1 каскадный транзистор предварительный унч. Простые, двухкаскадные усилители. Практические схемы усилителей низкой частоты на полевых транзисторах

В усилителях на биполярных транзисторах используют, как правило, схему включения с общим эмиттером, обеспечивающую усиление как по напряжению, так и по току (рис. 2.4). В схеме резисторы и , включенные между корпусом и точкой К, образуют делитель для напряжения питания, которое фиксирует режим работы транзистора – его рабочую точку р" (рис. 2.5). Ток I д, текущий через , должен создавать падение напряжения, соответствующее напряжению между базой и эмиттером транзистора UБЭр, поэтому

где I д – ток делителя, образованного резисторами и

Рис. 2.4.

Рис. 2.5. Влияние положения рабочей точки р на работу усилителя

Через сопротивление R" Б течет ток I Σ, равный сумме тока I д и тока, текущего в базу транзистора, поэтому

Ток делителя выбирают I д = (2...5)I Бр. Чем больше I д, тем стабильнее работает каскад, так как изменения токов коллектора I к и эмиттера I э, а значит, и тока базы I Б = I к – I э не приведут к значительному изменению напряжения на R"Б:

Таким образом, напряжение UБЭр изменится незначительно. В то же время не следует выбирать ток делителя слишком большим, потому что это снижает КПД каскада из-за потерь энергии в делителе.

Допустим сначала, что UBX = 0. Под действием напряжения UБЭр через открытый р-n-переход эмиттер–база протекает постоянный ток базы I Бр. Разделительный конденсатор Ср1 не дает возможности постоянному току протекать через источник входного сигнала.

Транзистор открыт и находится в активной области. Его состояние определит точка р пересечения нагрузочной прямой, проведенной через точки Е к и E K/R K, отсекаемые на осях (см. рис. 2.5), с характеристикой, соответствующей току I Бр. Постоянный коллекторный ток I Кр, соответствующий точке р, определит исходное напряжение между эмиттером и коллектором U KЭp. Так как через разделительный конденсатор Ср2 постоянное напряжение не проходит, выходное напряжение Uвых = 0. Рассмотренное состояние схемы называют режимом работы по постоянному току.

Пусть теперь на вход схемы поступает сигнал в виде синусоидального напряжения с амплитудой Uвх max. Этот сигнал уже пройдет через разделительный конденсатор и вызовет изменение управляющего напряжения НБЭ. Под его действием произойдет изменение токов базы, эмиттера и коллектора. Изменение тока базы оценим по входной характеристике I Б = f (UБЭ) и определим амплитудные значения тока +I Бmах и -I Бmах. Если бы входная характеристика была линейной, то изменения тока базы как в большую, так и в меньшую сторону были бы одинаковы, но из-за нелинейности характеристики амплитуда +I Бmах больше, чем –I Бmах. Поскольку выходные характеристики I к = f (Uкэ) строят для разных токов базы, по ним можно определить токи коллектора, соответствующие токам +I Вmах и -I Бmах. Изменения тока коллектора относительно среднего значения I Кр от (I Кр+ I Кmах) до (I Кр – I Кmах) приведут к колебаниям напряжения на сопротивлении R K и, следовательно, на коллекторе транзистора. Эти колебания легко оценить с помощью нагрузочной прямой. Действительно, рабочая точка р будет перемещаться по нагрузочной прямой между точками пересечения этой прямой с выходными характеристиками, соответствующими токам базы (I Бр + I Бmах) и (I Бmin – I Бmax). Таким образом, колебания входного сигнала привели к пропорциональным колебаниям напряжения коллектор–эмиттер Uкэ с амплитудой UKЭmax = I КmахRк. Через конденсатор Cp2 эти колебания поступают на выход усилителя. Выходной сигнал, таким образом, равен

Этот режим называют режимом работы по переменному току.

Из приведенных на характеристиках построений видно, что Uвx.max = 0,1 В, Uвых.mах = 5 В и, значит, коэффициент усиления по напряжению такого каскада

Следует обратить внимание, что положительному полу-периоду входного напряжения (когда UБЭр+ Uвx.max) соответствует отрицательный полупериод выходного напряжения (т.е. UКЭр – Uвых.max). Иначе говоря, между входным и выходным напряжениями существует сдвиг фаз, равный 180°. Для получения наименьших искажений усиливаемого сигнала рабочую точку р следует располагать на середине линейного участка входной характеристики.

Усилитель колебаний ЗЧ - составная часть каждого современного радиоприемника, радиолы, телевизора или магнитофона. Усилитель является основой радиовещания по проводам, аппаратуры телеуправления, многих измерительных приборов, электронной автоматики и вычислительной техники, кибернетических устройств. Но в этой беседе я буду говорить о немногом: об элементах и работе транзисторных усилителей применительно к очень узкой области радиотехники - для усиления и преобразования электрических колебаний звуковой частоты в звук.

КАСКАДЫ УСИЛИТЕЛЯ

Усилительным каскадом принято называть транзистор с резисторами, конденсаторами и другими деталями, которые обеспечивают ему условия работы как усилителя. Усилитель, который ты делал к детекторному приемнику (см. рис. 92), был однокаскадным. Его транзистор может быть составным (см. рис. 95), но усилитель все равно останется однокаскадным. Но однокаскадный транзисторный усилитель не может обеспечить усиление сигнала звуковой частоты, достаточное для громкого звуковоспроизведения.

Для громкого воспроизведения колебаний звуковой частоты транзисторный усилитель должен быть минимум двух-трехкаскадным. В усилителях, содержащих несколько каскадов, различают каскады предварительного усиления и выходные, или оконечные, каскады. Выходным называют последний каскад усилителя, работающий на телефоны или динамическую головку громкоговорителя, а предварительными - все находящиеся перед ним каскады.

Задача одного или нескольких каскадов предварительного усиления заключается в том, чтобы увеличить напряжение звуковой частоты до значения, необходимого для работы транзистора выходного каскада. От транзистора выходного каскада требуется повышение мощности колебаний звуковой частоты до уровня, необходимого для работы динамической головки.

Для выходных каскадов наиболее простых транзисторных усилителей радиолюбители часто используют маломощные транзисторы, такие же, что и в каскадах предварительного усиления. Объясняется это желанием делать усилители более экономичными, что особенно важно для переносных конструкций с питанием от батарей. Выходная мощность таких усилителей небольшая - от нескольких десятков до 100-150 мВт, но и ее бывает достаточно для работы телефонов или маломощных динамических головок. Если же вопрос экономии энергии источников питания не имеет столь существенного значения, например при питании усилителей от электроосветительной сети, в выходных каскадах используют мощные транзисторы.

Каков принцип работы усилителя, состоящего из нескольких каскадов?

Схему простого транзисторного двухкаскадного усилителя ЗЧ ты видишь на рис. 173. Рассмотри ее внимательно. В первом каскаде усилителя работает транзистор V1, во втором - транзистор V2. Здесь первый каскад является каскадом предварительного усиления, второй - выходным. Между ними - разделительный конденсатор С2. Принцип работы любого из каскадов этого усилителя одинаков и аналогичен знакомому тебе принципу работы однокаскадного усилителя.

Рис. 173. Двухкаскадный усилитель на транзисторах

Разница только в деталях: нагрузкой транзистора V1 первого каскада служит резистор R2, а нагрузкой транзистора V2 выходного каскада - телефоны В1 (или, если выходной сигнал достаточно мощный, головка громкоговорителя). Смещение на базу транзистора первого каскада подается через резистор R1, а на базу транзистора второго каскада - через резистор R3. Оба каскада питаются от общего источника ииль которым может быть батарея гальванических элементов или выпрямитель. Режимы работы транзисторов устанавливают подбором резисторов R1 и R3, что обозначено на схеме звездочками.

Действие усилителя в целом заключается в следующем. Электрический сигнал, поданный через конденсатор С1 на вход первого каскада и усиленный транзистором V1, с нагрузочного резистора R2 через разделительный конденсатор С2 поступает на вход второго каскада. Здесь он усиливается транзистором V2 и телефонами В1, включенными в коллекторную цепь транзистора, преобразуется в звук.

Какова роль конденсатора С1 на входе усилителя? Он выполняет две задачи: свободно пропускает к транзистору переменное напряжение сигнала и предупреждает замыкание базы на эмиттер через источник сигнала. Представь себе, что этого конденсатора во входной цепи нет, а источником усиливаемого сигнала служит электродинамический микрофон с малым внутренним сопротивлением. Что получится? Через малое сопротивление микрофона база транзистора окажется соединенной с эмиттером. Транзистор закроется, так как будет работать без начального напряжения смещения. Он будет открываться только при отрицательных полупериодах напряжения сигнала. А положительные полупериоды, еще больше закрывающие транзистор, будут им «срезаны». В результате транзистор станет искажать усиливаемый сигнал.

Конденсатор С2 связывает каскады усилителя по переменному току. Он должен хорошо пропускать переменную составляющую усиливаемого сигнала и задерживать постоянную составляющую коллекторной цепи транзистора первого каскада. Если вместе с переменной составляющей конденсатор - будет проводить и постоянный ток, режим работы транзистора выходного каскада нарушится и звук станет искаженным или совсем пропадет.

Конденсаторы, выполняющие такие функции, называют конденсаторами связи, переходными или разделительными.

Входные и переходные конденсаторы должны хорошо пропускать всю полосу частот усиливаемого сигнала - от самых низких до самых высоких. Этому требованию отвечают конденсаторы емкостью не менее 5 мкФ. Использование в транзисторных усилителях конденсаторов связи больших емкостей объясняется относительно малыми входными сопротивлениями транзисторов. Конденсатор связи оказывает переменному току емкостное сопротивление, которое будет тем меньшим, чем больше его емкость. И если оно окажется больше входного сопротивления транзистора, на нем будет падать часть напряжения переменного тока, большая, чем на входном сопротивлении транзистора, отчего будет проигрыш в усилении. Емкостное сопротивление конденсатора связи должно быть по крайней мере в 3-5 раз меньше входного сопротивления транзистора. Поэтому-то на входе, а также для связи между транзисторными каскадами ставят конденсаторы больших емкостей. Здесь используют обычно малогабаритные электролитические конденсаторы с обязательным соблюдением полярности их включения.

Таковы наиболее характерные особенности элементов двухкаскадного транзисторного усилителя ЗЧ.

Для закрепления в памяти принципа работы транзисторного двухкаскадного усилителя ЗЧ предлагаю смонтировать, наладить и проверить в действии несколько его вариантов.

Каскады предварительного усиления Общие сведения. Предварительный усилитель усиливает коле-бания напряжения или тока источника сигнала до значений, кото-рые необходимо подать на вход оконечного каскада для получения в нагрузке заданной мощности. Предварительный усилитель может быть одно- и многокаскадным. Транзисторы в каскадах предвари-тельного усиления включают с ОЭ, а лампы — с общим катодом, что позволяет получить наибольшее усиление . Включение транзистора с ОБ целесообразно во входных каскадах, работающих от источника сигнала с малым внутренним сопротивлением. Для уменьшения нелинейных искажений в каскадах предварительного усиления предпочтителен режим А.

  • По виду связи между каскада-ми (при многокаскадном выполнении усилителей) различают усили-тели с емкостной,
  • трансформаторной
  • гальванической связью (уси-лители постоянного тока).

Усилители с емкостной связью. Усилители с емкостной или ЯС-бвязью имеют широкое применение.. Они просты в конструкции и наладке, дешевы, обладают стабильными характеристиками, на-дежны в работе, имеют небольшие размеры и массу. Типовые схе-мы усилителя на транзисторах и лампах с емкостной связью Частотная характеристика резисторного каскада с емкостной связью может быть разделена на три области частот: нижних НЧ, средних СЧ и верхних ВЧ. В области нижних частот коэффициент усиления Kн снижается (с уменьшением частоты) в ос-новном из-за увеличения сопротивления конденсатора межкас-кадной связи Ср1. Емкость этого конденсатора выбирают достаточ-но большой, что снизит падение напряжения на нем. Обычно низ-кочастотный диапазон ограничивается частотой fH, на которой ко-эффициент усиления снижается до 0,7 среднечастотного значения, т. е. Kн=0,7K0. В области средних частот, составляющих основную часть рабочего диапазона усилителя, коэффициент усиления Kо практически не зависит от частоты. В области верхних частот fB снижение усиления Kв обусловлено емкостью Со=/=Свых+См+Свх (где Свых — емкость усилительного элемента каскада; См — емкость монтажа, Свх — емкость усилительного элемента следующего кас-када) . Эту емкость всегда стремятся свести к минимуму, чтобы ограничить через нее ток сигнала и обеспечить большой коэффициент усиления. Расчет резисторного каскада предварительного усиления. Ис-ходные данные: полоса усиливаемых частот fн-fв = 100-4000 Гц, коэффициент частотных искажений MH

  • 1. Выбор типа транзистора. Ток коллектора каскада, при ко-тором обеспечивается амплитуда входного тока следующего кас-када Iвх.тсл, Iк= (1,25ч- 1,5)IЕх.отсл = .(1,25-7-1,5) 12= 15-5-18 мА. При-мем Iк=15 мА. По току Iк и граничной частоте, которая должна бытьfашга>3fв|Зср = 3fв(Рмин + Рмакс)/2 = 3-4000(30 + 60)/2 =
  • =540000 Гц=0,54 МГц, выбираем для каскада транзистор МП41 со следующими параметрами: Iк=40 мА; UКэ=15 В; |3мин = 30; рмакс=60;fамин = 1МГц.
  • 2. Определение сопротивлений резисторов RK и Ra. Эти сопро-тивления определяют, исходя из падения напряжения на них. При-мем падение напряжения на резисторах R* и Rэ соответственно 0,4 Ек и 0,2 Ек, Выбираем резисторы МЛТ-0,25 270 Ом и МЛТ-0,25 130 Ом.
  • 3. Напряжение между эмиттером и коллектором транзистора в рабочей точке икэо=Ек — !K(RK+Ra) = lQ — 15-10-3(270+130)=4 В. При Uкэо=4 В и Iк=15 мА по статическим выходным характеристи-
  • кам (рис. 94, а), определяем ток базы Iбо=200 мкА в рабочей точке О". По входной статической характеристике транзистора (рис. 94, б) икэ=5 В для Iбо=200 мкА определяем напряжение смещения в ра-бочей точке О/Uбэо=0,22 В.
  • 4. Для определения входного сопротивления транзистора в точке О" проводим касательную к входной характеристике транзистора. Входное сопротивление определяется тангенсом угла наклона каса-тельной
  • 5. Определение-делителя, напряжения смещения. Сопротивле-ние резистора R2 делителя принимают R2=(5-15)Rвх.э. Примем R2=6Rвх.э=6-270 =1620 Ом. Выбираем по ГОСТу резистор МЛТ-0,25 1,8 кОм. Ток делителя в каскадах предварительного уси-ления принимают Iд=(3-10)Iбо=(З-10) -200=600-2000 мкА. При-мем Iд=2 мА. Сопротивление резистора R1 делителя Выбираем по ГОСТу резистор МЛТ-0,25 3,9 кОм.
  • 6. Расчет емкостей. Емкость конденсатора межкаскадной свя-зи определяют, исходя из допустимых частотных искажений Ms, вносимых на низшей рабочей частоте Емкость конденсатора Примем электролитический конденсатор емкостью 47 мкФ с Uраб>ДURЭ=0,2 Eк=0,2-10=2 В.

Усилители с трансформаторной связью . Каскады предварительного усиления с трансформаторной связью обеспечивают лучшее-согласование усилительных каскадов по сравнению с каскадами с резисторной емкостной связью и применяются в качестве инверсных для подачи сигнала на двухтактный выходной каскад. Нередко трансформатор используют в качестве входного устройства.

Схемы усилительных каскадов с последовательным и параллельным включением трансформатора показаны на. Схема с последовательно включенным трансформатором не содержит резистора RK в коллекторной цепи, поэтому обладает более высо-ким выходным сопротивлением каскада, равным выходному сопро-тивлению транзистора, и применяется чаще. В схеме с параллельно включенным трансформатором требуется переходной конденсатор С. Недостатком этой схемы являются дополнительные потери мощно-сти сигнала в резисторе RK и снижение выходного сопротивления вследствие шунтирующего действия этого резистора. Нагрузкой трансформаторного каскада обычно служит относи-тельно низкое входное сопротивление последующего каскада. В этом случае для межкаскадной связи используют понижающие транс форматоры с коэффициентом трансформации n2=*RB/R"H

Частотная характеристика усилителя с трансформаторной связью имеет снижение коэффициента усиления в области нижних и верхних частот. В области нижних частот спад коэффи-циента усиления каскада объясняется уменьшением индуктивного сопротивления обмоток трансформатора, вследствие чего возрастает их шунтирующее де.йствие входной и выходной цепей каскада и снижается коэффициент усиления К=Kо/. На средних частотах влиянием реактивных эле-ментов можно пренебречь. В области верхних частот на коэффициент уси-ления влияют емкость коллекторного перехода Ск и индуктивность рассеи-вания ls обмоток трансформатора. На некоторой частоте емкость Ск и индуктивность Is могут вызвать резонанс напряжения, вследствие че-го на этой частоте возможен подъем частотной характеристики. Иногда этим пользуются для коррекции час-тотной характеристики усилителя.

При реализации транзисторных усилителей приходится решать ряд специфических задач. Прежде всего требуется обеспечить . Виды рабочих режимов транзистора, таких как режим линейного усиления A, режимы B, C, ключевые режимы D и F, мы уже рассматривали ранее. Чаще всего схемы усилительных каскадов на транзисторах рассматриваются применительно к режиму A. Наиболее распространенными схемами усилительных каскадов являются:

  • Схема эмиттерной стабилизации
  • Дифференциальный усилитель
  • Двухтактный усилитель

Схема с фиксированным током базы

Схема с фиксированным напряжением на базе

Схема коллекторной стабилизации

Схема эмиттерной стабилизации

Дифференциальный усилитель

Еще одной распространенной схемой усилительного каскада является . Схема дифференциального усилителя получила распространение благодаря высокой помехоустойчивости входного дифференциального сигнала. Еще одним преимуществом данной схемы усилительного каскада является возможность применения низковольтных источников питания. Дифференциальный усилитель образуется при соединении эмиттеров двух транзисторов на едином сопротивлении или генераторе тока. Один из вариантом усилительного каскада, реализованного в виде дифференциального усилителя приведен на рисунке 6.


Рисунок 6 Схема дифференциального усилителя

Усилительные каскады, построенные по схеме дифференциального усилителя широко применяются в современных интегральных схемах, таких как операционные усилители, усилители промежуточной частоты и даже полностью функциональные узлы, такие как приемник ЧМ синалов, радиотракт сотовых телефонов, высококачественные смесители частоты и т.д.

Двухтактный усилитель

В двухтактном усилителе может быть использован любой из режимов работы транзистора, однако чаще всего в этой схеме каскада усилителя используется режим работы B. Это связано с тем, что двухтактные каскады применяются на выходе усилителя, где требуется повышенная экономичность работы (высокий к.п.д. усилительного каскада). реализуются как на транзисторах с одинаковой проводимостью, так и с разной проводимостью транзисторов. Схема одного из самых распространенных видах двухтактных усилителей приведена на рисунке 7.


Рисунок 7 Схема двухтактного усилителя

Схемы двухтактных усилителей позволяют значительно уменьшать уровень четных гармоник входного сигнала, поэтому данная схема усилительного каскада получила значительное распространение, однако схема двухтактного усилителя широко применяется и в цифровой техники. В качестве примера можно привести КМОП-микросхемы.

Литература:

Вместе со статьей "Cхемы усилительных каскадов на транзисторах" читают:

Усилитель электрических сигналов - это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подве­денного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямо­угольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, опреде­ляющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону со­хранения энергии усилительное устройство должно включать в себя источ­ник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рис. 1.

Рисунок 1. Обобщенная структурная схема усилителя.

Электрические колебания поступают от источника сигнала на вход усилителя, к выходу ко­торого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро - необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Р вх выходная мощность Р вых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Р вх < Р вых < Ро . Следова­тельно, усилитель - это управляемый входным сигналом преобразователь энергии источника питания в энергию выходного сигнала. Преобразование энергии осуществляется с помощью усилительных элементов (УЭ): биполяр­ных транзисторов, полевых транзисторов, электронных ламп, интегральных микросхем (ИМС). варикапов и других.

Простейший усилитель содержит один усилительный элемент. В большинстве слу­чаев одного элемента недостаточно и в усилителе при­меняют несколько активных элементов, которые соединяют по ступенчатой схеме: колебания, усиленные первым элементом, поступают на вход второго, затем третьего и т. д. Часть усилителя, составляющая одну ступень усиления, называется каскадом . Усилитель состоит из активных и пассивных элемен­тов : к активным элементам относятся транзисторы, эл. микросхемы и другие нелинейные элементы, обладающие свойством изменять электропроводность между выходными электродами под воздействием управляюще­го сигнала на входных электродах. Пассивными эле­ ментами являются резисторы, конденсаторы, катушки индуктивности и другие элементы, формирующие необхо­димый размах колебаний, фазовые сдвиги и другие па­раметры усиления. Таким образом, каждый каскад усилителя состоит из минимально не­обходимого набора активных и пассивных элементов.

Структурная схема типичного многокаскадного усилителя приведена на рис. 2.

Рисунок 2. Схема многокаскадного усилителя.

Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощно­сти (выходного каскада). Количество каскадов предварительного усиления оп­ределяется необходимым усилением. Входной каскад обеспечивает, при необ­ходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.

Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.

Источни­ками усиливаемых сигналов могут быть микрофоны, счи­тывающие головки магнитных и лазерных накопителей информации, различные преобразователи неэлектрических парамет­ров в электрические.

Нагрузкой являются громкоговорители, электриче­ские двигатели, сигнальные лампы, нагреватели и т. д. Источники питания вырабатывают энергию с заданными параметрами - номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анод­ных цепях ламп; используется для поддержания задан­ных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.

Классификация усилительных устройств.

Усилительные устройства классифицируют по различным признакам.

По виду усиливаемых электрических сигналов усилители подразделяют на усилители гармонических (непрерывных) сигналов и усилители импульсных сигналов.

По ширине полосы пропускания и абсолютным значениям усиливаемых частот усилители подразделяются на следующие типы:

- Усилители постоянного тока (УПТ) предназначены для усиления сигналов в пределах от низшей частоты = 0 до верхней рабочей частоты . УПТ усиливает как переменные составляющие сигнала, так и его постоянную со­ставляющую. УПТ широко применяются в устройствах автоматики и вычислительной техники.

- Усилители напряжения , в свою очередь подразделяются на усили­тели низкой, высокой и сверхвысокой частоты.

По ширине полосы пропускания усиливаемых частот различают:

- избирательные усилители (усилители высокой частоты - УВЧ), для которых действительно отношение частот /1 ;

- широкополосные усилители с большим диапазоном частот, для которых отношение частот />>1 (например УНЧ - усилитель низкой частоты).

- Усилители мощности - оконечный каскад УНЧ с трансформаторной развязкой. Для того, чтобы мощность была максимальной R вн. к = R н, т.е. сопротивление нагрузки должно быть равно внутреннему сопротивлению коллекторной цепи ключевого элемента (транзистора).

По конструктивному исполнению усилители можно подразделить на две большие группы: усилители, выполненные с помощью дискретной технологии, то есть способом навесного или печатного монтажа, и усилители, выполненные с помощью интегральной технологии. В настоящее время в качестве активных элементов широко используются аналоговые интегральные микро­схемы (ИМС).

Показатели работы усилителей.

К показателям работы усилителей относятся вход­ные и выходные данные, коэффициент усиления, диапа­зон частот, коэффициент искажений, КПД и другие па­раметры, Характеризующие его качественные и эксплуа­тационные свойства.

К входным данным относятся номинальное значение входного сигнала (напряжения U вх = U 1 , тока I вх = I 1 или мощно­сти P вх = P 1 ), входное сопротивление, входная емкость или ин­дуктивность; ими определяется пригодность усилителя для конкретных практических применений. Входное со­ противление R вх в сравнении с сопротивлением источ­ника сигнала R и предопределяет тип усилителя; в зави­симости от их соотношения различают усилители напря­жения (при R вх >> R и ), усилители тока (при R вх << R и ) или усилители мощности (при R вх = R и ). Входная ем­ кость С вх , являясь реактивной компонентой сопротивле­ния, оказывает существенное влияние на ширину рабо­чего диапазона частот.

Выходные данные - это номинальные значения выход­ного напряжения U вых =U 2 , тока I вых =I 2 , выходной мощности P вых =P 2 и выходного сопротивления. Выходное сопротивление дол­жно быть значительно меньшим, чем сопротивление на­грузки. И входное и выходное сопротивления могут быть активными или иметь реактивную составляющую (ин­дуктивную или емкостную). В общем случае каждое из них равно полному сопротивлению Z, содержащему как активную, так и реактивную составляющие

Коэффициентом усиления называется отношение вы­ходного параметра ко входному. Различают коэффициенты усиления по напряжению K u = U 2 / U 1 , по току K i = I 2 / I 1 и мощности K p = P 2 / P 1 .

Характеристики усилителя.

Характеристики усилителя отображают его способность усиливать с определенной степенью точности сиг­налы различной частоты и формы. К важнейшим харак­теристикам относятся амплитудная, амплитудно-частот­ная, фазо-частотная и переходная .

Рис. 3. Амплитудная характеристика.

Амплитудная характеристика представляет собой зависимость ампли­туды выходного напряжения от амплитуды подаваемого на вход гармонического колебания определенной частоты (рис. 3.). Входной сигнал изменяется от минимального до максимального значения, при­чем уровень минимального значения должен превышать уровень внутренних помех U п , создаваемых самим уси­лителем. В идеальном усилителе (усилителе без помех) амплитуда выходного сигнала пропорциональна ампли­туде входного U вых = K* U вх и амплитудная характерис­тика имеет вид прямой линии, проходящей через начало координат. В реальных усилителях избавиться от помех не удается, поэтому его амплитудная характеристика от­личается от прямой.

Рис. 4. Амплитудно-частотная характеристика.

Амплитудно- и фазо-частотная характеристики отражают зависимость коэффициента усиления от частоты. Из-за присутствия в усилителе реактивных элементов сигналы разных частот усиливаются неодинаково, а вы­ходные сигналы сдвигаются относительно входных на различные углы. Амплитудно-частотная характеристика в виде зависимости представлена на рисунке 4.

Рабочим диапазоном частот усилителя называют интервал частот, в пределах которого модуль коэффициента K остается постоянным или изменяется в заранее заданных пределах.

Фазо-частотной характеристикой называется частотная зависимость угла сдвига фазы выходного сигнала по отношению к фазе входного.

Обратные связи в усилителях.

Обратной связью (ОС) называют связь между электрическими цепями, посред­ством которой энергия сигнала передается из цепи с более высоким уровнем сигнала в цепь с более низким его уровнем: например, из выходной цепи уси­лителя во входную или из последующих каскадов в предыдущие. Структурная схема усилителя с обратной связью изображена на рисунке 5.

Рис. 5. Структурная (слева) и принципиальная схема с отрицательной ОС по току (справа).

Передача сигнала с выхода на вход усилителя осуществляется с помощью четырехполюсника В. Четырехполюсник обратной связи представляет собой внешнюю электрическую цепь, состоящую из пассивных или активных, линей­ных или нелинейных элементов. Если обратная связь охватывает весь усили­тель, то обратная связь называется общей: если обратная связь охватывает от­дельные каскады или части усилителя, называется местной. Таким образом, на рисунке пред­ставлена структурная схема усилителя с общей обратной связью.

Модель усилительного каскада.

Усилител ьный каскад - конструктивное звено усилителя - содержит один или более активных (усилительных) элементов и набор пассивных элементов. На практике, для большей наглядности, сложные процессы исследуют на простых моделях.

Один из вариантов транзисторного каскада для усиления пере­менного тока приведен на рисунке слева. Транзистор V1 р-п-р типа вклю­чен по схеме с общим эмиттером. Входное напряжение база - эмиттерсоздается источником с ЭДС Е c и внутренним сопротивлением R c источника. В цепи базы установлены резисторы R 1 и R 2 . Коллектор тран­зистора соединен с отрицательным зажимом источника E к через резисторы R к и R ф . Выходной сигнал снимается с выводов коллектора и эмиттера и через конденсатор С 2 поступает в нагрузку R н . Конденсатор Сф совместно с резистором образует -звено фильтра (положительную обратную связь - ПОС ), который требуется, в частности, для сглаживания пульсаций питающего напряжения (при маломощном источнике E к с большим внутренним сопротивлением). Так же, для большей стабильности устройства, в цепь эмиттера транзистора V1 (отрицательная обратная связь - ООС ) можно дополнительно включить RC -фильтр, который будет припятствовать передачи части выходного сигнала обратно на вход усилителя. Таким образом, можно избежать эффекта самовозбуждения устройства. Обычно искусственно созданная внешняя ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот.

Схема усилителя низкой частоты на биполярном транзисторе.

Усилительный каскад на биполярном транзисторе, включенном по схеме с ОЭ, является одним из наиболее распространенных асимметричных усилителей. Принципиальная схема такого каскада, выполненная на дискретных элементах, изображена на рисунке ниже.

В этой схеме резистор , включенный в главную цепь транзистора, служит для ограничения коллекторного тока, а также для обеспечения необходимого коэффициента усиления. При помощи делителя напряжения R1R2 задается начальное напряжение смещения на базе транзистора VT, необходимое для режима усиления класса А.

Цепь RэСэ выполняет функцию эмиттерной термостабилизации точки покоя; конденсаторы С1 и С2 являются разделительными для постоянной и переменной составляющих тока. Конденсатор Сэ шунтирует резистор по переменному току, так как емкость Сэ значительна.

При подаче на вход усилителя напряжения сигнала неизменной амплитуды при различных частотах выходное напряжение в зависимости от частоты сигнала будет изменяться, так как сопротивление конденсаторов C1 , C2 на разных частотах различно.

Зависимость коэффициента усиления от частоты сигнала получило название амплитудно-частотной характеристики усилителя (АЧХ).

Усилители низкой частоты наиболее широко применяются для усиления сигналов, несущих звуковую информацию, в этих случаях они называются, также, усилителями звуковой частоты, кроме этого УНЧ используются для усиления информационного сигнала в различных сферах: измерительной технике и дефектоскопии; автоматике, телемеханике и аналоговой вычислительной технике; в других отраслях электроники. Усилитель звуковых частот обычно состоит из предварительного усилителя и усилителя мощности (УМ). Предварительный усилитель предназначен для повышения мощности и напряжения и доведения их до величин, нужных для работы оконечного усилителя мощности, зачастую включает в себя регуляторы громкости, тембра или эквалайзер, иногда может быть конструктивно выполнен как отдельное устройство.

Усилитель мощности должен отдавать в цепь нагрузки (потребителя) заданную мощность электрических колебаний. Его нагрузкой могут являться излучатели звука: акустические системы (колонки), наушники (головные телефоны); радиотрансляционная сеть или модулятор радиопередатчика. Усилитель низких частот является неотъемлемой частью всей звуковоспроизводящей, звукозаписывающей и радиотранслирующей аппаратуры.

Анализ работы каскада усилителя производят с помощью эквивалентной схемы (на рис. ниже), в которой транзистор заменен Т-образной схемой замещения.

В этой эквивалентной схеме все физические процессы, происходящие в транзисторе, учитываются при помощи малосигнальных Н-параметров транзистора, которые приведены ниже.

Для питания усилителей используются источники напряжения с малым внутренним сопротивлением, поэтому можно считать, что по отношению к входному сигналу резисторы R1 и R2 включены параллельно и их можно заменить одним эквивалентным Rб = R1R2/(R1+R2) .

Важным критерием для выбора номиналов резисторов Rэ, R1 и R2 является обеспечение температурной стабильности статического режима работы транзистора. Значительная зависимость параметров транзистора от температуры приводит к неуправляемому изменению коллекторного тока , вследствие чего могут возникнуть нелинейные искажения усиливаемых сигналов. Для достижения наилучшей температурной стабилизации режима надо увеличивать сопротивление . Однако это приводит к необходимости повышать напряжение питания Е и увеличивает потребляемую от него мощность. При уменьшении сопротивлений резисторов R1 и R2 также возрастает потребляемая мощность, снижающая экономичность схемы и уменьшается входное сопротивление усилительного каскада.

Усилитель постоянного тока в интегральном исполнении.

Усилитель (ОУ) в интегральном исполнении является наиболее распространенной универсальной микросхемой (ИМС). ОУ – это устройство с высокостабильными качественными показателями, которые позволяют производить обработку аналоговых сигналов по алгоритму, задаваемому с помощью внешних цепей.

Операционный усилитель (ОУ) - унифицированный многокаскадный усилитель постоянного тока (УПТ), удовлетворяющий следующим требованиям к электрическим параметрам:

· коэффициент усиления по напряжению стремится к бесконечности;

· входное сопротивление стремится к бесконечности;

· выходное сопротивление стремится к нулю;

· если входное напряжение равно нулю, то выходное напряжение также равно нулю Uвх = 0, Uвых = 0;

· бесконечная полоса усиливаемых частот.

ОУ имеет два входа, инвертирующий и неинвертирующий, а также один выход. Вход и выход УПТ выполняют с учетом вида источника сигнала и внешней нагрузки (несимметричные, симметричные) и величин их сопротивлений. Во многих случаях в УПТ, как и в усилителях переменного тока, обеспечивают большое входное сопротивление, чтобы уменьшить влияние УПТ на источник сигнала, и малое выходное сопротивление, чтобы уменьшить влияние нагрузки на выходной сигнал УПТ.

На рисунке 1 приведена схема инвертирующего усилителя, на рисунке 2 неинвертирующего. В этом случае коэффициент усиления равен:

Для инвертирующего Киоу = Rос / R1

Для неинвертирующего Кноу = 1 + Rос / R1



Инвертирующий усилитель охвачен ООС параллельной по напряжению, что вызывает уменьшение Rвхоу и Rвыхоу. Неинвертирующий усилитель охвачен ООС последовательной по напряжению, что обеспечивает увеличение Rвхоу и уменьшение Rвыхоу. На базе этих ОУ можно построить различные схемы для аналоговой обработки сигналов.

К УПТ предъявляются высокие требования по наименьшему и по высокому входному сопротивлению. Самопроизвольное изменение выходного напряжения УПТ при неизменном напряжении входного сигнала называется дрейфом усилителя . Причинами дрейфа являются нестабильность напряжений питания схемы, температурная и временная нестабильности параметров транзисторов и резисторов. Этим требованиям удовлетворяет ОУ в котором первый каскад собран по дифференциальной схеме, который подавляет все синфазные помехи и обеспечивает высокое входное сопротивление. Этот каскад может быть собран на полевых транзисторах и на составных транзисторах, где в цепи эмиттеров (истоков) подключен ГСТ (генератор стабильного тока), что усиливает подавление синфазных помех. Для повышения входного сопротивления применяют глубокую последовательную ООС и высокую коллекторную нагрузку (в этом случае Jвхоу стремится к нулю).

Усилители постоянного тока предназначены для усиления сигналов, медленно изменяющихся во времени, т. е. сигналов, эквивалентная частота которых приближается к нулю. Поэтому УПТ должны обладать амплитудно-частотной характеристикой в виде, изображённой на рисунке слева. Поскольку коэффициент усиления ОУ очень велик, то использование его в качестве усилителя возможно лишь при охвате его глубокой отрицательной обратной связью (при отсутствии ООС даже крайне малый сигнал "шума" на входе ОУ даст на выходе ОУ напряжение, близкое к напряжению насыщения).

История операционного усилителя связана с тем, что усилители постоянного тока использовались в аналоговой вычислительной технике для реализации различных математических операций, например суммирования, интегрирования и др. В настоящее время эти функции хотя и не утратили своего значения, однако составляют лишь малую часть списка возможных применений ОУ.

Усилители мощности.

Что же представляет из себя усилитель мощности – далее, для краткости будем называть его УМ? Исходя из вышеизложенного, структурную схему усилителя можно условно разделить на три части:

  • Входной каскад
  • Промежуточный каскад
  • Выходной каскад (усилитель мощности)

Все эти три части выполняют одну задачу – увеличить мощность выходного сигнала без изменения его формы до такого уровня, чтобы можно было раскачать нагрузку с низким сопротивлением - динамическую головку или наушники.

Бывают трансформаторные и бестрансформаторные схемы УМ.

1. Трансформаторные усилители мощности.

Рассмотрим однотактный трансформаторный УМ , в кото­ром транзистор включен по схеме с ОЭ (рис. слева).

Трансформаторы ТР1, и ТР2 предназначены для согласования нагрузки и выходного сопротивления усилителя и входного сопротивления усилителя с сопротивлением ис­точника входного сигнала соответственно. Элементы R и D обеспечивают начальный режим работы транзистора, а С увеличивает переменную составляющую, поступающую на транзистор Т.

Поскольку трансформатор является нежелательным элементом усилителей мощности, т.к. имеет большие габариты и вес, относительно сложен в изготовлении, то в настоящее время наибольшее распространение получили бестрансформаторные усилители мощности.

2. Бестрансформаторные усилители мощности.

Рассмотрим двухтактный УМ на биполярных транзисторах с различным типом проводимости. Как уже отмечалось выше, необходимо увеличить мощность выходного сигнала без изменения его формы. Для этого берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала, как показано на рисунке ниже:

Если транзисторы обладают достаточно высоким значением крутизны, то возможно построение схем, работающих на нагрузку величиной единицы Ом без использования трансформаторов. Питается такой усилитель от двухполярного источника питания с заземленной средней точкой, хотя возможно построение схем и для однополярного питания.

Принципиальная схема комплементарного эмиттерного повторителя - усилителя с дополнительной симметрией - приведена на рисунке слева. При одинаковом входном сигнале через транзистор n-p-n-типа протекает ток во время положительных полупериодов. Когда же входное напряжение отрицательно, ток будет течь через транзистор p-n-p -типа. Объединяя эмиттеры обоих транзисторов, нагружая их общей нагрузкой и подавая один и тот же сигнал на объединенные базы, получаем двухтактный каскад усиления мощности.

Рассмотрим более подробно включение и работу транзисторов. Транзисторы усилителя работают в режиме класса В. В данной схеме транзисторы должны быть абсолютно одинаковы по своим параметрам, но противоположны по планарной структуре. При поступлении на вход усилителя положительной полуволны напряжения Uвх транзистор Т1 , работает в режиме усиления, а транзис­тор Т2 - в режиме отсечки. При поступлении отрицатель­ной полуволны транзисторы меняются ролями. Так как напряжение между базой и эмиттером открытого транзи­стора мало (около 0,7 В), напряжение Uвых близко к напря­жению Uвх . Однако выходное напряжение оказывается искаженным из-за влияния нелинейностей входных ха­рактеристик транзисторов. Проблема нелинейных искажений решается подачей начального смещения на базовые цепи, переводящей каскад в режим АВ.

Для рассматриваемого усили­теля максимально возможная амплитуда напряжения на нагрузке Um равна E . Поэтому максимально возможная мощность нагрузки определяется выражением

Можно показать, что при максимальной мощности нагрузки усилитель потребляет от источников питания мощность, определяемую выражением

Исходя из вышесказанного, получаем максимально возможный коэффици­ент полезного действия УМ : n max = P н.max / P потр.max = 0,78.



Что еще почитать