Missile systems "Topol" and "Topol-m". Topol m photo video of strategic missile forces Topol m characteristics destruction radius

RTO SN (intercontinental missile system strategically assigned) "Topol-M" (SS-X-27, "Sickle" according to NATO classification) with the RS-12M2 missile (RT-2PM2, 15Zh65) is the result of further modernization of the Topol (SS-25) missile system. This complex was entirely created by Russian enterprises.

Work on the creation of a new missile system began in the mid-1980s. The resolution of the Military-Industrial Commission dated September 09, 1989 ordered the creation of two missile systems (mobile and stationary), as well as a universal three-stage solid-fuel intercontinental ballistic missile. This development work was given the name “Universal”, and the complex under development was given the designation RT-2PM2. The complex was jointly developed by the Moscow Institute of Thermal Engineering and Yuzhnoye Design Bureau (Ukraine, Dnepropetrovsk).

The missile was supposed to be unified for both complexes, however, in the original design, a difference was assumed in the warhead breeding system. For a silo-based missile, the combat stage had to be equipped with a liquid jet engine using the promising PRONIT monopropellant. For the mobile complex, MIT developed a solid propellant propulsion system. There were also differences in the transport and launch container (TPC). In the mobile version, the TPK was supposed to be made of fiberglass, in the stationary version - from metal, with a number of ground equipment systems mounted on it. Therefore, the rocket for the mobile complex was assigned the index 15Zh55, for the stationary complex - 15Zh65.

In March 1992, it was decided to develop the Topol-M complex on the basis of Universal (Yuzhnoye Design Bureau stopped participating in work on this complex in April). On February 27, 1993, the President of the Russian Federation signed a corresponding decree (this date is considered the beginning of work on Topol-M). This decree appointed MIT as the lead enterprise for the development of Topol-M, and guaranteed funding for the work.

In fact, it was necessary to develop a universal missile based on the types of deployment. At the same time, both in silo and mobile versions, the rocket had to have high combat capabilities, high fire accuracy and be capable of long-term combat duty at different levels of readiness. In addition, it had to be highly resistant to damaging factors during flight and overcome the missile defense of a potential enemy.




APU of the RT-2PM2 / RS-12M2 "Topol-M" complex with the Yars ICBM TPK during a parade rehearsal in Moscow, 04/26/2011. Previously it was believed that this was the Yars APU (photo - Vitaly Kuzmin, http:/ /vitalykuzmin.net/)

The missile for the Topol-M MRK was created as a modernization of the RS-12M intercontinental ballistic missile. The conditions for modernization were determined by the START I Treaty. According to this document, a rocket can be considered new if it differs from its analogue in one of the following characteristics:
- number of steps;
- type of fuel for any stage;
- the starting mass differs by more than 10 percent;
- the length of the assembled rocket without the warhead (warhead), or the length of the first stage of the rocket differs by more than 10 percent;
- the diameter of the first stage differs by more than 5 percent;
- throw weight of more than 21 percent combined with a change in first stage length of 5 percent or more.

Due to these restrictions, tactical specifications The Topol-M MRK missiles could not undergo significant changes, and the main differences from the analogue (RT-2PM) lie in the flight characteristics and stability when penetrating enemy missile defense. From the very beginning, the warhead was developed taking into account the possibility of rapid modernization in the event of the emergence of operational missile defense systems from a potential enemy. It is possible to install a warhead with multiple warheads with individual guidance.

The Topol-M missile system is unique in many ways and is approximately 1.5 times superior to the previous generation missile system in terms of combat readiness, survivability and maneuverability (in the mobile version), and effectiveness in hitting various targets, even in the face of enemy opposition. The energy capabilities of the rocket ensure an increase in throw weight, a significant decrease in the altitude of the active part of the flight path, as well as effective penetration of a promising missile defense system.

When developing the Topol-M MRK, the latest achievements of domestic rocketry and science were used. First used new system experimental testing during tests with high standard operating conditions of units and systems of the missile complex. This has dramatically reduced traditional testing volume and reduced costs without sacrificing reliability.

The complex is a monoblock three-stage solid-fuel rocket housed in a transport and launch container. The missile's lifespan in it is at least 15 years, with a total service life of at least 20 years. Among the features of the complex:
- the ability to use existing silo launchers without significant costs (only the system of attaching the container to the missile changes). Silo launchers are used, which are exempt from missiles being removed from service, and launchers in accordance with the START-2 treaty;
- increased, compared to Topol, firing accuracy, vulnerability of missiles during flight from the effects of air defense systems (including nuclear) and readiness for launch;
- the ability of missiles to maneuver during flight;
- immunity to electromagnetic pulses;
- compatibility with existing control, communication and support systems.

The 15Zh65 (RT-2PM2) rocket has 3 sustainer stages with powerful solid propellant power plants. The rocket's sustainer stages have a one-piece "cocoon" body made of composite material. The 15Zh65, unlike the Topol, does not have lattice stabilizers and rudders. Flight control is carried out by a central partially recessed rotary nozzle of the propulsion engines of the three stages of the rocket. The nozzles of the propulsion engines are made of carbon-carbon material. A three-dimensionally reinforced oriented carbon-carbon matrix is ​​used for the nozzle liners.

The launch weight of the rocket is more than 47 tons. The total length of the rocket is 22.7 meters, and without the head part the length is 17.5 meters. The maximum diameter of the rocket body (first stage) is 1.86 meters. The mass of the head part is 1.2 tons. The length of the first stage is 8.04 meters, the weight of the fully loaded stage is 28.6 tons, the operating time is 60 seconds. The thrust of the first stage solid rocket motor at sea level is 890 kN. The diameter of the second and third stages is 1.61 and 1.58 meters, respectively. The operating time of the stages is 64 and 56 seconds, respectively. Three solid-propellant propulsion engines ensure rapid acceleration, reducing the missile's vulnerability in the acceleration phase, and modern control systems and dozens of auxiliary engines provide maneuver in flight, making the trajectory difficult to predict for the enemy.

Monoblock thermonuclear detachable warhead with a thermonuclear 550-kiloton warhead, unlike other types of strategic intercontinental ballistic missiles, in short time can be replaced by a warhead with multiple independently targetable warheads with a yield of 150 kilotons. In addition, the Topol-M missile can be equipped with a maneuvering warhead. The new nuclear warhead, according to media reports, can overcome the US missile defense system, which is confirmed by the results of tests of the complex (November 21, 2005) with a new warhead. The probability of overcoming American missile defense is currently 60-65 percent, in the future - more than 80.

It should be noted that when creating the ICBM warhead, the technologies and developments obtained during the creation of the warhead for the Topol were used to the maximum, which made it possible to reduce the cost and shorten the development time. The new warhead, despite such unification, is much more resistant to damaging factors nuclear explosion and the action of weapons, which are based on new physical principles, compared to its predecessor, have a lower specific gravity, and also have more advanced safety mechanisms during transportation, storage and being on combat duty. The warhead has an increased efficiency of fissile materials. This warhead was created without testing components and parts during full-scale explosions (a first for the domestic military industry).

The 15Zh65 missile is equipped with a complex of missile defense breakthrough systems (KSP ABM), which includes passive and active decoys, as well as means of distorting the characteristics of the warhead. False targets are indistinguishable from warheads in all ranges electromagnetic radiation(laser, optical, radar, infrared). They make it possible to imitate the characteristics of BBs according to almost all selective characteristics in all sections of the descending branch of their flight trajectory, are resistant to PFYAV, etc. These decoys are the first ones capable of resisting radar stations with super resolution. Means for distorting the characteristics of the warhead consist of a radio-absorbing coating, aerosol sources of infrared radiation, active radio interference generators, and so on.


The 15Zh65 missile can be operated as part of a stationary (15P065) or mobile (15P165) ballistic missile system. In this case, for the stationary version, silo missile launchers are used, which are removed from service or destroyed in accordance with START-2. A stationary group is created by converting silo launchers 15P735 and 15P718.

The 15P065 combat stationary silo missile system includes 10 15Zh65 missiles in 15P765-35 launchers, as well as one unified 15V222 high-security type CP (placed in the silo on a suspension using special shock absorption). Work on the conversion of silo 15P735 to accommodate Topol-M missiles was carried out under the leadership of Dmitry Dragun at the Vympel Design Bureau.

During combat duty, the 15Zh65 missile is housed in a metal TPK. The transport and launch container is unified for various types of silos and combines the functions of a transport and reloading machine and an installer. The transport and installation unit was developed in design bureau"Motor".

Mobile-based intercontinental ballistic missiles "Topol-M" are deployed as part of the 15P165 complex. The mobile-based missile is housed in a high-strength fiberglass transport and launch container on an MZKT-79221 (MAZ-7922) all-terrain chassis with eight axles from the Minsk Wheel Tractor Plant. Structurally, the TPK is practically no different from the mine version. The launcher and its adaptation to the tractor were carried out by the Titan Design Bureau. Serial production of launchers is carried out at the Volgograd production association "Barricades". The mass of the launcher is 120 tons, width - 3.4 meters, length - 22 meters. Six of the eight pairs of wheels are swivel (the first and last three axles), which provides exceptional maneuverability for such dimensions (the turning radius, for example, is only 18 meters) and maneuverability. The ground pressure is half that of a conventional truck. The launcher engine is a 12-cylinder V-shaped 800-horsepower YaMZ-847 diesel engine with turbocharging. The depth of the ford is 1.1 meters. When creating 15P165 units and systems, several fundamentally new technologies were used. decisions. For example, the partial suspension system makes it possible to deploy the Topol-M launcher on soft soils. The maneuverability and maneuverability of the installation have been improved, increasing its survivability. "Topol-M" can launch missiles from any point in the positional area and has improved camouflage means against optical and other reconnaissance means.

The characteristics of the Topol-M missile system can significantly increase readiness missile forces strategic purpose to carry out combat missions in different conditions, ensure secrecy, maneuverability of actions and survivability of individual launchers, units and units, as well as autonomous operation and reliability of control for a long time (without replenishment of materiel). Aiming accuracy has been almost doubled, the accuracy of determining geodetic data has been increased by one and a half times, and the launch preparation time has been halved.

The re-equipment of units of the strategic missile forces is carried out using the existing infrastructure. Stationary and mobile versions are fully compatible with existing communications and combat control systems.

Tactical and technical characteristics of the 15Zh65 rocket:
Maximum firing range – 11000 km;
Number of steps – 3;
Launch weight – 47.1 t (47.2 t);
Throwing weight – 1.2 t;
The length of the rocket without the warhead is 17.5 m (17.9 m);
Rocket length - 22.7 m;
Maximum case diameter – 1.86 m;
Warhead type – nuclear, monoblock;
Warhead equivalent – ​​0.55 Mt;
Circular probable deviation – 200 m;
The diameter of the TPK (without protruding parts) is 1.95 m (for 15P165 – 2.05 m).

Performance characteristics of MZKT-79221 (MAZ-7922):
Wheel formula – 16x16;
Turning radius – 18 m;
Ground clearance – 475 mm;
Loaded weight – 40 tons (without combat equipment);
Load capacity – 80 t;
Maximum speed – 45 km/h;
Power reserve – 500 km.

Prepared based on materials:
http://rbase.new-factoria.ru
http://www.arms-expo.ru
http://www.kap-yar.ru
http://army.lv
http://military-informer.narod.ru

DATA FOR 2019 (standard update)
Complex RS-12M / 15P158.1 / 15P158 "Topol", missile RT-2PM / 15Zh58 - SS-25 SICKLE / PL-5

Intercontinental ballistic missile (ICBM) / mobile ground-based missile system (MGRS). Preliminary development of the complex project has been carried out since 1975 by the Moscow Institute of Thermal Engineering (MIT) under the leadership of Alexander Davidovich Nadiradze on the basis of ICBMs and MRSDs. Chief designer since 1987 - Boris Lagutin (until 1993). The full development of the Topol ICBM for use as part of the PGRK began according to the Resolution of the USSR Council of Ministers dated July 19, 1976 ( ). The next Resolution of the USSR Council of Ministers on the development of the Topol complex with solid fuel ICBMs was issued on July 19, 1977.

In 1979, testing began on the production of charges for the engines of the second and third stages of the rocket at the Pavlograd Chemical Plant ().

The first launch of an ICBM from a specially equipped silo launcher was carried out at the Kapustin Yar test site on October 27, 1982. Probably, one of the launch tasks was to check the operation of the launch systems and the missile’s exit from the TPK, followed by the launch of the main engine of the first stage. The launch was unsuccessful. Flight design tests (FDT) of the 15Zh58 ICBM began with a launch from a converted silo launcher at the Plesetsk training ground on February 8, 1983. The launch was completely successful. In total in 1983-1984. 12 launches took place under the LCI program. All launches were carried out at the Plesetsk test site. The test launch of the LCI program took place on November 20, 1984.

Serial production of the Topol missile system began according to the Resolution of the USSR Council of Ministers dated December 28, 1984 ( ist. - Strategic missiles). The missile has been mass-produced by the Votkinsk Machine-Building Plant since 1985. Self-propelled launchers of the complex were produced by the Barrikady plant (Volgograd). In 1984, the construction of permanent base structures and the equipment of combat patrol routes for the PGRK began. The objects were located in those divisions of the Strategic Missile Forces where the RT-2P, MR-UR-100 and UR-100N ICBMs were removed from combat duty. At the same time, the PGRK complex was deployed in the positional areas of the Pioneer MRBM ( ist. - Strategic missiles).

The first division of the PGRK 15P158.1 "Topol" entered combat duty on July 23, 1985 as part of the Strategic Missile Forces regiment in Yoshkar-Ola, Mari Autonomous Okrug of the USSR (). Until the end of 1985, another PGRK floor took up combat duty ( ist. - Strategic missiles). The first regiment of the Strategic Missile Forces with RS-12M missiles, equipped with the mobile regimental command post "Barrier" (), was put on combat duty on April 28, 1987 in the area of ​​Nizhny Tagil and on May 27, 1988 the first missile regiment was put on combat duty with a modernized mobile regimental command post "Granit" (), based in Irkutsk (). The Topol ICBM complex was adopted by the USSR Strategic Missile Forces on December 1, 1988 ().

Since 1997, there has been a gradual replacement of the RS-12M ICBMs with ICBMs and .


http://tvzvezda.ru/).


Launches of the RS-12M Topol ICBM:
№pp date Launch location Result Description
29.09.1981 Plesetsk There was probably no such launch, but it is mentioned in a number of foreign sources (). The date is referred to as the start date of LCI in some sources (). The launch is mentioned in the book on the history of the Plesetsk cosmodrome, 2002 edition. Most likely this is a dart test of an early prototype/test rocket of the 15Zh58 missile
30.10.1981 Plesetsk Throw launch (?)
25.08.1982 Plesetsk Throw launch (?)
00 27.10.1982 Kapustin Yar unsuccessful launch Launch from a specially converted silo.
01 08.02.1983
(02/18/1983 according to other data)
Plesetsk successful launch The launch was carried out by the combat crew of the 6th Research University. Launch of an RT-2P missile from a specially converted silo launcher (). First launch of the 15Zh58 rocket.
02 03.05.1983
(05/05/1983 according to other data)
Plesetsk successful launch
Launch of an RT-2P missile from a specially converted silo launcher (). 2nd start LKI ()
03 30.06.1983
(05/31/1983 according to other data)
Plesetsk successful launch
Launch of an RT-2P missile from a specially converted silo launcher (). 3rd launch of LCI ()
04 10.08.1983 Plesetsk emergency start
First launch from SPU PGRK. 4th launch of LCI. In the book "Navigators of the Planets" (under the general editorship of E.L. Mezhiritsky, 2008), the launch is called an emergency - not through the fault of the control system ().
05 25.10.1983
Plesetsk successful launch 5th launch of LCI ()
06 20.02.1984 Plesetsk successful launch 6th launch of LCI ()
07 27.03.1984 Plesetsk successful launch 7th launch of LCI ()
08 23.041984 Plesetsk successful launch 8th launch of LCI ()
09 23.05.1984 Plesetsk successful launch 9th launch of LCI ()
10 26.07.1984 Plesetsk successful launch
10th launch of LCI ()
11 10.09.1984 Plesetsk successful launch
11th launch of LKI ()
12 02.10.1984 Plesetsk emergency start
12th launch of LCI (). In the book "Navigators of the Planets" (under the general editorship of E.L. Mezhiritsky, 2008), the launch is called an emergency - not through the fault of the control system ().
13 20.11.1984 Plesetsk successful launch Test launch LKI ()
14 06.12.1984 Plesetsk successful launch 13th launch of LKI
15 06.12.1984 Plesetsk successful launch 14th launch of LKI
16 29.01.1985 Plesetsk emergency start
15th launch of the LKI () program. In the book "Navigators of the Planets" (under the general editorship of E.L. Mezhiritsky, 2008), the launch is called an emergency - not through the fault of the control system ().
17 21.02.1985 Plesetsk successful launch Combat training launch
18 22.04.1985 Plesetsk successful launch Combat training launch ()
19 14.06.1985 Plesetsk successful launch
Combat training launch ()
20
06.08.1985 Plesetsk successful launch
Combat training launch ()
21 25.08.1985
(08/28/1985 according to other data)
Plesetsk successful launch
Combat training launch ()
22 04.10.1985 Plesetsk successful launch
Combat training launch ()
23 24.10.1985
(10/25/1985 according to other data)
Plesetsk successful launch
Combat training launch ()
24 06.12.1985 Plesetsk successful launch
()
25 18.04.1986 Plesetsk successful launch
()
26 20.09.1986 Plesetsk successful launch
()
27 29.11.1986 Plesetsk successful launch
()
28 25.12.1986 Plesetsk successful launch
()
29 11.02.1987 Plesetsk successful launch
()
30 04/26/1987 (05/26/1987 according to other data)
Plesetsk successful launch
()
31 30.06.1987 Plesetsk successful launch
()
32 14.07.1987 Plesetsk successful launch
()
33 31.07.1987 Plesetsk successful launch
()
34 23.12.1987 Plesetsk successful launch
()
35
23.12.1987 Plesetsk successful launch Last launch of the joint testing program PGRK "Topol" (). 16th launch of LCI ().
36
29.04.1988 Plesetsk successful launch Combat training launch of the Topol ICBM ()
37 07/05/1988 (08/05/1988 according to other data)
Plesetsk successful launch ()
38 14.09.1988 Plesetsk successful launch
39 08.10.1988
(10/20/1988 according to other data)
Plesetsk successful launch ()
40 09.12.1988 Plesetsk successful launch ()
41 07.02.1989 Plesetsk successful launch
()
42 21.03.1989 Plesetsk successful launch
()
43 15.06.1989 Plesetsk successful launch
()
44 20.09.1989 Plesetsk successful launch
()
45 10/26/1989 (10/27/1989 according to other data)
Plesetsk successful launch
()
46
29.03.1990 Plesetsk successful launch ()
47 21.05.1990 Plesetsk successful launch ()
48 24.05.1990 Plesetsk successful launch
49 31.07.1990 Plesetsk successful launch ()
50 08.08.1990
Plesetsk, site No. 169 successful launch 1st launch of the test program for the 15YU75 command missile based on the 15ZH58 missile of the Perimeter-RC system ( , )
51 16.08.1990 Plesetsk successful launch ()
52 17.10.1990 Plesetsk, site No. 169 successful launch 2nd launch of the 15YU75 command rocket based on the 15ZH58 rocket of the Perimeter-RC system ( , )
53 01.11.1990 Plesetsk, site No. 169 successful launch 3rd launch of the 15YU75 command rocket based on the 15ZH58 rocket of the Perimeter-RC system ( , )
54 25.12.1990 Plesetsk, site No. 169 successful launch 4th launch of the 15YU75 command rocket based on the 15ZH58 rocket of the Perimeter-RC system ( , )
55 25.12.1990 Plesetsk successful launch ()
56
07.02.1991 Plesetsk successful launch () Combat training launch from the 2nd launcher of the 306th missile regiment ()
57
05.04.1991 Plesetsk successful launch
()
58
25.06.1991 Plesetsk successful launch
()
59 19.08.1991
(08/20/1991 according to other data)
Plesetsk successful launch
()
60
02.10.1991 Plesetsk successful launch
()
61
25.02.1993 Plesetsk successful launch
()
62 25.03.1993 Plesetsk partially successful launch LV EK-25 "Start-1" ( , )
63 23.07.1993 Plesetsk successful launch
()
64 22.06.1994 Plesetsk successful launch
()
65 23.09.1994 Plesetsk successful launch
()
66
10.11.1994 Plesetsk successful launch
()
67
28.03.1995 Plesetsk emergency start
LV "Start" (5 stages), load - overall weight mock-up EKA-2 and the Gurwin Techsat 1A and UNAMSat A satellites were not launched into orbit ().
68
14.04.1995 Plesetsk successful launch
()
69 10.10.1995 Plesetsk successful launch
()
70 10.11.1995 Plesetsk successful launch
71 17.04.1996 Plesetsk successful launch
()
72 03.10.1996 Plesetsk successful launch
()
73 09.11.1996 (05.11.1996 according to other data)
Plesetsk successful launch
()
74 04.03.1997 Free successful launch The first successful launch of the Start-1.2 launch vehicle (), the Zeya satellite ().
75
03.10.1997 Plesetsk successful launch ()
76
24.12.1997 Free successful launch LV "Start-1" (), satellite Early Bird ().
77
16.09.1998 Plesetsk successful launch
()
78 01.10.1999 Plesetsk successful launch
()
79 11.10.2000 Plesetsk successful launch
Combat training launch ()
80 05.12.2000 Free successful launch
LV "Start-1" (), satellite EROS A ().
81 16.02.2001 Plesetsk successful launch
Combat training launch ()
82 20.02.2001 Free successful launch
LV "Start-1" (), satellite "Odin" ().
83 03.10.2001 Plesetsk successful launch
Combat training launch ()
84 01.11.2001
19-20 Moscow time
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). Presumably testing combat equipment ().
85
12.10.2002 Plesetsk successful launch
Combat training launch ()
86
27.03.2003
12-27 Moscow time
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The missile remained on combat duty for 18 years. According to media reports, this is the 79th launch of the Topol from the Plesetsk training ground and the 43rd combat training launch ().
87
18.02.2004
13-30 Moscow time
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). According to Western data, it is possible that the launch was carried out for the purpose of testing promising combat equipment (,).
88
02.11.2004 Plesetsk successful launch
89
01.11.2005 Kapustin Yar successful launch
According to Western data (target IP-10 is mentioned), the launch target of the test advanced combat equipment, 15Zh58E missile. The launch took place at the Sary-Shagan test site ()
90
29.11.2005
10-44 Moscow time
Plesetsk
successful launch Combat training launch of the Topol ICBM at the Kura training ground (Kamchatka). The purpose of the launch is to test the reliability of the rocket with a long shelf life. For the first time in the Strategic Missile Forces, the shelf life of a missile was 20 years ().
91
25.04.2006 Free successful launch LV "Start-1" (), satellite EROS B ().
92
03.08.2006
Plesetsk
successful launch Combat training launch at the Kura training ground (Kamchatka).
93
18.10.2007
09-10 Moscow time
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The service life has been extended to 21 years.
94
08.12.2007
17-43 Moscow time
Kapustin Yar successful launch
95
28.08.2008 Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). Probably the 15Zh58E rocket. " Experimental combat unit rockets with high accuracy hit a conditional target at a training ground on the Kamchatka Peninsula, thereby demonstrating the ability to reliably hit targeted highly protected objects" ().
96
12.10.2008
11-24 Moscow time
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka).
97
10.04.2009
12-09 Moscow time
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The launch was carried out by the crew of the Irkutsk Strategic Missile Forces unit. The launched missile was manufactured in 1987 and until August 2007 was on combat duty at the Teikovsky missile formation (,).
98
10.12.2009 Kapustin Yar successful launch advanced combat equipment. The launch was carried out at the Sary-Shagan test site ().
99
28.10.2010
Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The launched missile was manufactured in 1987 and until August 2007 was on combat duty at the Teikovsky missile formation ( Ivanovo region), and then was stored in one of the arsenals of the Strategic Missile Forces ().
100
05.12.2010 Kapustin Yar successful launch Launch of the 15Zh58E "Topol-E" rocket for testing purposes advanced combat equipment. The launch was carried out at the Sary-Shagan test site ().
101
03.09.2011 Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The missile was produced by industry in 1988 and until March 2011 was on duty at the Novosibirsk missile formation. According to media reports, the missile was launched with a new experimental warhead ().
102
03.11.2011
10-45 Moscow time
Plesetsk successful launch Launch as part of work to extend the service life of Topol missiles, launch at the Kura test site (Kamchatka). The launch used a rocket produced by industry in 1987 and as of July 2007 the rocket was on combat duty in the Tagil formation of the Strategic Missile Forces. The launch was carried out by the space forces and personnel of the Strategic Missile Forces unit from Yoshkar-Ola. Based on the launch results, the service life of the RS-12M missiles was extended to 25 years.
103
07.06.2012
21-39 Moscow time
Kapustin Yar successful launch Launch of the Topol-E missile to test advanced combat equipment. The launch took place at the Sary-Shagan test site. “The goals of this launch were to confirm the stability of the main flight characteristics of missiles of this class during extended service life, to test measuring instruments of various types of measuring systems in the interests of the Armed Forces of the Russian Federation, and to conduct another test combat equipment for intercontinental ballistic missiles" ().
104
19.10.2012 Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). “The goals of this launch were to confirm the stability of the main flight characteristics of missiles of this class during the period of operation extended to 24 years and to assess the possibility of extending the service life by 25 years” ().
105
10.10.2013
17-39 Moscow time
Kapustin Yar successful launch Launch of the Topol-E rocket for testing purposes advanced combat equipment. The launch took place at the Sary-Shagan test site. According to Western data TEST 1 ()
106
30.10.2013 Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The launch was carried out by a rocket and a crew from the 14th division of the Strategic Missile Forces (Yoshkar-Ola). The launch was carried out as part of an exercise with a surprise check of the readiness of the aerospace defense and strategic missile forces.
107
27.12.2013
21-30 Moscow time
Kapustin Yar successful launch Launch of the Topol-E rocket for testing purposes advanced combat equipment. The launch took place at the Sary-Shagan test site. According to Western data TEST 2 ()
108
04.03.2014
22-10 Moscow time
Kapustin Yar successful launch Topol-E rocket. “The purpose of the launch was to test advanced combat equipment for intercontinental ballistic missiles. The training warhead of the missile hit a conditional target at the Sary-Shagan training ground with specified accuracy. According to Western data TEST 3 ()
-
March 2014 Kapustin Yar launch plan 2
In addition to the launch on 03/04/2014, according to the Ministry of Defense of Kazakhstan, in March it was planned to conduct two more launches of ICBMs at the Sary-Shagan test site ().
109
08.05.2014 Plesetsk successful launch Combat training launch at the Kura training ground (Kamchatka). The launch was carried out as part of an exercise with a sudden check of the readiness of the aerospace defense and strategic missile forces ().
110
20.05.2014
21-08 Moscow time
Kapustin Yar successful launch Topol-E rocket. “The purpose of the launch was to test advanced combat equipment for intercontinental ballistic missiles. The training warhead of the missile hit a conditional target at the Sary-Shagan test site () with specified accuracy. According to Western data TEST 4 ()
111
11.11.2014 Kapustin Yar emergency start
According to Western data, the Topol-E missile. The shooting took place at the Sary-Shagan training ground. Presumably one of the launches with promising combat equipment. According to Western data TEST 5 ()
112 22.08.2015
18-13 Moscow time
Kapustin Yar successful launch The rocket is probably Topol-E. “The purpose of the launch was to test the advanced combat equipment of intercontinental ballistic missiles. The training warhead of the missile hit a conditional target at the Sary-Shagan test site with specified accuracy.
113 30.10.2015 Plesetsk successful launch Successful launch as part of the training of the strategic forces control system.
114 17.11.2015
15-12 Moscow time
Kapustin Yar successful launch
115 24.12.2015
20-55 Moscow time
Kapustin Yar successful launch The rocket is probably Topol-E. “The purpose of the launch was to test advanced combat equipment for ICBMs.” The training warhead of the missile hit a simulated target at the Sary-Shagan training ground with specified accuracy.
116 09.09.2016 Plesetsk successful launch The purpose of the launch was to confirm the basic flight performance characteristics of the Topol intercontinental ballistic missile, as well as test promising combat equipment and means of overcoming missile defense. The set launch goals were achieved in full. The experimental warhead of the missile hit a conditional target with high accuracy at the training ground of the Kamchatka Peninsula () 0 The Topol-E missile is possibly the first launch of the State Test program of a new type of warhead developed by MIT.
117 10/12/2016 Plesetsk successful launch Successful launch at the Kura test site in Kamchatka as part of the program to confirm the extended service life of ICBMs (). This launch was probably carried out by a command rocket 15Yu75 ().
118 November 25, 2016
Plesetsk
site No. 167
successful launch According to Western data, the successful launch of a 15YU75 missile with a special warhead from the LC167 site of the Plesetsk training ground across the Kura battlefield in Kamchatka to test the combat readiness of the Perimeter-RC system ()
- 2016-2017 According to the Russian Ministry of Defense for 2016-2017. planned to conduct 7 launches of the Topol ICBM. The insured amount for one launch is 180 million rubles.
119 September 26, 2017 Kapustin Yar (site 107) successful launch Topol-E rocket. “The purpose of the launch was to test advanced combat equipment for ICBMs.” The training warhead of the missile hit a simulated target at the Sary-Shagan training ground with specified accuracy. “During the test, experimental data were obtained on the parameters of the target environment formed by the combat equipment of promising ballistic missiles in the process of overcoming missile defense. Subsequently, this information will be used in the interests of developing effective means of overcoming missile defense to equip a promising group of Russian ballistic missiles with them.”
120 October 26, 2017 Plesetsk successful launch Successful launch at the Kura test site (Kamchatka) during the exercise of strategic nuclear forces.
121 December 26, 2017 Kapustin Yar (site 107) successful launch The rocket is probably Topol-E. The purpose of the launch was to test promising combat equipment for intercontinental ballistic missiles. During the test, experimental data was obtained that will be used in the interests of developing effective means of overcoming missile defense and equipping a promising group of Russian ballistic missiles with them ().
122 04.07.2018 Kapustin Yar (site 107) accident According to Western data, the emergency launch of the Topol-E missile at the Sary-Shagan test site - launch not confirmed from other sources ()
123 18.10.2018 Plesetsk successful launch Launch within the framework of the program to extend the warranty period of the Topol missile ()
124 12/11/2018 (12/06/2018 according to Western data)
Kapustin Yar (site 107) accident The launch of the Topol-E rocket at the 107th site at the Sary-Shagan test site ended with the explosion of the first stage of the rocket in the first seconds of flight. Official version- explosion anti-aircraft missile complex S-350 ().
125 July 26, 2019 Kapustin Yar (site 107) successful launch Launch of the Topol-E missile at the Sary-Shagan training ground to test new combat equipment ()

Removal from service: The RS-12M Topol ICBM is planned to be withdrawn from service in 2022 (December 2016, ).

Launch and ground equipment:
silo- an experimental experimental mine launcher was used at the first stage of ICBM testing. In the mid-1980s, some Western sources speculated that the SS-25 ICBM would be deployed in silos, among other things.

PGRK - autonomous launcher APU 15U128.1- missile system 15P158.1 "Topol" with a point" - MAZ-7912 chassis - this type of SPU was part of the Topol PGRK on initial stage deployment of complex facilities. The SPU was developed by the Titan Central Design Bureau of the Barrikady plant (Volgograd). In part, the source notes that the 15U128.1 installation was precisely an SPU, and not an APU.

The length of the APU with TPK is 22.3 m (Poster from the exhibition "Army-2015", )
Chassis length - 17.3 m
APU width - 3.85 m
Minimum turning radius - 27 m
Power reserve - 400 km


SPU 15U128.1 on MAZ-7912 chassis with TPK - Topol complex ( official photo from SALT treaty documents, http://www.fas.org).


SPU 15U128.1 on a MAZ-7912 chassis without TPK - Topol complex (official photo from documents on SALT agreements, http://www.fas.org).


Serial APU 15U128.1 on the MAZ-7912 chassis, complex 15P158.1 (http://military.tomsk.ru/forum).


PGRK - SPU 15U168- missile system 15P158 "Topol" - MAZ-7917 chassis. According to information from a number of historians, the SPU can launch from any point on the patrol route without prior geodetic reference and marking of the starting position (probably not true). The SPU was developed by the Titan Central Design Bureau of the Barrikady plant (Volgograd) under the leadership of V.M. Sobolev and V.A. Shurygin. The MAZ-7917 chassis was developed at the Minsk Automobile Plant under the leadership of V.P. Chvyalev ( ist. - Strategic missiles). The SPU is equipped with an autonomous power supply, a navigation system, radio and official communications equipment, a set of spare parts, a set of fastening and covering the unit on a railway platform.

Calculation - 3 people
Engine - diesel with a power of 710 hp.
Length of SPU with TPK - 22303 mm (Poster from the exhibition "Army-2015", )
SPU length without TPK - 19520 mm ()
Chassis length - 18.4 m
TPK length - 22.3 m ()
TPK diameter - 2 m ()
The width of the APU in the stowed position is 3.85 m (Poster from the exhibition "Army-2015", )
Height with TPK - 4350 mm (Poster from the exhibition "Army-2015", )
Height without TPK - 3000 mm ()
Ground clearance with full load - 475 mm ()
Full mass APU - 105.1 t (Poster from the exhibition "Army-2015", )
Minimum turning radius - 26 m (Poster from the exhibition "Army-2015", )
Power reserve - 400 km
Maximum speed ():
- 40 km/h (roads of 1-2 categories)
- 25 km/h (roads 3-4 categories)


APU 15U168 on a MAZ-7917 chassis with a TPK - the Topol complex (official photo from documents on SALT agreements, http://www.fas.org).


APU 15U168 on a MAZ-7917 chassis without TPK - Topol complex (official photo from documents on SALT agreements, http://www.fas.org).


TPK missiles 15Zh58 / RS-12M (official photo from documents on the SALT treaties, http://www.fas.org).


APU 15U168 on the MAZ-7917 chassis of the Topol complex after a missile launch at the Plesetsk test site, 2000s (http://militaryphotos.net).


APU 15U168 of the 15P158 “Topol” complex of the Novosibirsk division of the Strategic Missile Forces, 12/09/2011 (photo - Alexander Kryazhev, http://visualrian.ru/).


APU 15U168 of the 15P158 "Topol" complex at the exercises of graduates of the Serpukhov Military Academy of the Strategic Missile Forces, publication 12.12.2013 (photo - Konstantin Semenov, http://tvzvezda.ru/).


SPU 15U168 of complex 15P158 "Topol", Military Historical Artillery Museum, St. Petersburg, 05/09/2012 (photo - A.V. Karpenko, http://bastion-karpenko.narod.ru/).


http://rvsn.ruzhany.info/).


SPU 15U168 of the 15P158 "Topol" complex in the pre-launch position (http://www.nationaldefense.ru).


SPU 15U168 of the 15P158 "Topol" complex. On the starboard side of the SPU, some required structural elements are missing. Exhibition "Patriot", Kubinka, 2015 (photo - Vitaly Kuzmin, http://vitalykuzmin.net/).


The aft part of the SPU 15P168 of the 15P158 "Topol" complex (Strategic ground-based missile systems. M., "Military Parade", 2007).


http://pressa-rvsn.livejournal.com/).


For the first time, control system cables were cut off using pyroelectric devices ( ist. - Strategic missiles). TPK is covered with a special fire-resistant intumescent coating SGK-1.

Unit 15U135 "Krona" - a hangar with a sliding roof for carrying out combat duty PGRK in a stationary equipped position. The rocket could be launched directly from the structure, which was equipped with a sliding roof.

Rocket RT-2PM / 15Zh58:
Design- a three-stage solid-fuel rocket with a sequential arrangement of stages. For the first time in the USSR, the stage bodies are made of organoplastic using the method of continuous winding of the “cocoon” type. All stages are equipped with transition compartments.

The first stage of the rocket is equipped with 4 lattice aerodynamic stabilizers and 4 lattice aerodynamic rudders combined with gas-jet rudders.

Launch of the 15Zh58 / RS-12M Topol ICBM from the Plesetsk test site, presumably 2007-2010. (http://pressa-rvsn.livejournal.com/).


The spent first stage of the Topol ICBM after launch from the Plesetsk test site in northern Russia, photo no later than 2013 (http://www.edu.severodvinsk.ru/).


One of the launches of the 15Zh58 / RS-12M "Topol" ICBM from the Plesetsk test site, presumably 2007-2012, published 01/15/2013 (http://pressa-rvsn.livejournal.com/).


Rocket composition:
- starting pad

1st stage - solid propellant rocket engine with a fixed nozzle with gas-jet rudders (synchronized with aerodynamic lattice rudders).

2nd stage - solid propellant rocket engine with a fixed nozzle with a fixed nozzle.

Stage 3 - solid propellant rocket engine with one fixed nozzle with a fixed nozzle. In the front part of the solid propellant rocket engine there are engine thrust cut-off windows, which were opened using extended detonating charges (EDC).

Warhead launch stage


http://rvsn.ruzhany.info/).


Rocket 15Zh58 of the 15P158 "Topol" complex. The photo was probably taken at the MIK at the Ledyanoe site of the Plesetsk training ground (http://rvsn.ruzhany.info/).


Control system: autonomous inertial rocket control system using an on-board computer. The system was developed by NPO Automation and Instrumentation (chief designer Vladimir Lapygin). Firing accuracy has been increased through the use of new, more sensitive accelerometers and an on-board computer that implements direct guidance methods, which calculates the flight path of the warhead to the point of impact at the current moment in time. ( ist. - Strategic missiles). The aiming system was developed by the design bureau of the Arsenal plant (Kiev), the chief designer is Seraphim Parnyakov. All pre-launch preparation and launch operations, as well as preparatory and routine work, are fully automated.


One of the main components of the missile aiming system is the automatic gyrocompass (AGC) SPU 15U168 of the 15P158 Topol complex. On the starboard side of the SPU, some required structural elements are missing. Exhibition "Patriot", Kubinka, 2015 (photo - Vitaly Kuzmin, http://vitalykuzmin.net/).


The heading and pitch control was carried out at the 1st stage by gas-jet rudders synchronized with aerodynamic rudders, at the second and third stages - by gas injection into the supercritical region of the nozzle. Range control was carried out by cutting off the thrust of the third stage engine.

Engines: development of production and production of charges for solid propellant rocket engines of the 2nd and 3rd stages of the rocket began at the Pavlograd chemical plant in 1979 ().

Starting pad

Stage 1 - solid propellant rocket engine with a new mixed fuel with increased density and specific impulse developed by LNPO Soyuz (Lyubertsy). The engine is equipped with one fixed nozzle with gas-jet rudders (synchronized with aerodynamic lattice rudders).

The rocket engines underwent fire tests at NIO-1 (Sofrinsky artillery range of the Research Institute "Geodesy") ().


The first stage of the 15Zh58 / RS-12M rocket. The photo was probably taken at the MIK at the Ledyanoe site of the Plesetsk training ground (official photo from documents on the SALT treaties, http://www.fas.org).


Probably, the preparation of the engine of the 1st stage of the 15Zh58 Topol ICBM for experimental testing for the purpose of experimental combustion under the joint program of MIT, FCDT Soyuz, Moscow State University and the Lockheed Martin company (USA) at NIO-1 (Sofrinsky artillery range of the Research Institute "Geodesy") ().


Nozzle block of the first stage of the 15Zh58 rocket of the 15P158 “Topol” complex. The photo was probably taken at the MIK at the Ledyanoe site of the Plesetsk training ground (http://rvsn.ruzhany.info/).


- 2nd stage - solid propellant rocket engine with a new mixed fuel with increased density and specific impulse developed by LNPO "Soyuz" (Lyubertsy). The engine is equipped with one fixed nozzle with a fixed nozzle. The thrust vector was controlled by gas injection into the supercritical region of the nozzle. Injection is provided by a special gas generator ( ist. - Strategic missiles).


The second stage of the 15Zh58 rocket of the 15P158 Topol complex. The photo was probably taken at the MIK at the Ledyanoe site of the Plesetsk training ground (http://rvsn.ruzhany.info/).


- 3rd stage - solid propellant rocket engine with a new mixed fuel with increased density and specific impulse developed by LNPO "Soyuz" (Lyubertsy). The engine is equipped with one fixed nozzle with a fixed nozzle. In the front part of the solid propellant rocket engine there are 8 engine thrust cut-off windows, which were opened using extended detonating charges (EDC). The thrust vector was controlled by gas injection into the supercritical region of the nozzle. For the first time, part of the engine charge is made of metal-free fuel - the combustion products of this part of the charge are discharged through filters to special injection valves through devices in the nozzle flange ( ist. - Strategic missiles).


The third stage of the 15Zh58 rocket of the 15P158 Topol complex. The photo was probably taken at the MIK at the Ledyanoe site of the Plesetsk training ground (http://rvsn.ruzhany.info/).


- warhead launch stage - 4 x solid propellant rocket motor


The launch stage of the 15Zh58 missile warhead of the 15P158 Topol complex. The photo was probably taken at the MIK at the Ledyanoe site of the Plesetsk training ground (http://rvsn.ruzhany.info/).

Performance characteristics of the missile:
Length:
- full - 21.5 m
- without warhead - 18.5 m
- first stage - 8.1 m
- second stage - 4.6 m
- third stage - 3.9 m
- head part - 2.1 m
Diameter:
- first stage housing - 1.8 m
- second stage housing - 1.55 m
- third stage housing - 1.34 m
- TPK (transport and launch container) - 2.0 m

The area of ​​the combat patrol area is 125,000 sq. km

Warhead types:

The basic option is a thermonuclear warhead with a power of 550 kt (,). The charge was developed by VNIIEF under the leadership of Samvel Kocharyants. The warhead is equipped with a set of means to overcome missile defense.
Warhead mass - 1000 km


One of the launches of the Topol-E ICBM from the Kapustin Yar test site at the Sary-Shagan test site, 2013 or earlier (TV footage).


Launch of the Topol-E ICBM from the Kapustin Yar test site, 05/20/2014 (Zvezda TV channel).


Projections of the Topol and Topol-E missiles (15Zh58 and 15Zh58E) - SS-25 SICKLE (, 2015).


- "Start-1"- satellite launch vehicle. The development of the launch vehicle began in 1989. The first launch took place on March 25, 1993.
Design - 5-stage launch vehicle.
Payload mass for low orbit - 500 kg


Presumably the photo shows the launch of the Start-1 launch vehicle on March 25, 1993 (http://www.bmstu.ru/).


Launch vehicle "Start-1" in the workshop of the Votkinsk Machine-Building Plant (http://www.iz-article.ru/).


Launch vehicle "Start-1" in the workshop of the Votkinsk Machine-Building Plant (Yu. Solomonov. Nuclear vertical. M., Intervestnik, 2009).


Launch of the Start launch vehicle.


Infrastructure and aids complex:
As of 1999, 4-5 missile regiments were based simultaneously in one positional area of ​​the PGRK. The regiment includes three missile divisions - i.e. 9 SPU, a mobile command post and a stationary command post at the place of permanent deployment of the regiment. ( ist. - Strategic missiles).

The complex includes:
- self-propelled ICBM launchers;
- combat control vehicle (MCV);
- communication machine;
- combat duty support vehicles;

The combat duty support vehicle (MOBD) 15В148 / 15В231 of the Topol complex on the MAZ-543M chassis was intended for recreation of personnel on combat duty.


Combat duty support vehicle (MOBD) 15В148 / 15В231 of the Topol complex on the MAZ-543M chassis (official photo from documents on SALT agreements, http://www.fas.org).


Combat duty support vehicle (MOBD) 15В148 / 15В231 of the Topol complex on the MAZ-543M chassis (http://rvsn.ruzhany.info/).


Combat duty support vehicle (MOBD) 15В148 / 15В231 of the Topol complex on the MAZ-543M chassis at the exercises of graduates of the Serpukhov Military Academy of the Strategic Missile Forces, publication 12/12/2013 (photo - Konstantin Semenov, http://tvzvezda.ru/).


Combat duty support vehicle (MOBD) 15B148 of the Topol complex on the MAZ-543M chassis. Exhibition "Patriot", Kubinka, 2015 (photo - Vitaly Kuzmin, http://vitalykuzmin.net/).


- a vehicle for driver training on the MAZ-7917 chassis.


A vehicle for driver training on the MAZ-7917 chassis (official photo from documents on SALT agreements, http://www.fas.org).


Tropospheric radio communication station 15B78 from the support equipment of the Topol complex on the MAZ-543M chassis. Exhibition "Patriot", Kubinka, 2015 (photo - Vitaly Kuzmin, http://vitalykuzmin.net/).


The set of arsenal equipment of the complex includes a transport trolley for the TPK, probably developed by the Titan Central Design Bureau (Volgograd) and produced at the Barrikady plant.

, the motto of the Topol-M missile systems division, “every launch of the Topol-M missile is excellent!” Designed to deliver a retaliatory and retaliatory strike. At the end of the article, as always, there is a video.
In 1985, the first regiment of mobile ground missile systems RT-2PM "Topol" entered combat duty, not to be confused with "M-koy", on the Internet photos of both complexes are usually found exactly as "Topol M", there is a photo below in the text, approximately from one perspective from which they can be compared. First, let's talk about the older ones. Well, a hint on how to immediately distinguish between versions.

View of the protective cover of the TPK and the complex of command instruments of the Topol PGRK, pay attention, there is something similar to the hatch on the cover, and on the M-ke it is on the other side.

Mobility has become a fundamental solution to the problem of secrecy of actions and survivability of intercontinental missile systems (a very controversial issue, secrecy and mobility with such mass and dimensions, first of all, attachment to the base, how many kilometers it will travel from it, it needs a road, and a good one, so the concept "mobile" is very conditional, with modern means For space reconnaissance, a metal object with a length of more than 24 m, a diameter of about 3.5 and a height of almost 5 m, which also emits a large amount of heat and electromagnetic radiation, is unlikely to be hidden.
The complex, which was REALLY difficult to track, was called the combat railway missile complex (BZHRK). The Strategic Missile Forces were liquidated in 2005, look who was at the helm of the country at that time. By the way, our American friends, the problem of launching from a railway platform has not been solved).

combat railway missile system photo

However, the distribution by random law complexes with a high degree of combat readiness took them out from under the enemy’s “disarming” strike. It is not for nothing that the Topol, which received the designation SS-25 Sickle in the USA and NATO, caused great concern there. Cool, we know which of our assets cause NATO “concern”. What do you know about their “toys”? By the way, Donald Cook brought them into the Black Sea without any concealment under 60 pieces (!), by the way, they have a radius of 2500 km, look at the incident in detail, but what are the newest ones, perhaps Trident is also heard of, more about it a little later AND THIS IS FAR NOT ALL. So soon work began on creating a new complex, or rather, a system of complexes of various types based, yes, even during the times of the USSR, so whatever one may say, nuclear shield still Soviet, the roots are definitely from there.

The Topol-M missile system at the Victory Parade. Moscow, 2011, please note there is no hatch on the protective cover

The decree of the Military-Industrial Commission of September 9, 1989 set out the development work of the “Universal” - a three-stage solid-fuel intercontinental ballistic missile for mobile and stationary (mine) complexes. The work involved cooperation between the Moscow Institute of Thermal Engineering (the main developer of the Topol mobile complex) and the Dnepropetrovsk Yuzhnoye Design Bureau (the traditional developer of silo ICBMs). But the collapse of the USSR made cooperation impossible. In 1992, it was decided to use the developments on the “Universal” to create the “Topol-M” complex with increased combat readiness and shooting accuracy. In February 1993, a decree of the President of the Russian Federation appeared on the development of the modernized Topol-M complex. Being a deep modernization of the existing complex, it would not violate the existing international agreements, but would allow in the long term to maintain the combat readiness and effectiveness of the Strategic Missile Forces.

In this regard, much attention was paid to the possibility of overcoming the promising missile defense of a potential enemy (which remained the same, the point is clear, we mean not the potential, but the enemy). The complex was designed to deliver a retaliatory and retaliatory strike, that is, it was supposed to retain the possibility of a successful launch even when exposed to the damaging factors of a nuclear explosion, passing through the atmospheric “nuclear umbrella.” Long combat duty was required various degrees readiness.

The echeloned security system of the Topol-M missile system, the number of security forces involved, is kept secret and is constantly changing

If anyone is interested, you can look at “”, a cooler machine “poplar”, the most famous difference is its multi-headedness. There is also a video of the launch, showing in detail the vehicles of the control, escort and security systems. They are similar for both PGRKs.

Let's return to the "poplar". The lead developer remained the Moscow Institute of Thermal Engineering, where the work was headed by the general designer B. N. Lagutin, and since 1997 by Yu. S. Solomonov. The nuclear charge was created under the leadership of G.N. Dmitriev at the Russian Federal Nuclear Center-Research Institute of Experimental Physics (Arzamas-1b), the control system was created at the NPO Automation and Instrument Making (Moscow) under the leadership of V.L. Lapygin and Yu.V. Trunov , charges of solid mixed fuel engines - at the Federal Center for Dual Technologies "Soyuz" (Dzerzhinsky Moscow Region) under the leadership of Z. P. Pak and Yu. M. Milekhin, graphite and composite structural elements - at the Central Research Institute Spetsmash, headed by V. A. Barynin, an automated combat control system - at NPO "Impulse" under the leadership of B. G. Mikhailov. The launcher for the mobile version was developed by the Volgograd Central Design Bureau "Titan" under the leadership of V. A. Shurygin, the hydraulic drives of self-propelled launchers were developed by the Central Research Institute of AG under the leadership of V. L. Solunin, the modification of the mine installations was carried out by the Moscow Design Bureau "Vympel" under the leadership of D. K. Dragun .

Comparison of Topol and Topol M missile systems, view from the same angle photo

New modeling and experimental testing techniques were used with a reduction in the number of pilot launches.

  • The mobile version of the complex received the index 15P165,
  • mine - 15P065,
  • the rocket itself is 15Zh65.
  • “Topol-M” received the designation RT-2PM2, according to international agreements it is designated RS-12M2, in the USA and NATO it was given the designation SS-27 Sickle B.

The work was greatly hampered by a sharp reduction in funding, the collapse of scientific and industrial ties, and the departure of qualified personnel from the defense industry. Those who lived in those years remember what a mess it was (and that’s an understatement). Nevertheless, on December 20, 1994, the first successful launch from a silo launcher was carried out at the Plesetsk training ground. In 1995-1997, launches continued. The sixth test launch of the rocket was successfully carried out on December 8, 1998. On December 27 of the same year, the first Topol-M in the silo version took up experimental combat duty near Tatishchevo - converted silos of the UN UR-1 removed from duty were used. On December 30, 1998, the first Topol-M regiment entered combat duty, do not confuse we're talking about specifically about the mine option. In the summer of 2000, the silo version of the Topol-M was put into service. After testing of the mine option was completed, work on the mobile complex intensified.

The Topol-M missile became the first mass-produced universal ground-based intercontinental missile, which was largely unified with the RS-30 Bulava. sea-based. Here are some photos of loading into the mine; by the way, the action is very impressive. The key word is unified, for the most part the rocket is associated with a moving soil complex, as you can see there is also a silo-based system, the proportions of the relationship are unknown to me, but there will probably be less movement.

The Topol-M stationary complex consists of 10 intercontinental ballistic missiles located in stationary silos, under the control of a command unit

On September 20, 2000, the mobile version of the Topol-M made its first launch. On December 24, 2004, the mobile Topol-M successfully carried out the last test launch from the Plesetsk cosmodrome - the head of the rocket reached its intended target at the Kura test site in Kamchatka. Two years later, in 2006, the first division of mobile Topol-M (three complexes) began combat duty. By the beginning of 2011, according to open sources, there were 52 mine and 18 mobile Topol-M complexes on combat duty. Serial production of missiles was established by the Botkin Plant, and launchers of the mobile version were launched by the Volgograd Production Association "Barricades".
"According to the START-1 Treaty, the mass, dimensions and some design features Topol-M ICBMs are strictly limited. "

The 15Zh65 light-class intercontinental ballistic missile has three solid-propellant sustainer stages. The flight control of the first stage is by rotating the central nozzle; the second and third stages are controlled by rotating the nozzle partially recessed into the combustion chamber with a folding nozzle tip. To reduce the mass of the rocket, the cocoon-type stage casings are made of composite material, and the nozzles of the propulsion engines are made of carbon-carbon material.
The control system is an autonomous inertial one, based on an on-board digital computer of increased performance and a gyro-stabilized platform, with improved accuracy characteristics of the command gyroscopic devices. An element base with increased reliability and resistance to the damaging factors of a nuclear explosion was used. A protective coating is applied to the outer surface of the rocket body, a special coating with a high content of rare earth elements is applied to the body of the sealed instrument compartment, and the cable network is completely shielded and protected.

Photo complex of the 5th generation RT-2PM2 “Topol-M loading a ballistic missile into a silo, charge delivery range 11,000 km

The missile is equipped with a monoblock detachable warhead with a high-speed thermonuclear warhead with a capacity of 550 kt in TNT equivalent. The complex of means for overcoming missile defense includes passive and active decoys, as well as means of distorting characteristics. At the same time, false targets that are difficult to distinguish from the warhead in various ranges of electromagnetic radiation in the extra-atmospheric, transitional and significant part of the atmospheric section of the descending branch of the trajectory are not selected by super-resolution radars. The means of distorting the characteristics of the warhead are a radio-absorbing coating (combined with a heat-shielding coating), aerosols that create infrared radiation, and active radio interference generators. Among the possible missile defense systems, weapons based on new principles were also taken into account - for example, nuclear-pumped lasers. It is supplied and stored in a transport and launch container (TPC), in launchers 15P765-35 or 15P765-60 and a unified high-security command post of type 15V222, also installed in the mine on a shock-absorbed suspension.

Photo of the Topol M stationary complex, Topol-M is unified with the sea-based Bulava missile, their competitor Sineva

The missile of the mobile ground missile system is housed in a high-strength fiberglass TPK, structurally similar to the metal one. The basis for the autonomous launcher 15U175 of the ground complex was a special all-wheel drive eight-axle chassis MZKT-79221 (MAZ-7922) with an 800-horsepower diesel engine and six rotating pairs of wheels. The chassis is characterized by increased cross-country ability and good agility (turning radius 18 m with a vehicle length of 22 m). The partial suspension system allows the launcher to be deployed on soft soils. The installation is equipped with high-precision navigation equipment and camouflage equipment in various ranges. Also, a mobile command post and a combat duty support vehicle are built on all-terrain wheeled chassis.
In the silo version, metal TPKs are installed in existing missile silos that are being removed from combat duty.

Poplar M photo at the Victory Parade. Moscow, 2011

  1. Starting weight, kg: 47100
  2. Maximum step diameter, mm: 1st - 1860, 2nd - 1610, 3rd - 1580
  3. Total length, mm: 22 700
  4. Rocket length without warhead, mm: 17,500
  5. Stage engine thrust, t: 1st - 90.8, 2nd - about 50.3rd - about 25
  6. Diameter of launch container, mm: 1950-2050
  7. Maximum firing range, km: 11,000
  8. Warhead - monoblock, thermonuclear, power kt: 550
  9. Weight of warhead, kg: 1200 Self-propelled launcher: 15U175
  10. Weight of self-propelled launcher with missile, kg: 120,000
  11. Maximum speed, km/h: 45. Cruising range, km: 500

Topol M photo video of strategic missile forces tests
The silo complex includes 10 missiles, in launchers 15P765-35 or 15P765-60, and a unified high-security command post of type 15V222, also installed in the silo on a shock-absorbing suspension.
The missile of the mobile ground missile system is housed in a high-strength fiberglass TPK, structurally similar to the metal one. The basis for the autonomous launcher 15U175 of the ground complex was a special all-wheel drive eight-axle chassis MZKT-79221 (MAZ-7922) with an 800-horsepower diesel engine and six rotating pairs of wheels. The chassis is characterized by increased cross-country ability and good agility (turning radius 18 m with a vehicle length of 22 m).

Design and layout of the Topol M missile system

The partial suspension system allows the launcher to be deployed on soft soils. The installation is equipped with high-precision navigation equipment and camouflage equipment in various ranges. Also, a mobile command post and a combat duty support vehicle are built on all-terrain wheeled chassis.
In the silo version, missiles in metal TPKs are installed in existing silos of missiles being removed from combat duty.

RT-2PM2 complex Created "Topol-M" on the basis of the RT-2PM "Topol" complex

Start Topol M photo video of strategic missile forces

Poplar rocket launch

The use of “Topol-M” can be considered using the example of a mobile soil complex. Like its predecessor, it can launch a missile from any point in the positional area, both from a combat patrol route and while parked from garage shelters with a retractable roof. Ground complex command instruments, located on the TPK of the Topol-M missile, ensures targeting through the implementation of autonomous determination of the azimuth of the control element installed on the gyro-stabilized platform. Before launching, the TPK is raised to a vertical position. Just as I promised, I cut a short video, let’s watch it, if you’re not too lazy, you can “like” it.

At the same time, you can look at the presentation of the channel on YouTube, where there’s just a sea of ​​different missile launches.

The rocket launch is “mortar”. The first stage engine is turned on after the rocket exits the container. Increasing the power of solid fuel charges made it possible to increase the thrown mass and reduce the duration and height of the active part of the trajectory, thereby making interception more difficult for the enemy. A program maneuver is provided at the start when passing through the cloud of a nuclear explosion. Together with the described means of protection, this makes it possible to launch even after a nuclear impact on neighboring objects of the complex and when the position area is blocked by a high-altitude nuclear explosion. After the end of the active section, the warhead flies along a ballistic trajectory. The circular probable deviation is 200 m. In combination with the power of the warhead, this makes it possible to hit any small, high-strength strategic targets.

Mobile ground-based missile system "Topol-M" of the Strategic Missile Forces photo

The missile can be equipped with a warhead with multiple warheads for individual guidance (then a warhead disengagement stage is added) or maneuvering (with correction engines) - such warheads, which greatly increase the likelihood of a breakthrough of the missile defense system, were tested in 2005-2007. So, what's so wonderful about it?

  1. The operating time of the first stage engine is 60 s, the second is 64 s, and the third is 56 s. So the rocket is gaining maximum speed in three minutes. What is considered extremely fast acceleration?
  2. When passing through the cloud of a nuclear explosion, it performs a program maneuver, actively maneuvering in the interception segment.
  3. The protective coating of the rocket body provides protection from the damaging factors of a nuclear explosion and... the attention of weapons based on new physical principles (who knows, please clarify what we are talking about?).
  4. When overcoming missile defense systems, it can launch passive and active false targets according to their characteristics when irradiated by various types of detection, indistinguishable from combat ones. Visibility is reduced by an order of magnitude, the estimated detection range of the missile on approach to the target is about 100-200 km.
  5. The missile is unified with the famous sea-based missile "Bulava", many news releases are dedicated specifically to the "Bulava" launch weight of 37 tons. But it is inferior in striking power to heavier solid-fuel missiles, for example, such as Trident-2 with a launch weight of 59 tons. (Let’s compare the warhead of the Bulava - 150kt x 6, theoretically the Trident-2 - 8x475 kt). Some experts criticize the equipping of the naval component with light ballistic missiles of the Bulava type, pointing to the need to create a solid-fuel SLBM R-39UTTH, testing on it was stopped in the 90s. If it had come to putting it into service, it would have no world analogues in terms of striking power and performance characteristics among submarine-launched ballistic missiles.

The relative security of humanity in recent decades has been ensured by nuclear parity between countries that possess for the most part nuclear weapons on the planet and the means of delivering them to the target. Currently these are two states - the United States of America and the Russian Federation. The fragile balance is based on two main “pillars”. The American heavy carrier Trident-2 is opposed by the latest Russian Topol-M missile. Behind this simplified diagram lies a much more complex picture.

The average person is rarely interested in military equipment. According to her appearance It is difficult to judge how reliably the state’s borders are protected. Many people remember the magnificent Stalinist military parades, during which citizens were shown the inviolability of Soviet defense. Huge five-turret tanks, giant TB bombers and other impressive models turned out to be not very useful on the fronts of the war that soon began. Maybe the Topol-M complex, the photo of which makes such a strong impression, is also outdated?

Judging by the reaction of military experts from countries that consider Russia a potential adversary, this is not so. But in practice it would be better not to be convinced of this. Objective data about the newest rocket few. All that remains is to consider what is available. Seems like a lot of information. It is known what the Topol-M mobile launcher looks like, a photo of which was published at one time by all the world’s leading media. The main technical characteristics also do not constitute state secrets; on the contrary, they can serve as a warning to those who may be plotting an attack on our country.

A little history. The beginning of the atomic race

Americans atomic bomb built before anyone else in the world and did not hesitate to use it immediately, in August 1945, twice. At that time, the US Air Force not only had an aircraft capable of carrying it. It was a flying “superfortress” - the B-29 strategic bomber, the mass of which reached nine tons of combat load. At an altitude of 12 thousand meters, inaccessible to air defense systems of any country, at a speed of 600 km/h, this air giant could deliver its terrible cargo to a target almost three and a half thousand kilometers away. On the way, the B-29 crew did not have to worry about their safety. The plane was perfectly protected and equipped with all the latest achievements of science and technology: radar, powerful rapid-fire barrage cannons with telemetric control (in case someone did get close) and even some kind of on-board computer that made the necessary calculations. This way, in peace and comfort, it was possible to punish any disobedient country. But it ended quickly.

Quantity and quality

In the fifties, the leadership of the USSR placed its main bet not on long-range bombers, but on strategic ones intercontinental missiles, and, as time has shown, this decision was correct. The remoteness of the American continent has ceased to be a guarantee of security. During the time the US was superior Soviet Union in terms of the number of nuclear warheads, but President Kennedy could not guarantee the lives of his citizens in the event of a war with the USSR. According to experts, it turned out that in the event of a global conflict, America would formally win, but the number of victims could exceed half the population. Based on these data, President J.F. Kennedy curbed his warlike ardor, left Cuba alone and made other concessions. Everything that happened in the subsequent decades in the field of strategic confrontation came down to a competition not just for the ability to deliver an all-crushing blow, but also to avoid retaliation or minimize it. The question was raised not only about the number of bombs and missiles, but also about the ability to intercept them.

After the Cold War

The RT-2PM Topol missile was developed in the USSR back in the eighties. Its general concept was the ability to overcome the impact of potential enemy missile defense systems mainly due to the surprise factor. It could be launched from various points along which this mobile system carried out combat patrols. Unlike stationary launchers, the location of which was often no secret to the Americans, Topol was constantly in motion, and it was not possible to quickly calculate its possible trajectory, even taking into account the high performance of Pentagon computers. Stationary mine installations, by the way, also posed a threat to a potential aggressor, because not all of them were known, and besides, they were well protected and a lot of them were built.

The collapse of the Union, however, led to the destruction of the long-built security system based on the inevitability of a retaliatory strike. The response to new challenges was the Topol-M missile adopted by the Russian Army in 1997, the characteristics of which were significantly improved.

How to complicate the missile defense task

The main change, which became revolutionary in the entire world ballistic missile industry, concerned the uncertainty and ambiguity of the missile trajectory on its combat course. The operation of all missile defense systems, already created and only promising ones (at the stage of design development and fine-tuning), is based on the principle of anticipation calculation. This means that when an ICBM launch is detected by several indirect parameters, in particular by an electromagnetic pulse, thermal trace or other objective data, a complex interception mechanism is launched. With a classical trajectory, it is not difficult to calculate the position of the projectile, determining its speed and launch location, and measures can be taken in advance to destroy it at any part of the flight. It is possible to detect the launch of a Topol-M; there is not much difference between it and any other missile. But then things get more complicated.

Variable trajectory

The idea was to make it impossible, even if detected, to miscalculate the coordinates of the warhead taking into account the lead. To do this, it was necessary to change and complicate the trajectory along which the flight takes place. “Topol-M” is equipped with gas-jet rudders and additional shunting engines (their number is still unknown to the general public, but we are talking about dozens), allowing you to change direction in the active part of the trajectory, that is, during direct guidance. In this case, information about the final goal is constantly retained in the memory of the control system, and ultimately the charge will get exactly where it is required. In other words, anti-missiles fired to shoot down a ballistic projectile will miss. It is not possible to defeat the Topol-M by existing and created missile defense systems of a potential enemy.

New engines and body materials

Not only the unpredictability of the trajectory in the active area makes the strike of the new weapon irresistible, but also very high speed. "Topol-M" at different stages of the flight is driven by three main engines and very quickly gains altitude. Solid fuel is a mixture based on ordinary aluminum. Of course, the composition of the oxidizer and other details are not disclosed for obvious reasons. The step bodies are made as light as possible; they are made of composite materials (organoplastic) using the technology of continuous winding of hardening fibers of a heavy-duty polymer (“cocoon”). This decision has a double practical meaning. Firstly, the weight of the Topol-M rocket is reduced, and its acceleration characteristics are significantly improved. Secondly, the plastic shell is more difficult to detect by radar; high-frequency radiation is reflected from it worse than from a metal surface.

To reduce the likelihood of destruction of charges at the final stage of the combat course, numerous false targets are used, which are very difficult to distinguish from real ones.

Control system

Any missile defense system fights enemy missiles using a whole range of influences. The most common method of disorientation is to install powerful electromagnetic barriers, also called interference. Electronic circuits cannot withstand strong fields and fail completely or cease to function properly for some time. The Topol-M missile has a noise-resistant guidance system, but this is not the main thing. In the expected conditions of a global conflict, a potential enemy is ready to use the most effective means to destroy threatening strategic forces, including even barrage nuclear explosions in the stratosphere. Having discovered an insurmountable barrier in its path, the Topol, thanks to its ability to maneuver, will with a high degree of probability be able to bypass it and continue its deadly trajectory.

Stationary

The Topol-M missile system, regardless of whether it is mobile or stationary, is launched using a mortar method. This means that the launch is carried out vertically from a special container that serves to protect this complex technical system from accidental or combat damage. There are two deployment options: stationary and mobile. The task of placing new complexes in mines is simplified as much as possible due to the possibility of modifying existing underground structures intended for heavy ICBMs that were withdrawn from service under the terms of the SALT-2 treaty. All that remains is to fill the too-deep bottom of the shaft with an additional layer of concrete and install a restrictive ring that reduces the working diameter. It is also important that the Topol-M missile system is maximally unified with the already proven infrastructure of the strategic deterrence forces, including communications and control.

Mobile complex and its chariot

The novelty of the mobile installation, designed for firing from any point on the combat patrol route (position area), lies in the so-called incomplete hanging of the container. This technical feature allows for deployment on any ground, including soft ground. Camouflage has also been significantly improved, which makes it difficult to detect the complex by all existing reconnaissance means, including space-optical and radio-electronic.

We should dwell in detail on the vehicle designed to transport and launch the Topol-M rocket. The characteristics of this powerful machine are admired by experts. It is huge - it weighs 120 tons, but at the same time it is very maneuverable, has high maneuverability, reliability and speed. There are eight axles, respectively, sixteen wheels 1 cm high, all of them are driving. The eighteen-meter turning radius is ensured by the fact that all six (three front and three rear) axles can turn. The width of the pneumatic tires is 60 cm. The high clearance between the bottom and the road (it is almost half a meter) ensures unhindered passage not only over rough terrain, but also ford (with a bottom depth of more than a meter). The specific ground pressure is half that of any truck.

The Topol-M mobile unit is driven by an 800-horsepower diesel turbo unit YaMZ-847. The speed on the march is up to 45 km/h, the range is at least half a thousand kilometers.

Other tricks and promising opportunities

According to the terms of the SALT-2 treaty, the number of separable individually targeted warheads is subject to a limitation. This means that it is impossible to create new missiles equipped with multiple nuclear warheads. The situation with this international treaty is generally strange - back in 1979 in connection with the introduction Soviet troops to Afghanistan, it was withdrawn from the US Senate and has not yet been ratified. However, there was no refusal from the American government to comply with its conditions. In general, it is observed by both sides, although it has not received official status even today.

Some violations, however, took place, and mutual ones. The US insisted on reducing total number carriers up to 2400, which corresponded to their geopolitical interests, since they had more multi-charge missiles. Moreover, it is also important that the American nuclear forces they are more close to the Russian borders, and their flight time is much shorter. All this prompted the country's leadership to look for ways to improve its safety indicators without violating the conditions of SALT 2. The Topol-M missile, the characteristics of which formally and without taking into account its features correspond to the parameters of the RT-2P, was called a modification of the latter. The Americans, taking advantage of the gaps in the treaty, placed cruise missiles on strategic bombers and practically do not comply with quantitative restrictions on carriers with multiple independently targetable warheads.

These circumstances were taken into account when creating the Topol-M rocket. The radius of destruction is ten thousand kilometers, that is, a quarter of the equator. This is quite enough to consider it intercontinental. Currently, it is equipped with a monoblock charge, but the weight of the fighting compartment of one ton makes it possible to change the warhead to a multiple warhead in a fairly short time.

Are there any disadvantages?

Strategic missile system "Topol-M", like any other Combat vehicles, is not an ideal weapon. The reason for the recognition of some shortcomings was, paradoxically, the discussion that unfolded during the discussion of the future prospects of the SALT-2 treaty. In some conditions, you can vaguely hint at your own omnipotence, but in other circumstances, it is more advantageous, on the contrary, to point out that we are not as terrible as we seem. This happened with the Topol-M complex. The speed of the rocket (up to 7 km/sec), it turns out, is not high enough to be completely confident in its invulnerability. Security in the conditions of a barrage stratospheric nuclear explosion also leaves much to be desired, especially from such a terrible damaging factor as However, very little can withstand it.

The Topol-M, whose destruction radius allows it to destroy targets on other continents, is currently the only Russian strategic missile in mass production. That is why it is the mainstay of the forces of containment.

Apparently, this lack of alternative is a temporary phenomenon; other models will appear that will absorb the advantages of “Topol” and leave its shortcomings in the past. Although it’s unlikely to work out completely without any shortcomings. In the meantime, this type of ballistic missile carries the main burden in defense. Be that as it may, recent history shows that those who cannot defend themselves pay dearly for their own weakness.

It's actually not all that bad. Readiness to repel aggression can only be judged based on relative values. Nothing is absolute in matters of defense; each type of weapon can be improved endlessly. The main thing is that his fighting qualities allow him to effectively resist enemy forces.

July 23, 2010 marks 25 years since the Topol ground-based mobile intercontinental missiles were put on combat duty.

RT-2PM "Topol" (index of the Main Missile and Artillery Directorate of the Ministry of Defense of the Russian Federation (GRAU) - 15Zh58, START code RS-12M, according to NATO classification - "Sickle", SS-25 "Sickle") - a strategic mobile complex with a three-stage solid fuel intercontinental ballistic missile RT-2PM, the first Soviet mobile system with an intercontinental ballistic missile (ICBM).

Development of a strategic project mobile complex with a three-stage intercontinental ballistic missile suitable for placement on a self-propelled automobile chassis (based on the RT-2P solid-fuel ICBM), was started at the Moscow Institute of Thermal Engineering under the leadership of Alexander Nadiradze in 1975. The government decree on the development of the complex was issued on July 19, 1977. After Nadiradze's death, work was continued under the leadership of Boris Lagutin.

The mobile complex was supposed to be a response to increasing the accuracy of American ICBMs. It was necessary to create a missile that was achieved not by building reliable shelters, but by creating vague ideas among the enemy about the location of the missile.

The conditions for modernization were strictly limited by the provisions of the SALT-2 Treaty, which determined a modest improvement in the basic combat characteristics of the missile. The first test launch of the missile, designated RT-2PM, took place at the Plesetsk test site on February 8, 1983. The launch was carried out from a converted RT-2P stationary missile silo.

By the end of autumn 1983, an experimental series of new missiles was built. On December 23, 1983, flight development tests began at the Plesetsk training ground. During the entire period of their implementation, only one launch was unsuccessful. In general, the rocket showed high reliability. The combat units of the entire combat missile system (BMK) were also tested there. In December 1984, the main series of tests was completed and a decision was made to begin mass production of the complexes. However, the full testing of the mobile complex, called “Topol”, ended only in December 1988.

Without waiting for the full completion of the joint testing program, in order to gain experience in operating the new complex in military units, on July 23, 1985, near the city of Yoshkar-Ola, the first regiment of mobile Topols was deployed at the site of the deployment of RT-2P missiles.

The RT-2PM missile is designed according to a design with three sustainer and combat stages. To ensure high energy-mass perfection and increase the firing range, a new high-density fuel with a specific impulse increased by several units was used in all sustainer stages compared to the fillers of previously created engines, and the housings of the upper stages were for the first time made of continuous winding from organoplastic according to the “cocoon” pattern ".

The first stage of the rocket consists of a solid propellant rocket motor (solid propellant rocket motor) and a tail section. The mass of the fully equipped stage is 27.8 tons. Its length is 8.1 m and its diameter is 1.8 m. The first stage propulsion solid propellant rocket engine has one fixed, centrally located nozzle. The tail section is cylindrical in shape, on the outer surface of which aerodynamic control surfaces and stabilizers are located.

The rocket flight control in the first stage operation area is carried out using rotary gas-jet and aerodynamic rudders.

The second stage consists of a conical-shaped connecting compartment and a sustainer solid propellant rocket engine. The case diameter is 1.55 m.

The third stage includes connecting and transition sections of a conical shape and a sustainer solid propellant rocket engine. Case diameter - 1.34 m.

The head of the rocket consists of one warhead (nuclear) and a compartment with a propulsion system and control system.

The "Topol" control system is of an inertial type, built using an on-board computer, microcircuits with a high degree of integration, a new set of command devices with float sensitive elements. The control system's computer complex makes it possible to implement autonomous combat use self-propelled launcher.

The control system provides missile flight control, routine maintenance on the missile and launcher, pre-launch preparation and launch of the missile, as well as solving other problems.

During operation, the RT-2PM missile is located in a transport and launch container located on a mobile launcher. The container is 22.3 m long and 2.0 m in diameter.

The launcher is mounted on the basis of a seven-axle chassis of a MAZ vehicle and is equipped with units and systems that ensure transportation, maintenance of combat readiness at the established level, preparation and launch of the rocket.

A missile can be launched both when the launcher is located in a stationary shelter with a retractable roof, and from unequipped positions, if the terrain allows it. To launch a rocket, the launcher is hung on jacks and leveled. The rocket is launched after the container is lifted into a vertical position using a powder pressure accumulator placed in the transport and launch container ("mortar launch").

After shooting off the protective cap of the container, the rocket is ejected from it by powder starting engines several meters upward, where the first-stage propulsion engine is turned on.

The maximum firing range is 10,500 km. Rocket length - 21.5 m. Launch weight 45.1 tons. Weight of the warhead - 1 ton. Nuclear warhead power - 0.55 Mt. Firing accuracy (maximum deviation) - 0.9 km. The combat patrol area of ​​the complex is 125 thousand square meters. km.

The mass of the launcher with the missile is about 100 tons. Despite this, the complex has good mobility and maneuverability.

Combat readiness (time to prepare for launch) from the moment the order was received until the missile was launched was brought to two minutes.

The missile system also includes a mobile combat control command post on a four-axle MAZ-543M chassis. Mobile vehicles were used to control the fire. command posts"Granit" and "Barrier", armed with a missile that had a radio transmitter instead of a payload. After the rocket was launched, he duplicated the launch commands for launchers located at remote positions.

Serial production of the RT-2PM missile began in 1985 at a plant in Votkinsk (Udmurtia), and its mobile launcher was manufactured at the Volgograd Barrikady plant.

On December 1, 1988, the new missile system was officially adopted by the Strategic Missile Forces (Strategic Missile Forces). In the same year, the full-scale deployment of missile regiments with the Topol complex began and the simultaneous removal of obsolete ICBMs from combat duty. By mid-1991, 288 missiles of this type had been deployed.

The Topol missile divisions were deployed near the cities of Barnaul, Verkhnyaya Salda (Nizhny Tagil), Vypolzovo (Bologoe), Yoshkar-Ola, Teykovo, Yurya, Novosibirsk, Kansk, Irkutsk, as well as near the village of Drovyanaya in the Chita region. Nine regiments (81 launchers) were deployed to missile divisions on the territory of Belarus - near the cities of Lida, Mozyr and Postavy. Some of the Topols that remained on the territory of Belarus after the collapse of the USSR were withdrawn from it by November 27, 1996.

Each year, one control launch of the Topol rocket is carried out from the Plesetsk test site. The high reliability of the complex is evidenced by the fact that during its testing and operation, about fifty control and test launches of missiles were carried out. All of them went without a hitch.

On the basis of the Topol ICBM, a conversion space launch vehicle "Start" was developed. Launches of Start rockets are carried out from the Plesetsk and Svobodny cosmodromes.

The material was prepared based on information from open sources



What else to read