Dom

Nacrtajte graf funkcije y 3x. Kvadratne i kubne funkcije

Konstruiranje grafova funkcija koji sadrže module obično uzrokuje znatne poteškoće za školsku djecu. Ipak, nije sve tako loše. Dovoljno je zapamtiti nekoliko algoritama za rješavanje takvih problema i lako možete izgraditi grafikon čak i za naizgled složena funkcija. Hajde da shvatimo kakvi su to algoritmi.

1. Crtanje grafa funkcije y = |f(x)|

Imajte na umu da je skup vrijednosti funkcije y = |f(x)| : y ≥ 0. Dakle, grafovi takvih funkcija uvijek se nalaze u cijelosti u gornjoj poluravnini.

Crtanje grafa funkcije y = |f(x)| sastoji se od sljedeća jednostavna četiri koraka.

1) Pažljivo i pažljivo konstruirajte graf funkcije y = f(x).

2) Ostavite nepromijenjene sve točke na grafu koje su iznad ili na 0x osi.

3) Prikažite dio grafikona koji se nalazi ispod 0x osi simetrično u odnosu na 0x os.

Primjer 1. Nacrtajte graf funkcije y = |x 2 – 4x + 3|

1) Gradimo graf funkcije y = x 2 – 4x + 3. Očito je da je graf te funkcije parabola. Nađimo koordinate svih točaka sjecišta parabole s koordinatnim osima i koordinate vrha parabole.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Dakle, parabola siječe os 0x u točkama (3, 0) i (1, 0).

y = 0 2 – 4 0 + 3 = 3.

Dakle, parabola siječe os 0y u točki (0, 3).

Koordinate vrha parabole:

x in = -(-4/2) = 2, y in = 2 2 – 4 2 + 3 = -1.

Dakle, točka (2, -1) je vrh ove parabole.

Nacrtajte parabolu pomoću dobivenih podataka (Sl. 1)

2) Dio grafikona koji leži ispod 0x osi prikazuje se simetrično u odnosu na 0x os.

3) Dobivamo graf izvorne funkcije ( riža. 2, prikazano isprekidanom linijom).

2. Crtanje funkcije y = f(|x|)

Imajte na umu da su funkcije oblika y = f(|x|) parne:

y(-x) = f(|-x|) = f(|x|) = y(x). To znači da su grafovi takvih funkcija simetrični oko osi 0y.

Crtanje grafa funkcije y = f(|x|) sastoji se od sljedećeg jednostavnog lanca radnji.

1) Nacrtajte graf funkcije y = f(x).

2) Ostaviti onaj dio grafa za koji je x ≥ 0, odnosno dio grafa koji se nalazi u desnoj poluravnini.

3) Prikažite dio grafikona naveden u točki (2) simetrično na 0y os.

4) Kao konačni graf odabrati uniju krivulja dobivenih u točkama (2) i (3).

Primjer 2. Nacrtajte graf funkcije y = x 2 – 4 · |x| + 3

Kako je x 2 = |x| 2, tada se originalna funkcija može prepisati u sljedećem obliku: y = |x| 2 – 4 · |x| + 3. Sada možemo primijeniti gore predloženi algoritam.

1) Pažljivo i pažljivo gradimo graf funkcije y = x 2 – 4 x + 3 (vidi također riža. 1).

2) Ostavljamo onaj dio grafa za koji je x ≥ 0, odnosno dio grafa koji se nalazi u desnoj poluravnini.

3) Prikažite desnu stranu grafikona simetrično na os 0y.

(slika 3).

Primjer 3. Nacrtajte graf funkcije y = log 2 |x|

Primjenjujemo gore navedenu shemu.

1) Izgradite graf funkcije y = log 2 x (Sl. 4).

3. Crtanje funkcije y = |f(|x|)|

Primijetimo da funkcije oblika y = |f(|x|)| su također parni. Doista, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), pa su stoga njihovi grafovi simetrični oko osi 0y. Skup vrijednosti takvih funkcija: y 0. To znači da se grafovi takvih funkcija nalaze u cijelosti u gornjoj poluravnini.

Da biste nacrtali funkciju y = |f(|x|)|, trebate:

1) Pažljivo konstruirajte graf funkcije y = f(|x|).

2) Ostavite nepromijenjen dio grafa koji je iznad ili na 0x osi.

3) Prikažite dio grafikona koji se nalazi ispod 0x osi simetrično u odnosu na 0x os.

4) Kao konačni graf odabrati uniju krivulja dobivenih u točkama (2) i (3).

Primjer 4. Nacrtajte graf funkcije y = |-x 2 + 2|x| – 1|.

1) Primijetimo da je x 2 = |x| 2. To znači da umjesto izvorne funkcije y = -x 2 + 2|x| - 1

možete koristiti funkciju y = -|x| 2 + 2|x| – 1, jer im se grafovi podudaraju.

Gradimo graf y = -|x| 2 + 2|x| – 1. Za ovo koristimo algoritam 2.

a) Grafički nacrtajte funkciju y = -x 2 + 2x – 1 (Sl. 6).

b) Ostavljamo onaj dio grafa koji se nalazi u desnoj poluravnini.

c) Rezultirajući dio grafa prikazujemo simetrično na 0y os.

d) Dobiveni graf prikazan je isprekidanom linijom na slici (Sl. 7).

2) Nema točaka iznad 0x osi; ostavljamo točke na 0x osi nepromijenjene.

3) Dio grafikona koji se nalazi ispod osi 0x prikazuje se simetrično u odnosu na 0x.

4) Dobiveni graf prikazan je na slici isprekidanom linijom (Sl. 8).

Primjer 5. Grafički nacrtajte funkciju y = |(2|x| – 4) / (|x| + 3)|

1) Prvo trebate nacrtati funkciju y = (2|x| – 4) / (|x| + 3). Da bismo to učinili, vraćamo se na Algoritam 2.

a) Pažljivo iscrtajte funkciju y = (2x – 4) / (x + 3) (Sl. 9).

Imajte na umu da je ova funkcija frakcijsko linearna i da je njezin graf hiperbola. Da biste iscrtali krivulju, prvo trebate pronaći asimptote grafikona. Horizontalno – y = 2/1 (omjer koeficijenata od x u brojniku i nazivniku razlomka), okomito – x = -3.

2) Onaj dio grafa koji se nalazi iznad 0x osi ili na njoj ostavit ćemo nepromijenjen.

3) Dio grafikona koji se nalazi ispod osi 0x bit će prikazan simetrično u odnosu na 0x.

4) Konačni grafikon je prikazan na slici (Sl. 11).

web stranice, pri kopiranju materijala u cijelosti ili djelomično, poveznica na izvor je obavezna.

Funkcija y=x^2 naziva se kvadratna funkcija. Raspored kvadratna funkcija je parabola. Opći obrazac Parabola je prikazana na slici ispod.

Kvadratna funkcija

Slika 1. Opći pogled na parabolu

Kao što se može vidjeti iz grafikona, simetričan je u odnosu na os Oy. Os Oy naziva se osi simetrije parabole. To znači da ako nacrtate ravnu liniju na grafikonu paralelnu s osi Ox iznad ove osi. Tada će presijecati parabolu u dvije točke. Udaljenost od tih točaka do osi Oy bit će ista.

Os simetrije dijeli graf parabole na dva dijela. Ti dijelovi se nazivaju grane parabole. A točka parabole koja leži na osi simetrije naziva se vrhom parabole. Odnosno, os simetrije prolazi kroz vrh parabole. Koordinate ove točke su (0;0).

Osnovna svojstva kvadratne funkcije

1. Na x =0, y=0 i y>0 na x0

2. Kvadratna funkcija postiže svoju minimalnu vrijednost na svom vrhu. Ymin pri x=0; Također treba napomenuti da funkcija nema maksimalnu vrijednost.

3. Funkcija opada na intervalu (-∞;0] i raste na intervalu, jer će se pravac y=kx poklapati s grafom y=|x-3|-|x+3| u ovom odjeljku. Ovo opcija nam ne odgovara.

Ako je k manji od -2, tada pravac y=kx s grafom y=|x-3|-|x+3| imat će jedno raskrižje.Ova opcija nam odgovara.

Ako je k=0, tada je sjecište pravca y=kx s grafom y=|x-3|-|x+3| bit će i jedan.Ova opcija nam odgovara.

Odgovor: za k koji pripada intervalu (-∞;-2)U)

Što još čitati