва, на торце электролитических конденсаторов делаются надсечки. При возрастании давления внутри конденсатора происходит вздутие или разрыв корпуса в месте надсечки и по этому признаку легко найти отказавший конденсатор. Основной причиной выхода из строя конденсаторов является их перегрев из-за неисправности кулера или превышения допустимого напряжения.

На фотографии видно, что у конденсатора, находящегося с левой стороны, торец плоский, а у правого – вздутый, со следами подтекшего электролита. Такой конденсатор вышел из строя и подлежит замене. В блоке питания обычно выходят из строя электролитические конденсаторы по шине питания +5 В, так как устанавливаются с малым запасом по напряжению, всего на 6,3 В. Встречал случаи, когда все конденсаторы в блоке питания по цепи +5 В были вздутые.

При замене конденсаторов по цепи питания 5 В рекомендую устанавливаю конденсаторы, которые рассчитаны на напряжение не мене, чем на 10 В. Чем на большее напряжение рассчитан конденсатор, тем лучше, главное, чтобы по габаритам вписался в место установки. В случае, если конденсатор с большим напряжение не вмещается из-за размеров, можно установить конденсатор меньшей емкости, но рассчитанный на большее напряжение. Все равно емкость установленных на заводе конденсаторов имеет большей запас и такая замена не ухудшит работу блока питания и компьютера в целом.


Нет смысла заменять электролитические конденсаторы в блоке питания, если они все вспучились. Это значит, что вышла из строя схема стабилизации выходного напряжения, и на конденсаторы было подано напряжение, превышающее допустимое. Такой блок питания можно отремонтировать, только имея профессиональное образование и измерительные приборы, но экономически такой ремонт не целесообразен.

Главное при ремонте БП не забывать, что электролитические конденсаторы имеют полярность. Со стороны отрицательного вывода на корпусе конденсатора имеется маркировка, в виде широкой светлой вертикальной полосы, как показано на фото выше. На печатной плате отверстие для отрицательного вывода конденсатора расположено в зоне маркировки белого (черного) полукруга или отверстие для положительного вывода обозначается знаком «+».

Проверка дросселя групповой стабилизации БП АТХ

Если из системного блока компьютера вдруг запахло гарью, то одной из причин может быть перегрев дросселя групповой стабилизации в БП или подгоревшая обмотка одного из кулеров. При этом компьютер обычно продолжает нормально работать. Если после вскрытия системного блока и осмотра все кулеры вращаются, то значит, неисправен дроссель. Компьютер необходимо сразу выключить и заняться ремонтом.


На фотографии показан БП компьютера со снятой крышкой, в центре которой виден дроссель, покрытый изоляцией зеленого цвета, подгоревшей сверху. Когда я подключил этот БП к нагрузке и подал на него питающее напряжение, то через пару минут из дросселя пошла тонкая струйка дыма. Проверка показала, что все выходные напряжения в допуске и размах пульсаций не превышает допустимый.

Через дроссель проходит ток всех питающих компьютер напряжений и очевидно, что произошло нарушение изоляции проводов обмоток вследствие чего, они закоротили между собой.

Обмотки можно перемотать на этот же сердечник, но в результате сильного нагрева магнитодиэлектрик сердечника может потерять добротность, в результате из-за больших токов Фуко будет нагреваться даже при целых обмотках. Поэтому рекомендую установить новый дроссель. Если аналога нет, то нужно посчитать витки обмоток, сматывая их на сгоревшем дросселе, и намотать изолированным проводом такого же сечения на новом сердечнике. При этом нужно соблюдать направление обмоток.

Проверка других элементов БП

Резисторы и простые конденсаторы не должны иметь потемнений и нагаров. Корпуса полупроводниковых приборов должны быть целыми, без сколов и трещин. При самостоятельном ремонте целесообразно выполнить замену только элементов, отображенных на структурной схеме. Если потемнела краска на резисторе, или развалился транзистор, то менять их бессмысленно, так как, скорее всего это следствие выхода из строя других элементов, которые без приборов не обнаружить. Потемневший корпус резистора не всегда свидетельствует о его неисправности. Вполне возможно просто потемнела только краска, а сопротивление резистора в норме.



Что еще почитать