Как ориентируются летучие мыши. Как ориентируются летучие мыши Может ли летучая мышь посылая сигнал частотой

Можно подумать, что нет ничего общего между радиолокатором и летучей мышью, между аппаратом, которым гордится техника XX века, и маленьким зверьком с большими крыльями. Однако это не так.

Летучие мыши - очень своеобразные животные. Они водятся главным образом на юге. Это ночные жители. Днем они спят, а как только скроется солнце, вылетают из своих укрытий. Такой образ жизни крылатых зверьков затруднял наблюдения за ними, и про них слагались легенды.

Летучие мыши обладают острым слухом. Он помогает им охотиться за насекомыми по звуку. Они имеют очень большие уши и рот.

Уши летучих мышей чрезвычайно подвижны. Услышав малейший шум, мышь поднимает их и вслушивается, а при сильном шуме быстро отгибает назад.

Давно замечено, что летучие мыши могут летать в полной темноте, не натыкаясь на препятствия. Полтораста лет назад один ученый натуралист решил выяснить, что же помогает им ориентироваться во мраке.

Он залепил летучей мыши глаза и пустил ее в темную комнату. Ослепленная мышь летала мимо препятствий, ловко огибая их.

В перегородке сделали отверстие. Мышь искусно пролетела сквозь него. Комнату перетянули вдоль и поперек проволокой, увешанной колокольчиками. Лишенная зрения, мышь часами летала по комнате и ни разу не задела за проволоку; колокольчики молчали.

Провели опыт с другой мышью - повторилось то же самое. Тогда покрыли мышь лаком. Лишенная осязания, она попрежнему летала по комнате, не наталкиваясь на проволоку.

Мышь поочередно лишали каждого из органов чувств. Это нисколько не влияло на полет: она летала так же уверенно.

Наконец ей заткнули уши. Она взлетела, и сразу же по комнате зазвонили колокольчики. Мышь потеряла ориентировку и металась, натыкаясь на препятствия. Стало ясно, что слух, тончайший слух, позволяет мыши облетать преграды, которые встречаются на пути.

Но как же производится такая точная ориентировка? Где тот источник звука, который помогает мыши в ее искусном полете? Ни один биолог не мог на это ответить. Тайна летучих мышей долго оставалась неразгаданной.

В 1920 году было высказано предположение, не издают ли мыши особый звук, не слышимый человеком. В то время, когда проводились первые опыты с летучими мышами, никто об этом не догадывался. Тогда не знали о существовании ультразвука, который хорошо изучен в настоящее время.

Если число колебаний частиц воздуха больше 20 тысяч в секунду, человек такой высокий тон услышать не может. Это и есть ультразвук. То, что мы слышим, - лишь небольшая часть тех звуков, которые существуют в природе.

В 1942 году биологи вновь подвергли испытанию летучих мышей. Но теперь они уже были вооружены достижениями науки XX века. Биологи не только повторили все старые опыты, но и дополнили их тем, что завязывали мыши рот. Это действовало на нее точно так же, как и лишение слуха.

Предположение об ультразвуке начинало подтверждаться. Но наука требует совершенно четких, неопровержимых доказательств. Если ультразвук услышать нельзя, ученые решили его увидеть и при помощи особой аппаратуры записали на ленту. На ней отпечатались следы колебаний очень высокой частоты.

Когда их подсчитали, оказалось, что мышь издает звук чрезвычайно высокого тона - от 25 тысяч до 70 тысяч звуковых колебаний в секунду.

После кропотливых опытов выяснилось, что летучая мышь издает звук и сама же воспринимает его после отражения от препятствий.

Запись ультразвука, издаваемого летучей мышью, раскрыла, как мышь пользуется своим аппаратом для ориентировки. Оказалось. что мышь издает ультразвук с перерывами.

Ультразвуковое эхо предупреждает летучую мышь о препятствии на ее пути

После очень короткого «выкрика» она замолкает. Затем «кричит» снова и вновь смолкает. Таких выкриков она издает в секунду около десяти перед взлетом, около тридцати в полете и около шестидесяти, когда подлетает близко к препятствию.

Очередной выкрик делается сразу же после того, как вернется отраженный звук. Чем короче путь до преграды, тем быстрее возвращается эхо и тем чаще вскрикивает мышь. Очевидно, по частоте этих выкриков она и чувствует расстояние до препятствия.

Летучая мышь пользуется звуковыми волнами почти так же, как в радиолокации пользуются радиоволнами. Это своеобразный локатор с применением ультразвука.

Слышимый человеком звук для такой цели не подходит. Он не имеет тех свойств, какими обладает ультразвук. Ультразвуковые волны очень короткие, поэтому их чрезвычайно легко посылать узким пучком. Вдобавок они хорошо отражаются от незначительных препятствий и дают отражение даже от проволоки и веток. А это как раз необходимо для того, чтобы обнаружить самые мелкие преграды, отличить их одну от другой и определить направление.

Когда мышь находится в полете, ее рот действует, как звуковой «прожектор». Он как бы «освещает» путь узким звуковым пучком. Огромные ушные раковины мыши направляются в ту же сторону и ловят отраженный ультразвук.

Такая разведка звуком работает превосходно. Если путь свободен, мышь летит прямо, если же на пути преграда, мышь услышит это и свернет в сторону. Предельная дальность, на какой мышь чувствует препятствие, около 25 метров.

Но есть препятствия, которые она все же обнаружить не может. Биологи часто наблюдали, что мышь, искусно облетавшая в темноте все преграды, наталкивалась на человеческую голову. Это вызывало полное недоумение, но теперь можно объяснить такое странное поведение мыши.

Волосы, очень сильно поглощая ультразвук, не дают отражения. А раз нет эха, препятствие не обнаруживается и мышь легко может наткнуться на человеческую голову. Однако в жизни летучих мышей это случается редко, они с успехом пользуются природным звуковым локатором в своих ночных полетах.

Бабочка медведица Bertholdia trigona - единственное известное в природе животное, способное защищаться от летучих мышей путем глушения их локационных сигналов.Мыши не могут научиться ловить этот вид медведиц, издающий характерные ультразвуковые щелчки. Однако как именно действуют щелчки бабочек B. trigona на летучих мышей, было неизвестно. Американские биологи поставили поведенческие эксперименты, в которых они проверяли три возможных механизма. Оказалось, что сигналы, издаваемые B. trigona , уменьшают точность, с которой летучая мышь определяет расстояния до нее. В результате издаваемых бабочкой щелчков летучая мышь меняет характер своих сигналов, что еще более затрудняет возможность поймать бабочку. Авторы считают, что такое поведение B. trigona могло возникнуть из более древнего способа защиты, известного у некоторых бабочек, - когда акустическая сигнализация сопровождается выделением химических веществ, отпугивающих хищника.

Летучие мыши и ночные бабочки соревнуются в эволюционной гонке по крайней мере в течение 50 миллионов лет. В процессе этой борьбы бабочки выработали достаточно простую конструкцию слуховых органов , которая способствует быстрому предупреждению о приближающейся опасности и запуску реакции избегания хищника. Бабочки из семейства медведиц , или Arctiidae, кроме того, способны издавать ультразвуковые щелчки, причем разные виды делают это по-разному. Многие из них издают щелчки достаточно редко, но акустический сигнал сопровождается выделением пахучих веществ, которые отпугивают летучих мышей. Другие виды научились подражать этим несъедобным бабочкам, щелкая и не выделяя никаких запахов (Barber, Conner, 2007). Еще один из способов защиты - щелканье в целях испугать неопытную летучую мышь. Этот способ, однако, не очень надежен, так как мыши учатся и через несколько попыток перестают обращать внимание на щелканье бабочки.

Недавно американские ученые из Университета Уэйк-Фореста показали, что один вид медведиц, Bertholdia trigona, может издавать частые ультразвуковые сигналы, которые глушат эхолокационные сигналы летучих мышей (Corcoran et al., 2009). Замечательно, что летучие мыши не способны научиться бороться с этой преградой: после многочисленных попыток мыши так и не удается поймать бабочку. Теперь те же авторы поставили задачу выяснить механизм, с помощью которого B. trigona так умело защищает себя (Corcoran et al., 2011). Они предложили три гипотезы.

Согласно первой - гипотезе иллюзорного эха , - летучая мышь может путать сигналы бабочки с эхом собственного сигнала от объекта, которого не существует. В этом случае мышь должна менять траекторию полета, улетая от несуществующего объекта. Согласно второй - гипотезе дистанционной помехи , - сигналы, издаваемые бабочкой, могут уменьшать точность определения летучей мышью расстояния до жертвы. Это может происходить в том случае, если щелчки бабочки опережают эхо от собственного сигнала летучей мыши. Наконец, согласно третьей - гипотезе маскировки , - сигналы бабочки могут полностью маскировать ее, и она оказывается «невидимой» для летучей мыши.

Поведение летучей мыши в эксперименте может показать, какая гипотеза правильная. Мышь либо будет менять траекторию полета, либо будет пытаться поймать бабочку и промахиваться, либо не будет воспринимать бабочку вообще и будет продолжать полет.

Поведенческие эксперименты проводили в течение семи ночей в звуконепроницаемой комнате размером 5,8×4,0×3,0 м. В экспериментах использовали широко распространенного в Америке бурого кожана, Eptesicus fuscus, относящегося к семейству гладконосых летучих мышей . Эксперименты проводили на трех особях E. fuscus .

Предварительно было показано, что все три мыши охотно ели исследуемый вид медведиц в том случае, если бабочки не издавали звуков (отсутствие акустических сигналов было зафиксировано у 22% бабочек). Перед каждым экспериментом проверяли, насколько надежно мышь ловит контрольных бабочек, не издающих сигналов. В качестве контроля использовали Galleria melonella . После этого каждую ночь 16 бабочек (4 - B. trigona , 4 - другие виды медведиц, не издающие звук, 8 - G. melonella ) в случайном порядке предъявляли одной летучей мыши. Бабочки были закреплены на нити длиной 60 см. Мышь могла атаковать бабочку несколько раз, но для анализа учитывали только первую атаку.

Все эксперименты записывались на две скоростные видеокамеры (250 кадров в секунду). Эти записи анализировали с помощью компьютерной программы (MATLAB), которая позволяла посчитать трехмерные координаты объектов в поле зрения камер. В итоге рассчитывали вектор полета, минимальное расстояние между мышью и бабочкой и вектор от мыши к бабочке в каждый момент каждого взаимодействия. Угол φ определяли как угловое отклонение между вектором полета мыши и вектором между мышью и бабочкой (рис. 1).

Бабочки B. trigona , как и остальные медведицы, издают щелчки так называемыми тимбальными органами (см. Tymbal). Эти органы хорошо исследованы у певчих цикад, но у бабочек они имеют несколько иное строение. На тимбальных склеритах у медведиц имеются бороздки, которые позволяют им генерировать щелчки с высокой частотой. Серии щелчков генерируются как при активном изгибании тимбального склерита внутрь (active cycle), так и при пассивном возвращении склерита (passive cycle, рис. 2). Средний интервал между щелчками B. trigona , равный 325 мкс, оказывается меньше, чем разрешающая способность уха летучей мыши (400 мкс), поэтому вся серия щелчков воспринимается мышью как непрерывный звук. На рис. 2 также видно, что частотный спектр сигнала бабочки удивительным образом имитирует спектр сигнала летучей мыши.

В поведенческих экспериментах авторы наблюдали три типа поведения летучих мышей. Во-первых, прямую атаку, когда мышь подлетала и пыталась схватить бабочку (рис. 3А); во-вторых, атаку близкого действия, когда мышь не пыталась схватить бабочку, но продолжала атаку после того, как бабочка начинала щелкать (рис. 3В); в-третьих, избегание, когда мышь прекращала атаку вскоре после начала щелканья бабочки и также не пыталась ее схватить (рис. 3С). Три типа поведения различались по величине угла φ (рис. 3D–F). В случае прямой атаки значения φ не превышали доверительного интервала контрольных атак. При атаке близкого действия значения φ уменьшались или были постоянны после начала щелканья бабочки, но под конец следовал сильный скачок, превышающий доверительный интервал. При избегании значения φ начинали расти сразу после того, как бабочка начинала щелкать.

Эхолокационные сигналы мыши также различались во всех трех случаях (рис. 3G–I). В случае прямой атаки сигнал заканчивался типичной трелью, которая всегда присутствовала в атаках на контрольную бабочку (рис. 3G, 4А). Интервал между щелчками мыши был в среднем 6 мс. В атаке близкого действия доминировали обычные щелчки, следующие с интервалом 10–40 мс, которые обычно издаются мышами в поисковом поведении. Если трель и производилась, то очень короткая (рис. 3H, 4В). При избегании мышь начинала издавать редкие щелчки вскоре после того, как бабочка начинала щелкать, и вообще не издавала трели (рис. 4С).

Опыт летучей мыши в экспериментах имел большое значение. Поведение избегания преобладало в течение двух первых ночей (рис. 5), тогда как с 3-й по 7-ю ночь доминировали атаки близкого действия. Это говорит о том, что вначале мыши пугались щелкающих бабочек, но потом привыкали. Тем не менее, только 30% атак заканчивались успешно, и атаки были успешны лишь в тех случаях, когда бабочки мало щелкали. Это подтверждает сделанное авторами предположение, что щелчки бабочки эффективны для глушения сигналов мышей только в том случае, если они генерируются с высокой частотой. В атаках близкого действия мышь промахивалась в среднем на 16 см.

Эти результаты, по мнению авторов, соответствуют предсказаниям гипотезы дистанционной помехи. Низкий процент избеганий в течение 3–7 ночей говорит о том, что мыши не пытаются уклоняться от иллюзорных помех. Приближение мыши к бабочке на относительно короткое расстояние и попытки атак показывают, что бабочка не полностью маскируется, а следовательно, гипотезу маскировки также можно отклонить.

Известно, что, когда летучая мышь приближается к своей жертве, интервалы между щелчками, длительность и интенсивность сигнала уменьшаются. Эти изменения в сигнализации мыши чрезвычайно адаптивны. Высокая частота щелчков позволяет мыши быстро обновлять свою «локационную информацию», тогда как малая длительность сигнала предотвращает перекрывание сигнала и эха, которое начинает приходить быстрее по мере приближения к жертве. В экспериментах с B. trigona авторы наблюдали обратную ситуацию: длительность сигналов и интервалы между щелчками E. fuscus увеличивались. Такая реакция мыши должна еще более осложнять нахождение потенциальной жертвы. Авторы сравнивают это поведение с поведением других млекопитающих, которые таким же образом меняет свой сигнал в условиях высокого шума. Показано, что в этом случае улучшается распознавание сигналов.

Считается, что исходно медведицы генерировали редкие щелчки для рассеивания химических веществ с целью предупреждения о своей несъедобности. Очевидно, что эволюция акустической сигнализации у бабочек шла по пути совершенствования звуковых органов, в частности развития бороздок на тимбальной мембране и поочередной активации тимбалов, что позволило им генерировать щелчки с высокой частотой. В результате некоторые виды (а авторы верят, что B. trigona - не единственный вид бабочки, способный глушить сигналы летучих мышей) выработали такой замечательный способ защиты от достаточно изощренного хищника.

Летучие мыши обычно живут огромными стаями в пещерах, в которых они прекрасно

ориентируются в полной темноте. Влетая и вылетая из пещеры, каждая мышь издает

неслышимые нами звуки. Одновременно эти звуки издают тысячи мышей, но это никак не

мешает им прекрасно ориентироваться в пространстве в полной темноте и летать, не

сталкиваясь друг с другом. Почему летучие мыши могут уверенно летать в полнейшей

темноте, не натыкаясь на препятствия? Удивительное свойство этих ночных животных –

умение ориентироваться в пространстве без помощи зрения – связано с их способностью

испускать и улавливать ультразвуковые волны.

Оказалось, что во время полёта мышь излучает короткие сигналы на частоте около 80

кГц, а затем принимает отражённые эхо-сигналы, которые приходят к ней от ближайших

препятствий и от пролетающих вблизи насекомых.

Для того, чтобы сигнал был препятствием отражён, наименьший линейный размер

этого препятствия должен быть не меньше длины волны посылаемого звука.

Использование ультразвука позволяет обнаружить предметы меньших размеров, чем

можно было бы обнаружить, используя более низкие звуковые частоты. Кроме того,

использование ультразвуковых сигналов связано с тем, что с уменьшением длины волны

легче реализуется направленность излучения, а это очень важно для эхолокации.

Реагировать на тот или иной объект мышь начинает на расстоянии порядка 1 метра,

при этом длительность посылаемых мышью ультразвуковых сигналов уменьшается

примерно в 10 раз, а частота их следования увеличивается до 100–200 импульсов

(щелчков) в секунду. То есть, заметив объект, мышь начинает щелкать более часто, а

сами щелчки становятся более короткими. Наименьшее расстояние, которое мышь может

определить таким образом, составляет примерно 5 см.

Во время сближения с объектом охоты летучая мышь как бы оценивает угол между

направлением своей скорости и направлением на источник отражённого сигнала и

изменяет направление полёта так, чтобы этот угол становился все меньше и меньше.

Может ли летучая мышь, посылая сигнал частотой 80 кГц, обнаружить мошку размером

1 мм? Скорость звука в воздухе принять равной 320 м/с. Ответ поясните.

Для ультразвуковой эхолокации мыши используют волны частотой

1) менее 20 Гц 3) более 20 кГц

2) от 20 Гц до 20 кГц 4) любой частоты

Умение великолепно ориентироваться в пространстве связано у летучих мышей с их

Слух дельфинов

У дельфинов есть удивительная способность ориентироваться в морских глубинах. Эта способность связана с тем, что дельфины могут издавать и принимать сигналы ультразвуковых частот, главным образом от 80 кГц до 100 кГц. При этом мощность сигнала достаточна, чтобы обнаружить косяк рыбы на расстоянии до километра. Сигналы, посылаемые дельфином, представляют собой последовательность коротких импульсов, имеющих длительность порядка 0,01–0,1 мс.

Для того, чтобы сигнал был препятствием отражён, линейный размер этого препятствия должен быть не меньше длины волны посылаемого звука. Использование ультразвука позволяет обнаружить предметы меньших размеров, чем можно было бы обнаружить, используя более низкие звуковые частоты. Кроме того, использование ультразвуковых сигналов связано с тем, что ультразвуковая волна имеет острую направленность излучения, что очень важно для эхолокации, и намного медленнее затухает при распространении в воде.

Дельфин также способен воспринимать очень слабые отражённые сигналы звуковой частоты. Например, он прекрасно замечает маленькую рыбку, появившуюся сбоку на расстоянии 50 м.

Можно сказать, что дельфин обладает двумя типами слуха: он может направленно, вперёд, посылать и принимать ультразвуковой сигнал и может воспринимать обычные звуки, приходящие со всех сторон.

Для принятия остро направленных ультразвуковых сигналов у дельфина имеется вытянутая вперёд нижняя челюсть, по которой волны эхо-сигнала поступают к уху. А для принятия звуковых волн относительно низких частот, от 1кГц до 10 кГц, по бокам головы дельфина, где когда-то у далеких предков дельфинов, живших на суше, были обыкновенные уши, имеются наружные слуховые отверстия, которые почти заросли, однако звуки они пропускают прекрасно.

Может ли дельфин, обнаружить маленькую рыбку размером 15 см сбоку от себя? Скорость

звука в воде принять равной 1500 м/с. Ответ поясните.

Умение великолепно ориентироваться в пространстве связано у дельфинов с их

способностью излучать и принимать

1) только инфразвуковые волны 3) только ультразвуковые волны

2) только звуковые волны 4) звуковые и ультразвуковые волны

Для эхолокации дельфин использует

1) только инфразвуковые волны 3) только ультразвуковые волны

2) только звуковые волны 4) звуковые и ультразвуковые волны

Сейсмические волны

При землетрясении или крупном взрыве в коре и толще Земли возникают механические

волны, которые называются сейсмическими. Эти волны распространяются в Земле и

могут быть зарегистрированы при помощи специальных приборов – сейсмографов.

Действие сейсмографа основано на том принципе, что груз свободно подвешенного

маятника при землетрясении остаётся практически неподвижным относительно Земли. На

рисунке представлена схема сейсмографа. Маятник подвешен к стойке, прочно

закреплённой в грунте, и соединен с пером, чертящим непрерывную линию на бумажной

ленте равномерно вращающегося барабана. При колебаниях почвы стойка с барабаном

также приходят в колебательное движение, и на бумаге появляется график волнового

движения.

Различают несколько типов сейсмических волн, из них для изучения внутреннего

строения Земли наиболее важны продольная волна P и поперечная волна S.

Продольная волна характеризуется тем, что колебания частиц происходят в направлении

распространения волны; эти волны возникают и в твёрдых телах, и в жидкостях, и в газах.

Поперечные механические волны не распространяются ни в жидкостях, ни в газах.

Скорость распространения продольной волны примерно в 2 раза превышает скорость

распространения поперечной волны и составляет несколько километров в секунду. Когда

волны P и S проходят через среду, плотность и состав которой изменяются, то скорости

волн также меняются, что проявляется в преломлении волн. В более плотных слоях

Земли скорость волн возрастает. Характер преломления сейсмических волн позволяет

исследовать внутреннее строение Земли.

Какое(-ие) утверждение(-я) справедливо(-ы)?

А. При землетрясении груз маятника сейсмографа совершает колебания относительно

поверхности Земли.

Б. Сейсмограф, установленный на некотором расстоянии от эпицентра землетрясения,

сначала зафиксирует сейсмическую волну P, а затем волну S.

Сейсмическая волна P является

1) механической продольной волной 3) радиоволной

2) механической поперечной волной 4) световой волной

На рисунке представлены графики зависимости скоростей сейсмических волн от глубины погружения в недра Земли. График для какой из волн (P или S ) указывает на то, что ядро Земли находится не в твёрдом состоянии? Ответ поясните.

Анализ звука

При помощи наборов акустических резонаторов можно установить, какие тоны входят в состав данного звука и каковы их амплитуды. Такое установление спектра сложного звука называется его гармоническим анализом.

Раньше анализ звука выполнялся с помощью резонаторов, представляющих собой полые шары разного размера, имеющих открытый отросток, вставляемый в ухо, и отверстие с противоположной стороны. Для анализа звука существенно, что всякий раз, когда в анализируемом звуке содержится тон, частота которого равна частоте резонатора, последний начинает громко звучать в этом тоне.

Такие способы анализа, однако, очень неточны и кропотливы. В настоящее время они вытеснены значительно более совершенными, точными и быстрыми электроакустическими методами. Суть их сводится к тому, что акустическое колебание сначала преобразуется в электрическое колебание с сохранением той же формы, а следовательно, имеющее тот же спектр, а затем это колебание анализируется электрическими методами.

Один из существенных результатов гармонического анализа касается звуков нашей речи. По тембру мы можем узнать голос человека. Но чем различаются звуковые колебания, когда один и тот же человек поёт на одной и той же ноте различные гласные? Другими словами, чем различаются в этих случаях периодические колебания воздуха, вызываемые голосовым аппаратом при разных положениях губ и языка и изменениях формы полости рта и глотки? Очевидно, в спектрах гласных должны быть какие-то особенности, характерные для каждого гласного звука, сверх тех особенностей, которые создают тембр голоса данного человека. Гармонический анализ гласных подтверждает это предположение, а именно: гласные звуки характеризуются наличием в их спектрах областей обертонов с большой амплитудой, причём эти области лежат для каждой гласной всегда на одних и тех же частотах независимо от высоты пропетого гласного звука.

Можно ли, используя спектр звуковых колебаний, отличить один гласный звук от другого? Ответ поясните.

Гармоническим анализом звука называют

А. установление числа тонов, входящих в состав сложного звука.

Б. установление частот и амплитуд тонов, входящих в состав сложного звука.

1) только А 2) только Б 3) и А и Б 4) ни А ни Б

Какое физическое явление лежит в основе электроакустического метода анализа звука?

1) преобразование электрических колебаний в звуковые

2) разложение звуковых колебаний в спектр

3) резонанс

4) преобразование звуковых колебаний в электрические

Цунами

Цунами – это одно из наиболее мощных природных явлений – ряд морских волн длиной до 200 км, способных пересечь весь океан со скоростями до 900 км/ч. Наиболее частой причиной появления цунами следует считать землетрясения.

Амплитуда цунами, а значит, и её энергия зависят от силы подземных толчков, от того, насколько близко к поверхности дна находится эпицентр землетрясения, от глубины океана в данном районе. Длина волны цунами определяется площадью и рельефом дна океана, на котором произошло землетрясение.

В океане волны цунами не превышают по высоте 60 см – их даже трудно определить с корабля или самолёта. Но их длина практически всегда значительно больше глубины океана, в котором они распространяются.

Все цунами характеризуются большим запасом энергии, которую они несут, даже в сравнении с самыми мощными волнами, образующимися под действием ветра.

Вся жизнь волны цунами может быть разделена на четыре последовательных этапа:

1) зарождение волны;

2) движение по просторам океана;

3) взаимодействие волны с прибрежной зоной;

4) обрушивание гребня волны на береговую зону.

Чтобы разобраться в природе цунами, рассмотрим мяч, плавающий на воде. Когда под ним проходит гребень, он устремляется вместе с ним вперёд, однако тут же соскальзывает с него, отстаёт и, попадая в ложбину, движется назад, пока его не подхватит следующий гребень. Затем всё повторяется, но не полностью: всякий раз предмет немного смещается вперёд. В результате мяч описывает в вертикальной плоскости траекторию, близкую к окружности. Поэтому в волне частица поверхности воды участвует в двух движениях: движется по окружности некоторого радиуса, уменьшающегося с глубиной, и поступательно в горизонтальном направлении.

Наблюдения показали, что существует зависимость скорости распространения волн от соотношения длины волны и глубины водоёма.

Если длина образовавшейся волны меньше глубины водоёма, то в волновом движении принимает участие только поверхностный слой.

При длине волны в десятки километров для волн цунами все моря и океаны являются «мелкими», и в волновом движении принимает участие вся масса воды – от поверхности до дна. Трение о дно становится существенным. Нижние слои (придонные) сильно затормаживаются, не успевая за верхними слоями. Скорость распространения таких волн определяется только глубиной. Расчёт даёт формулу, по которой можно рассчитать скорость волн на «мелкой» воде: υ = √gH

Цунами бегут со скоростью, которая уменьшается с уменьшением глубины океана. Это означает, что их длина должна меняться при подходе к берегу.

Также при торможении придонных слоёв растёт амплитуда волн, т.е. увеличивается потенциальная энергия волны. Дело в том, что уменьшение скорости волны приводит к уменьшению кинетической энергии, и часть её превращается в потенциальную энергию. Другая часть уменьшения кинетической энергии тратится на преодоление силы трения и превращается во внутреннюю. Несмотря на такие потери, разрушительная сила цунами остаётся огромной, что, к сожалению, нам приходится периодически наблюдать в различных районах Земли.

Почему при подходе цунами к берегу растёт амплитуда волн?

1) скорость волны увеличивается, внутренняя энергия волны частично превращается в кинетическую энергию

2) скорость волны уменьшается, внутренняя энергия волны частично превращается в потенциальную энергию

3) скорость волны уменьшается, кинетическая энергия волны частично превращается в потенциальную энергию

4) скорость волны увеличивается, внутренняя энергия волны частично превращается в потенциальную энергию

Движения частицы воды в цунами являются

1) поперечными колебаниями

2) суммой поступательного и вращательного движения

3) продольными колебаниями

4) только поступательным движением

Что происходит с длиной волны цунами при подходе к берегу? Ответ поясните.

Слух человека

Самый низкий тон, воспринимаемый человеком с нормальным слухом, имеет частоту около 20 Гц. Верхний предел слухового восприятия сильно различается у разных людей. Особое значение здесь имеет возраст. В восемнадцать лет при безупречном слухе можно услышать звук до 20 кГц, но в среднем границы слышимости для любого возраста лежат в интервале 18 - 16 кГц. С возрастом чувствительность человеческого уха к высокочастотным звукам постепенно падает. На рисунке приведен график зависимости уровня восприятия звука от частоты для людей разного возраста.

Чувствительность уха к звуковым колебаниям различных частот неодинакова. Оно

особенно тонко реагирует на колебания средних частот (в области 4000 Гц). По мере

уменьшения или увеличения частоты относительно среднего диапазона острота слуха

постепенно снижается.

Человеческое ухо не только различает звуки и их источники; оба уха, работая вместе,

способны довольно точно определять направление распространения звука. Поскольку

уши расположены с противоположных сторон головы, звуковые волны от источника

звука достигают их не одновременно и воздействуют с разным давлением. За счет

даже этой ничтожной разницы во времени и давлении мозг довольно точно определяет

направление источника звука.

Восприятие звуков различной громкости и частоты в 20-летнем и 60-летнем возрасте

Имеются два источника звуковой волны:

А. Звуковая волна частотой 100 Гц и громкостью 10 дБ.

Б. Звуковая волна частотой 1 кГц и громкостью 20 дБ.

Используя график, представленный на рисунке, определите, звук какого источника

будет услышан человеком.

1) только А 2) только Б 3) и А и Б 4) ни А ни Б

Какие утверждения, сделанные на основании графика (см. рисунок), справедливы?

А. С возрастом чувствительность человеческого слуха к высокочастотным звукам

постепенно падает.

Б. Слух гораздо чувствительнее к звукам в области 4 кГц, чем к более низким или

более высоким звукам.

1) только А 2) только Б 3) и А и Б 4) ни А ни Б

Всегда ли можно точно определить направление распространения звука и

Мы слышим только шелест крыльев, на самом же деле в подземной обители звучит чудовищный хор... Ян Линдблад. В краю гоацинов

Можете ли вы себе представить, какой ужасный шум обрушился бы на вас, если бы вы вдруг оказались среди тысяч самолетов, моторы которых работают на полную мощность? Вероятно, такую ситуацию вообразить очень трудно. Но давайте немного пофантазируем. Для начала предположим, что вы попали в пещеру, где полным-полно летучих мышей (впрочем, это еще не фантазия). Теперь допустим, что, попав в пещеру, вы неожиданно приобрели способность слышать сигналы ультразвукового диапазона, то есть те, частота которых выше 20 килогерц. Если бы все это случилось, вам, вероятно, пришлось бы перенести довольно неприятные ощущения. Вы были бы просто оглушены страшным ревом, источником которого явились маленькие крылатые жители пещеры. Дело в том, что громкость ультразвуковых криков многих видов летучих мышей на расстоянии 10 сантиметров от головы животного достигает 110-120 децибел. Примерно такой же шум, но в слышимом диапазоне частот производит авиационный двигатель на расстоянии 1 метра. Для сравнения надо отметить, что уровень громкости 130 децибел и выше вызывает у человека болевые ощущения.

Прежде чем объяснить поразительные способности летучих мышей к такому оглушительному крику, вспомним о некоторых свойствах ультразвука.

Одна из особенностей ультразвука состоит в том, чего можно излучать в виде почти параллельного узкого пучка, в то время как звуки слышимого диапазона, как правило, излучаются во всех направлениях. Это свойств ультразвука объяснимо с точки зрения общей дифракции волн.

Возможность образования ультразвуковых пучков позволяет фокусировать энергию сигнала в определенное место. Интенсивность ультразвука увеличивается пропорционально квадрату частоты колебаний, и поэтому, повышая частоту, можно относительно легко получить ультразвуки огромной силы. Однако большое количество энергии ультразвука теряется при прохождении в среде, в связи с чем сигнал быстро затухает.

Из всего сказанного понятно, почему летучим мышам так легко удается излучать интенсивные сигналы высокой направленности. Ясно также и то, что сигналы меньшей интенсивности терялись бы в воздухе, не давая зверькам возможности воспользоваться одним из удивительных способов ориентации в пространстве - эхолокацией.

Летучие мыши давно уже стали классическим объектом изучения эхолокации животных, а их "сонары" сделались едва ли не самой популярной темой всевозможных статей и публикаций о "патентах природы". История открытия, вернее, исследования эхолокации насчитывает без малого 200 лет и ведет свое начало с 90-х годов XVIII столетия.

Профессор университета итальянского города Павии Лазаро Спалланцани был уже немолод, когда он впервые заинтересовался способностью ночных животных находить путь в темноте. Среди своих коллег ученый к тому времени был достаточно известен трудами в различных областях естествознания.

Первые опыты Спалланцани провел в 1793 году. Сначала он установил, что летучие мыши свободно передвигаются в темном помещении, в котором даже такие, казалось бы, зоркие ночные животные, как совы, беспомощны. Спалланцани решил, что весь секрет кроется в чрезвычайной остроте зрения летучих мышей, позволяющей им ориентироваться в полной темноте. Чтобы проверить свое предположение, он, ослепив нескольких летучих мышей, выпустил их на волю. Лишенные зрения зверьки прекрасно летали и даже ловили насекомых.

Спалланцани, уверенный в том, что летучие мыши обладают неизвестным доселе чувством, тут же разослал ученым-коллегам письма с просьбой повторить эксперименты и сообщить ему о результатах. Многие из них подтвердили правильность исследований Спалланцани. Но швейцарский натуралист Шарль Жюрин, повторив описанные Спалланцани опыты, на этом не остановился и предпринял еще один шаг на пути раскрытия тайны летучих мышей. Оказалось, что если залепить уши животных воском, то он: начинают натыкаться на препятствия. Жюрин сделал вывод: летучие мыши "видят ушами".

Летучая лисица (Pteropus)

Спалланцани проверил опыты Жюрина и, убедившие в их достоверности, пришел к заключению, что летуча: мышь может прекрасно обходиться без зрения, но потер: слуха неминуемо ведет ее к гибели. Однако дать убедительного объяснения способности зверьков ориентироваться при помощи слуха Спалланцани не смог. Выводы его вскоре были отвергнуты, а впоследствии и вовсе забыты! Противники его идей, издеваясь над "слуховой" теорией, насмешливо вопрошали: "если летучие мыши видят своими ушами, то не слышат ли они своими глазами?"

Крупнейший французский ученый того времени Жорж Кювье, разгромив выводы Жюрина и Спалланцани, выдвинул свою умозрительную теорию. По его мнению, крылья летучих мышей обладают высокой чувствительностью и могут улавливать даже самое незначительное сгущение воздуха, которое образуется между крылом и препятствием. Эта гипотеза Кювье, получив название "тактильной теории", была признана многими учеными и просуществовала в науке более 100 лет. За весь этот период к вопросам, касающимся ориентации летучих мышей, не было прибавлено ни одного свежего факта. Несмотря на то, что некоторые исследователи изредка вспоминали о заботой "слуховой теории", их эксперименты не заходили дальше тех, которые уже были проведены Спалланцани и Жюрином.

В начале нашего столетия, после трагического случая с трансатлантическим лайнером "Титаник", многие ученые принялись ломать головы над созданием устройства, обеспечивающего кораблю сигнализацию при приближении к айсбергу. Не остался в стороне от этой проблемы известный американский изобретатель Хайрем Максим, тот самый, чье имя носит скорострельный станковый пулемет. Максим был первым, кто высказал мысль о том, что летучие мыши используют в полете звуковую локацию, и предложил применить принцип эхолокации в приборе для обнаружения невидимых объектов. Ошибка Максима была в том, что он предполагал наличие у летучих мышей ориентационных сигналов низких инфразвуковых частот, нет слышимых человеческим ухом. Источником таких звуков, по мнению изобретателя, могли служить машущие крылья зверьков.

Во время первой мировой войны французский физик Ланжевен получил патент на изготовление прибора для обнаружения подводных объектов при помощи генератора ультразвука. В 1920 году английский нейрофизиолог Хартридж, зная о работах Ланжевена, высказал гипотезу о том, что механизм эхолокации летучих мышей, вероятно, основан на использовании ультразвуков. Однако гипотеза оставалась гипотезой, так как экспериментальных подтверждений сделано не было.

Окончательно дело прояснилось только в 1938 году. Решающую роль в открытии сыграло сотрудничество представителей разных наук - физики и биологии. Незадолго до этого в лаборатории физического факультета Гарвардского университета профессор Пирс сконструировал прибор для преобразования высокочастотных звуков в колебания более низкой частоты, слышимой человеческим ухом. Узнав о существовании звукового детектора - так назывался этот прибор,- студент-биолог того же университета Дональд Гриффин принес однажды в лабораторию Пирса клетку с летучими мышами. Это были широко распространенные в США малая бурая ночница и большой бурый кожан. Когда микрофон детектора направили на клетку, из громкоговорителя на ученых обрушился оглушительный поток трескучих звуков. Стало совершенно ясно, что летучие мыши издают сигналы в диапазоне частот, лежащих выше порога слышимости человека.

Аппарат Пирса был устроен таким образом, что при необходимости можно было установить распределение интенсивности звуков по частотам. Проводя исследования, Гриффин и Пирс обнаружили, что частоты звуков, испускаемых летучими мышами в полете, лежат в пределах 30- 70 килогерц, а наивысшей интенсивности сигналы достигают в диапазоне 45-50 килогерц. Кроме того, ученые выяснили, что зверьки излучают звуки не непрерывно, а в виде коротких импульсов длительностью 1-2 миллисекунды.

Вскоре после этого Гриффин и Галамбос провели ряд экспериментов, в которых доказали, что лишить летучую мышь возможности хорошо ориентироваться среди препятствий можно не только затыкая ей уши, но и плотно закрывая рот. Эти опыты подтвердили высказанную некогда Хартриджем гипотезу о наличии у летучих мышей сигналов ультразвукового диапазона и их использовании при ориентации в пространстве.

Летучие мыши - маленькие пушистые зверьки, мастерски шныряющие в небе, с наступлением сумерек.
Почти все виды летучих мышей ведут ночной образ жизни, отдыхая днём, повиснув головой вниз, либо забившись в какую то нору.

Летучие мыши относятся к отряду рукокрылых, и составляют основную его часть. Стоит отметить, что рукокрылые обитают на всех континентах нашей планеты, кроме Антарктиды.

Рассмотреть мышку в полёте не реально, их машущий полет сильно отличается от полёта птиц и насекомых, превосходя их маневренностью и аэродинамикой.

Средняя скорость летучих мышей в полёте от 20-50 км/ч. Их крылья имеют кисти с длинными пальцами, соединенными тонкой, но прочной кожистой перепонкой. Эта перепонка растягивается в 4 раза, без разрывов и повреждений. Во время полёта мышь выполняет симметричные махи крыльев, сильно прижимая их к себе, гораздо плотнее чем другие летающие животные, таким образом улучшая аэродинамику своего полёта.

Гибкость крыла позволяет Летучей мыши моментально развернуться на 180 градусов, практически не делая разворота. Так же Летучие мыши способны зависать в воздухе как насекомые, делая быстрые взмахи крыльев.

Эхолокация Летучих мышей

Для ориентированияЛетучие мыши пользуются эхолокацией , а не зрением. Во время полёта, они посылают ультразвуковые импульсы, которые отражаясь от различных предметов, в том числе и живых (насекомых, птиц), улавливаются ушными раковинами.

Интенсивность ультразвуковых сигналов, посылаемых мышью очень велика, и у многих видов достигает до 110-120 децибел (проезжающий поезд, отбойный молоток). Однако, человеческое ухо их не слышит.

Эхолокация помогает мыши не только ориентироваться в полёте, маневрируя в густом лесу, но и контролировать высоту полета, охотится, преследовать добычу, искать место для дневного сна.

Летучие мыши часто спят группами, не смотря на маленький размер, они обладают высоким уровнем социализации.

Песни Летучих мышей

Среди млекопитающих (кроме человека), рукокрылые единственные, кто используют очень сложные голосовые последовательности для общения. Это похоже на песни птиц , но гораздо сложнее.

Мыши поют песни во время ухаживания самца за самкой, для защиты своей территории, для опознавания друг друга и обозначения своего статуса, при воспитании детенышей. Песни издаются в ультразвуковом диапазоне, человек может услышать только то, что "спето" на низких частотах.

Зимой часть рукокрылых мигрирует в более тёплые края, а часть зимует, впадая в спячку.

Природоохранный статус Летучей мыши

Все европейские виды летучих мышей охраняются многими международными конвенциями, в том числе Бернской конвенцией (охрана животных Европы) и Боннской конвенцией (охрана мигрирующих животных). Помимо этого все они занесены в Международную красную книгу IUCN. Часть видов, как находящиеся под угрозой исчезновения, а часть - как уязвимые, требующие постоянного мониторинга. Россия подписала все международные соглашения по охране этих животных. Все виды рукокрылых также охраняются и отечественным законодательством. Некоторые из них включены в Красную книгу. Согласно законодательству, не только сами летучие мыши, но и их места обитания, в первую очередь убежища, подлежат охране. Вот почему, ни органы санитарного надзора, ни ветеринарного просто-напросто не имеют права принимать какие-то меры в отношении найденных поселений рукокрылых в городе, также и человек по закону не вправе уничтожать места обитания мышиных колоний и самих мышей.

Интересные факты о Летучих мышах

1. Существует международная ночь летучих мышей. Этот праздник отмечается 21 сентября, с целью привлечения внимания к проблемам выживания этих животных. В России этот природоохранный праздник отмечают с 2003 года.

2. За один час летучая мышь может съесть до 600 комаров, что в пересчете на вес человека будет равняться примерно 20 пиццам.

3. Летучие мыши не страдают ожирением.

4. Летучие мыши поют песни на высоких частотах.



Что еще почитать