Graph the function y 3x. Quadratic and cubic functions

Constructing graphs of functions containing modules usually causes considerable difficulties for schoolchildren. However, everything is not so bad. It is enough to remember a few algorithms for solving such problems, and you can easily build a graph even for the most seemingly complex function. Let's figure out what kind of algorithms these are.

1. Plotting a graph of the function y = |f(x)|

Note that the set of function values ​​y = |f(x)| : y ≥ 0. Thus, the graphs of such functions are always located entirely in the upper half-plane.

Plotting a graph of the function y = |f(x)| consists of the following simple four steps.

1) Carefully and carefully construct a graph of the function y = f(x).

2) Leave unchanged all points on the graph that are above or on the 0x axis.

3) Display the part of the graph that lies below the 0x axis symmetrically relative to the 0x axis.

Example 1. Draw a graph of the function y = |x 2 – 4x + 3|

1) We build a graph of the function y = x 2 – 4x + 3. Obviously, the graph of this function is a parabola. Let's find the coordinates of all points of intersection of the parabola with the coordinate axes and the coordinates of the vertex of the parabola.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Therefore, the parabola intersects the 0x axis at points (3, 0) and (1, 0).

y = 0 2 – 4 0 + 3 = 3.

Therefore, the parabola intersects the 0y axis at the point (0, 3).

Parabola vertex coordinates:

x in = -(-4/2) = 2, y in = 2 2 – 4 2 + 3 = -1.

Therefore, point (2, -1) is the vertex of this parabola.

Draw a parabola using the data obtained (Fig. 1)

2) The part of the graph lying below the 0x axis is displayed symmetrically relative to the 0x axis.

3) We get a graph of the original function ( rice. 2, shown in dotted line).

2. Plotting the function y = f(|x|)

Note that functions of the form y = f(|x|) are even:

y(-x) = f(|-x|) = f(|x|) = y(x). This means that the graphs of such functions are symmetrical about the 0y axis.

Plotting a graph of the function y = f(|x|) consists of the following simple chain of actions.

1) Graph the function y = f(x).

2) Leave that part of the graph for which x ≥ 0, that is, the part of the graph located in the right half-plane.

3) Display the part of the graph specified in point (2) symmetrically to the 0y axis.

4) As the final graph, select the union of the curves obtained in points (2) and (3).

Example 2. Draw a graph of the function y = x 2 – 4 · |x| + 3

Since x 2 = |x| 2, then the original function can be rewritten in the following form: y = |x| 2 – 4 · |x| + 3. Now we can apply the algorithm proposed above.

1) We carefully and carefully build a graph of the function y = x 2 – 4 x + 3 (see also rice. 1).

2) We leave that part of the graph for which x ≥ 0, that is, the part of the graph located in the right half-plane.

3) Display the right side of the graph symmetrically to the 0y axis.

(Fig. 3).

Example 3. Draw a graph of the function y = log 2 |x|

We apply the scheme given above.

1) Build a graph of the function y = log 2 x (Fig. 4).

3. Plotting the function y = |f(|x|)|

Note that functions of the form y = |f(|x|)| are also even. Indeed, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), and therefore, their graphs are symmetrical about the 0y axis. The set of values ​​of such functions: y 0. This means that the graphs of such functions are located entirely in the upper half-plane.

To plot the function y = |f(|x|)|, you need to:

1) Carefully construct a graph of the function y = f(|x|).

2) Leave unchanged the part of the graph that is above or on the 0x axis.

3) Display the part of the graph located below the 0x axis symmetrically relative to the 0x axis.

4) As the final graph, select the union of the curves obtained in points (2) and (3).

Example 4. Draw a graph of the function y = |-x 2 + 2|x| – 1|.

1) Note that x 2 = |x| 2. This means that instead of the original function y = -x 2 + 2|x| - 1

you can use the function y = -|x| 2 + 2|x| – 1, since their graphs coincide.

We build a graph y = -|x| 2 + 2|x| – 1. For this we use algorithm 2.

a) Graph the function y = -x 2 + 2x – 1 (Fig. 6).

b) We leave that part of the graph that is located in the right half-plane.

c) We display the resulting part of the graph symmetrically to the 0y axis.

d) The resulting graph is shown in the dotted line in the figure (Fig. 7).

2) There are no points above the 0x axis; we leave the points on the 0x axis unchanged.

3) The part of the graph located below the 0x axis is displayed symmetrically relative to 0x.

4) The resulting graph is shown in the figure with a dotted line (Fig. 8).

Example 5. Graph the function y = |(2|x| – 4) / (|x| + 3)|

1) First you need to plot the function y = (2|x| – 4) / (|x| + 3). To do this, we return to Algorithm 2.

a) Carefully plot the function y = (2x – 4) / (x + 3) (Fig. 9).

Note that this function is fractional linear and its graph is a hyperbola. To plot a curve, you first need to find the asymptotes of the graph. Horizontal – y = 2/1 (the ratio of the coefficients of x in the numerator and denominator of the fraction), vertical – x = -3.

2) We will leave that part of the graph that is above the 0x axis or on it unchanged.

3) The part of the graph located below the 0x axis will be displayed symmetrically relative to 0x.

4) The final graph is shown in the figure (Fig. 11).

website, when copying material in full or in part, a link to the source is required.

The function y=x^2 is called a quadratic function. Schedule quadratic function is a parabola. General form The parabola is shown in the figure below.

Quadratic function

Fig 1. General view of the parabola

As can be seen from the graph, it is symmetrical about the Oy axis. The Oy axis is called the axis of symmetry of the parabola. This means that if you draw a straight line on the graph parallel to the Ox axis above this axis. Then it will intersect the parabola at two points. The distance from these points to the Oy axis will be the same.

The axis of symmetry divides the graph of a parabola into two parts. These parts are called branches of the parabola. And the point of a parabola that lies on the axis of symmetry is called the vertex of the parabola. That is, the axis of symmetry passes through the vertex of the parabola. The coordinates of this point are (0;0).

Basic properties of a quadratic function

1. At x =0, y=0, and y>0 at x0

2. The quadratic function reaches its minimum value at its vertex. Ymin at x=0; It should also be noted that the function does not have a maximum value.

3. The function decreases on the interval (-∞;0] and increases on the interval, because the straight line y=kx will coincide with the graph y=|x-3|-|x+3| in this section. This option is not suitable for us.

If k is less than -2, then the straight line y=kx with the graph y=|x-3|-|x+3| will have one intersection. This option suits us.

If k=0, then the intersection of the straight line y=kx with the graph y=|x-3|-|x+3| there will also be one. This option suits us.

Answer: for k belonging to the interval (-∞;-2)U)

What else to read