Расположение лопастей. Виды ветрогенераторов. Информатизация технологического оборудования судового машиностроения

Контроллер, мачты, хвостовик, инвертор и аккумуляторную батарею.

Традиционно, ветровой механизм наделен тремя лопастями, зафиксированными на роторе. Когда ротор крутится, возникает трехфазный переменный ток, поступающий на контроллер, затем ток перерождается в стабильное напряжение и идет на аккумуляторную батарею.

Протекая через аккумуляторы, ток подпитывает их и эксплуатирует в качестве проводников электричества.

В дальнейшем, ток приходит на инвертор, достигает требуемых величин: переменный однофазный ток 220 В, 50 Гц. При скромном расходовании выработанного электричества предостаточного для пользования светом и электрическими приборами, нехватка тока компенсируется благодаря аккумуляторам.

Как рассчитать лопасти?

Вычислить диаметр ветряка для определенной мощности можно следующим образом:

  1. Окружность пропеллера ветрогенератора с определенной мощностью, малыми оборотами и силой ветра, при которых происходит подача нужного напряжения, числом лопастей внести в квадрат.
  2. Высчитать площадь данного квадрата.
  3. Разделить площадь получившегося квадрата на мощность конструкции в ватах.
  4. Перемножить результат с требуемой мощностью в ватах.
  5. Под этот результат нужно подбирать площадь квадрата, варьируя размеры квадрата до тех пор, пока размер квадрата не достигнет четырех.
  6. В этот квадрат вписать окружность пропеллера ветрогенератора.

После этого нетрудно будет узнать другие показатели, например, диаметр.

Расчет максимально приемлемой формы лопастей достаточно мудреный, кустарному мастеру сложно его выполнить, поэтому можно использовать готовые шаблоны, созданные узкими специалистами.

Шаблон лопасти из ПВХ трубы 160 мм в диаметре:

Шаблон лопасти из алюминия:

Можно попробовать самостоятельно определить показатели лопастей ветряного устройства.

Быстроходность ветряного колеса являет собой соотношение круговой скорости края лопасти и скорости ветра, ее можно вычислить по формуле:

На мощность ветряного двигателя оказывают влияние диаметр колеса, форма лопастей, расположение их относительно потока воздуха, скорости ветра.

Ее можно найти по формуле:

При использовании лопастей обтекаемой формы коэффициент использования ветра не выше 0,5. При слабо обтекаемых лопастях – 0,3.

Необходимые материалы и инструменты

Потребуются следующие материалы:

  • дерево либо фанера;
  • алюминий;
  • стекловолокно в листах;
  • трубы и комплектующие из ПВХ;
  • материалы, имеющиеся дома в гараже либо подсобных помещениях;

Необходимо запастись следующими инструментами:

  • маркер, можно использовать карандаш для черчения;
  • ножницы для резки металла;
  • лобзик;
  • ножовка;
  • бумага наждачная;

Вертикальный и горизонтальный ветрогенератор


Вертикальный ветрогенератор

Можно классифицировать по роторам:

  • ортогональный;
  • дарье;
  • савониуса;
  • геликойдный;
  • многолопастной с направляющим аппаратом;

Хороши тем, что нет нужды направлять их относительно ветра, они функционируют при любом направлении ветра. Из-за этого их не нужно оснащать приборами, улавливающими направление ветра.

Эти конструкции допустимо располагать на земле, они просты. Изготовить своими руками такую конструкцию значительно проще, нежели горизонтальную.

Слабым местом вертикальных ветрогенераторов считается их малая производительность, крайне низкий КПД, из-за чего сфера их использования ограничена.

Горизонтальные ветрогенераторы имеют ряд достоинств по сравнению с вертикальными. Они делятся на одно-, двух-, трех- и многолопастные.

Однолопастные конструкции самые скоростные, они крутятся в два раза быстрее трехлопастных при одинаковой силе ветра. КПД этих ветрогенераторов существенно выше, чем вертикальных.

Существенным недостатком горизонтально-осевой конструкций считается зависимость ротора от направления ветра, из-за чего на ветрогенератор необходимо устанавливать дополнительные приборы, улавливающие направление ветра.

Выбор вида лопастей

Лопасти преимущественно могут быть двух видов:

  • парусного типа;
  • крыльчатого профиля;

Можно соорудить плоские лопасти по типу «крыльев» ветряной мельницы, то есть, парусного типа. Выполнить их проще всего из самого разнообразного материала: фанеры, пластика, алюминия.

Этот метод имеет свои минусы. При кручении ветряка с лопастями, выполненными по принципу паруса, не участвуют аэродинамические силы, кручение обеспечивает лишь мощность давления ветрового потока.

Производительность этого прибора минимальна, в энергию трансформируется не более 10% силы потока ветра. При незначительном ветре колесо будет пребывать в статичном положении, а тем более не станет производить энергию для употребления в быту.

Более приемлемой будет конструкция, являющая собой ветряное колесо с лопастями крыльчатого профиля. В ней наружная и внутренняя поверхности лопастей обладают различными площадями, что позволяет достигать несоответствия давления воздуха на противоположные поверхности крыла. Аэродинамическая сила значительно увеличивает коэффициент использования ветряного прибора.

Подбор материала

Лопасти для ветряного устройства можно выполнить из любого более или менее подходящего материала, например:

Из трубы ПВХ


Соорудить лопасти из этого материала, наверное, проще всего. Трубы ПВХ можно найти в каждом строительном магазине. Выбирать трубы следует те, которые разработаны для канализации с напором либо газопровода. В противном случае поток воздуха при сильном ветре может искорежить лопасти и повредить их о мачту генератора.

Лопасти ветрогенератора претерпевают серьезные нагрузки от центробежной силы, причем, чем длиннее лопасти, тем сильнее нагрузки.

Край лопасти двухлопастного колеса домашнего ветрогенератора вращается со скоростью сотни метров в секунду, такова скорость вылетающей из пистолета пули. Такая скорость может привести к разрыву труб ПВХ. Особенно опасно это тем, что разлетающиеся осколки труб могут убить либо серьезно ранить людей.

Выйти из положения можно укоротив по максимуму лопасти и увеличив их число. Многолопастное ветряное колесо легче балансировать, оно меньше шумит. Немаловажное значение имеет толщина стенок труб. К примеру, для ветряного колеса с шестью лопастями из ПВХ трубы, составляющего в диаметре два метра, их толщина не должна быть менее 4 миллиметров. Для расчета конструкции лопастей домашнему умельцу можно воспользоваться готовыми таблицами и шаблонами.

Шаблон следует смастерить из бумаги, приложить к трубе и обвести. Это следует сделать столько раз, сколько лопастей будет у ветрогенератора. При помощи лобзика трубу необходимо рассечь по меткам – лопасти практически готовы. Края труб шлифуются, углы и концы закругляются для того, чтобы ветряк выглядел симпатично и поменьше шумел.

Из стали следует смастерить диск с шестью полосами, который будет играть роль конструкции, объединяющей лопасти и фиксирующей колесо к турбине.

Габариты и форма соединительной конструкции должны соответствовать типу генератора и постоянного тока, который будет задействован в . Сталь необходимо выбрать такой толщины, чтобы она не деформировалась под ударами ветра.

Из алюминия


По сравнению с лопастями из ПВХ труб алюминиевые более выносливы и на изгиб, и на разрыв. Недостаток их заключается в большом весе, что требует принятия мер к обеспечению устойчивости всего сооружения в целом. Кроме того, следует максимально тщательно балансировать колесо.

Рассмотрим особенности исполнения лопастей из алюминия для шестилопастного ветряного колеса.

По шаблону следует выполнить лекало из фанеры. Уже по лекалу из листа алюминия высечь заготовки лопастей в количестве шести штук. Будущая лопасть прокатывается в желоб глубиной в 10 миллиметров, при этом ось прокрутки должна образовать с долевой осью заготовки угол в 10 градусов. Эти манипуляции наделят лопасти приемлемыми аэродинамическими параметрами. К внутренней стороне лопасти крепится втулка с резьбой.

Соединительный механизм ветряного колеса с лопастями из алюминия в отличие от колеса с лопастями из труб ПВХ имеет на диске не полоски, а шпильки, представляющие собой куски стального прута с резьбой, подходящей к резьбе втулок.

Из стекловолокна

Лопасти из собранной из стекловолокна специфической стеклоткани являются наиболее безупречными, учитывая их аэродинамические параметры, прочность, вес. Соорудить эти лопасти трудней всего, поскольку нужно уметь обрабатывать дерево и стеклоткань.

Мы рассмотрим выполнение лопастей из стекловолокна для колеса диаметром два метра.

Наиболее скрупулезно следует подойти к выполнению матрицы из дерева. Она вытачивается из брусьев по готовому шаблону и служит моделью лопасти. Закончив трудиться над матрицей, можно начинать мастерить лопасти, которые будут состоять из двух частей.

Матрицу для начала надо обработать воском, одну из ее сторон покрыть эпоксидной смолой, на ней расстелить стеклоткань. На нее снова нанести эпоксидную смолу, и снова слой стеклоткани. Количество слоев может быть три или четыре.

Затем нужно прямо на матрице получившуюся слойку держать около суток до полного высыхания. Вот и готова одна часть лопасти. С другой стороны матрицы выполняется та же последовательность действий.

Готовые части лопастей следует соединить при помощи эпоксидной смолы. Внутрь можно поместить деревянную пробку, зафиксировать ее клеем, это позволит закрепить лопасти к ступице колеса. В пробку следует внедрить втулку с резьбой. Соединительный узел станет ступицей так же как и в предыдущих примерах.

Балансировка ветряного колеса

Когда лопасти будут выполнены, нужно укомплектовать ветряное колесо и произвести его балансировку. Делать это следует в закрытом строении большой площади при условии полного безветрия, поскольку колебания колеса на ветру способны исказить результаты балансировки.

Балансировку колеса необходимо выполнять так:

  1. Укрепить колесо на такой высоте, чтобы оно могло беспрепятственно двигаться. Плоскость соединительного механизма должна быть идеально параллельна вертикальному подвесу.
  2. Добиться полной статичности колеса и отпустить. Оно не должно шевелиться. Затем прокрутить колесо на угол, равный отношению 360/число лопастей, остановить, отпустить, снова прокрутить, так наблюдать некоторое время.
  3. Испытания следует проводить до полного прокручивания колеса вокруг своей оси. Когда отпущенное либо остановленное колесо продолжает качаться, его часть, тяготеющая книзу излишне тяжела. Необходимо конец одной из лопастей подточить.

Кроме того, следует выяснить, насколько гармонично лопасти лежат в плоскости вращения колеса. Колесо необходимо остановить. На расстоянии около двух миллиметров от каждого края одной из лопастей укрепить две планки, которые не будут препятствовать вращению. При прокручивании колеса лопасти не должны цепляться за планки.

Техническое обслуживание

Для длительного безаварийного функционирования ветрогенератора следует проводить такие мероприятия:

  1. Через десять или четырнадцать дней от начала работы , ветряной двигатель следует обследовать, особенно крепления. Делать это лучше всего в безветренную погоду.
  2. Два раза в год промазывать подшипники поворотного механизма и генератора.
  3. При подозрениях на нарушение балансировки колеса , которое может выражаться в вибрации лопастей при кручении по ветру, необходимо выполнить балансировку.
  4. Ежегодно осматривать щетки токоприемника.
  5. По мере необходимости , покрывать красящими составами металлические части ветрогенератора.

Сделать лопасти для ветряного двигателя вполне по силам домашнему умельцу, нужно только все просчитать, продумать, и тогда дома появится реальная альтернатива электросетям. При выборе мощности самодельного устройства, нужно обязательно помнить, что его максимальная мощность не должна превышать 1000 или 1500 Ватт. Если этой мощности не хватает, стоит подумать о покупке промышленного агрегата.

Использование альтернативных источников энергии – один из основных трендов нашего времени. Чистая и доступная энергия ветра может преобразовываться в электричество даже у вас дома, если построить ветряк и соединить его с генератором.

Соорудить лопасти для ветрогенератора своими руками можно из обычных материалов, не используя специального оборудования. Мы расскажем, какая форма лопастей эффективнее, и поможем подобрать подходящий чертеж для ветровой электростанции.

Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.

Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.

Работа ветряной электростанции оценивается по КИЭВ – коэффициенту использования энергии ветра. Когда ветроколесо вращается быстро, оно взаимодействует с большим количеством ветра, а значит забирает у него большее количество энергии

Подразделяют две основные разновидности ветряных генераторов:

  • горизонтальные.

Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.

Такая универсальность является плюсом данного типа ветряков, но они проигрывают горизонтальным моделям по производительности и эффективности работы

Горизонтальный ветрогенератор напоминает флюгер. Чтобы лопасти вращались, конструкция должна быть повернута в нужную сторону, в зависимости от направления движения воздуха.

Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.

Какая форма лопасти является оптимальной?

Один из главных элементов ветрогенератора – комплект лопастей.

Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:

  • размер;
  • форма;
  • материал;
  • количество.

Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.

Однако это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота.

Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.

Форма имеет большое значение. От нее зависит скорость движения винта. Плохое обтекание становится причиной возникновения вихрей, которые тормозят ветроколесо

Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.

Вес лопасти зависит от ее размера и материала, из которого она будет изготовлена. Размер нужно подбирать тщательно, руководствуясь формулами для расчетов. Кромки лучше обрабатывать так, чтобы с одной стороны имелось закругление, а противоположная сторона была острой

Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы.

Для домашнего изготовления подходят такие варианты:

  • парусного типа;
  • крыльчатого типа.

Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.

Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.

Правильный профиль должен напоминать крыло самолета. С одной стороны лопасть имеет утолщение, а с другой – пологий спуск. Воздушные массы обтекают деталь такой формы очень плавно

КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.

Из чего делают лопасти в домашних условиях?

Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.

Канализационные трубы из поливинилхлорида

Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.

К преимуществам такого метода относят:

  • невысокую цену;
  • доступность в любом регионе;
  • простоту работы;
  • большое количество схем и чертежей в интернете, большой опыт использования.

Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.

Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую

Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.

Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.

Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат

Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.

Алюминий – тонкий, легкий и дорогой

Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.

Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.

Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления

Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.

После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.

Стекловолокно или стеклоткань – для профессионалов

Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.

Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая

Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев.

Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.


Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика

Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.

Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.


Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.

Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.

Дешево и сердито: деревянная деталь для ветроколеса

Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.

Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.

Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской

Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.

КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.

Чертежи и примеры лопастей

Сделать правильный расчет винта ветрогенератора, не зная основных параметров, которые отображаются в формуле, а так же не имея понятия, как эти параметры влияют на работу ветряка, очень сложно.

Лучше не тратить свое время, если желания вникать в основы аэродинамики нет. Готовые чертежи-схемы с заданными показателями помогут подобрать подходящую лопасть для ветряной электростанции.

Чертеж лопасти для двухлопастного винта. Изготавливается из канализационной трубы 110 диаметра. Диаметр винта ветряка в данных расчетах – 1 м

Подобный небольшой ветрогенератор не сможет обеспечить вас высокой мощностью. Скорей всего, вы вряд ли сможете выжать из этой конструкции больше 50 Вт. Однако двухлопастной винт из легкой и тонкой ПВХ-трубы даст высокую скорость вращения и обеспечит работу ветряка даже при небольшом ветре.

Чертеж лопасти для трехлопастного винта ветрогенератора из трубы 160 мм диаметра. Расчетная быстроходность в этом варианте – 5 при ветре 5 м/с

Трехлопастной винт такой формы может быть использован для более мощных агрегатов, примерно 150 Вт при 12 В. Диаметр всего винта в этой модели достигает 1,5 м. Ветроколесо будет вращаться быстро и легко запускаться в движение. Ветряк с тремя крыльями встречается в домашних электростанциях чаще всего.

Чертеж самодельной лопасти для 5-ти лопастного винта ветрогенератора. Изготавливается из трубы ПВХ диаметром 160 мм. Расчетная быстроходность – 4

Такой пятилопастной винт сможет выдавать до 225 оборотов в минуту при расчетной скорости ветра 5 м/с. Чтобы построить лопасть по предложенным чертежам, нужно перенести координаты каждой точки из колонок «Координаты лекала фронт/тыл» на поверхность пластиковой канализационной трубы.

По таблице видно, что чем больше крыльев у ветрогенератора, тем меньше должна быть их длина для получения тока одинаковой мощности

Как показывает практика, обслуживать ветрогенератор больше 2 метров в диаметре достаточно сложно. Если в соответствии с таблицей вам необходим ветряк большего размера, подумайте над увеличением числа лопастей.

С правилами и принципами ознакомит статья, в которой пошагово изложен процесс производства вычислений.

Выполнение балансировки ветряка

Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.

Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.

Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.

Процесс повторяется до тех пор, пока винт не будет абсолютно неподвижным в любом положении. Важно, чтобы во время балансировки не было ветра. Это может исказить результаты испытаний

Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.

Для эксплуатации ветрогенератора с изготовленными лопастями потребуется собрать систему, аккумулирующую полученную энергию, сохраняющую ее и передающую потребителю. Одним из компонентов системы является контроллер. О том, как сделать , узнаете, ознакомившись с рекомендованной нами статьей.

Если вы хотите использовать чистую и безопасную энергию ветра для бытовых нужд и не планируете тратить огромные деньги на покупку дорогостоящего оборудования, самодельные лопасти из обычных материалов будут подходящей идеей. Не бойтесь экспериментов, и вам удастся еще больше усовершенствовать существующие модели винтов ветряка.

Приходится , опираясь на экспериментальные результаты или отрывочные сведения, почерпнутые из разных источников. Рассмотрим важный вопрос, возникающий при создании ветряка - устройство лопастей.

Как работает простой ветрогенератор?

Существует два типа ветрогенераторов:

  • горизонтальные
  • вертикальные

Разница состоит в расположении оси вращения. Наиболее производительными считаются , напоминающие своими формами самолет с пропеллером. Винт - это крыльчатка ветряка, хвост - устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.

При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает . Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.

Существуют более простые комплексы, где с генератора запитываются сразу потребители, но такая система никак не защищена от скачков или пропадания напряжения. Вариант используется только для освещения или привода насосов, качающих воду.

Какая форма лопасти является оптимальной?

Основной элемент горизонтального ветряка - крыльчатка . Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.

Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием - чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.

Важно! Большое число лопастей увеличивает фронтальную нагрузку на устройство, создавая опрокидывающее усилие на основании мачты и сильное осевое давление на крыльчатку, разрушающее подшипники генератора.

На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.

Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.

Выбор вида

Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки - создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:

  • твердолопастные крыльчатки

Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.

Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.

Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.

Расчет лопастей

На практике мало кто вычисляет параметры лопастей, поскольку для этого надо обладать специальной подготовкой и располагать данными. Большинство значений, нужных для расчетов, необходимо сначала отыскать, некоторые из них и вовсе будут известны только после запуска ветряка. Кроме того, для большинства видов до сих пор нет математической модели вращения, что делает расчеты бесполезными.

Чаще всего производится подбор диаметра крыльчатки по требующейся мощности, выполняемый по таблице:

Как вариант, можно использовать онлайн-калькулятор , позволяющий получить готовый результат за секунды, надо только подставить в окошечки программы собственные данные.

Необходимо учитывать, что расчеты такого устройства, как крыльчатка, не будут иметь достаточной точности из-за большого количества тонких эффектов и неизвестных величин, поэтому, чаще всего, прибегают к экспериментальному подбору формы и размера.

Материал для изготовления

Прежде, чем начать работы по созданию крыльчатки , надо определиться с материалом. Выбор производится из того, что имеется в наличии, или из материалов, более знакомых пользователю и доступных для обработки. Требования к материалу для изготовления лопастей:

  • прочность
  • малый вес
  • легкость обработки
  • возможность придания нужной формы или наличие ее у заготовки
  • доступность

Из всех возможных вариантов опытным путем были выделены несколько наиболее удачных. Рассмотрим их подробнее.

Трубы ПВХ

Использование канализационных труб ПВХ большого диаметра позволяет быстро и недорого получить вполне качественные лопасти. Пластик не боится воздействия влаги, легко обрабатывается. Самым ценным качеством является наличие у заготовки формы ровного желоба, остается лишь правильно отрезать все лишнее.

Простота изготовления и дешевизна материала в сочетании с эксплуатационными качествами пластика сделали трубы ПВХ самым ходовым материалом при изготовлении самодельных ветряков. К недостаткам материала можно отнести его хрупкость при низких температурах.

Алюминий

Лопасти из алюминия долговечны, прочны и не боятся никаких внешних воздействий . При этом, они тяжелее, чем пластиковые и требуют тщательной балансировки колеса. Кроме того, работа с металлом, даже таким податливым, как алюминий, требует наличия навыков и подходящего инструмента.

Затрудняет работу и форма материала - чаще всего используется листовой алюминий, поэтому мало изготовить лопасти, надо придать им соответствующий профиль, для чего придется сделать специальный шаблон. Как вариант, можно сначала изогнуть лист по оправке, затем приступить к разметке и резке деталей. В целом, материал более устойчив к нагрузкам, не боится температурных или погодных воздействий.

Стекловолокно

Такой выбор - для специалистов. Работа со стекловолокном сложна, требует навыков и знания множества тонкостей. Порядок создания лопасти включает в себя несколько операций:

  • изготовление деревянного шаблона, покрытие его поверхности воском, мастикой или иным материалом, отталкивающим клей
  • изготовление одной половины лопасти. На поверхность шаблона наносится слой эпоксидки, на который тут же укладывается стеклоткань. Затем снова наносится эпоксидка (не дожидаясь засыхания предыдущего слоя) и опять стеклоткань. Таким образом создается одна половина лопасти нужной толщины
  • подобным образом изготавливается вторая половина лопасти
  • после застывания клея половинки соединяются при помощи эпоксидки. Стыки зашлифовываются, в торец вставляется втулка для присоединения к ступице

Технология сложна, требует времени и умения работать с материалами. Кроме того, эпоксидная смола имеет неприятное свойство закипать в больших объемах, что создает постоянную угрозу испортить всю работу. Поэтому выбирать стеклоткань следует только опытным и подготовленным пользователям.

Древесина

Работа с деревом достаточно хорошо знакома для большинства пользователей, но создание лопастей - задача достаточно сложная. Мало того, что форма изделия сама по себе непроста, так еще и потребуется изготовить несколько одинаковых неотличимых друг от друга образцов.

Решение такой задачи по плечу далеко не всем. Кроме того, готовые изделия надо качественно защитить от воздействия влаги, пропитать олифой или маслом, покрасить и т.д.

Древесина обладает массой отрицательных качеств - она склонна к короблению, растрескиванию, гниению. Впитывает и легко отдает влагу, что изменяет массу и баланс крыльчатки. Все эти свойства делают материал не лучшим вариантом выбора для домашнего мастера, поскольку лишние осложнения никому не нужны.

Создание лопастей поэтапно

Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:

  • отрезаются куски трубы по длине лопастей
  • вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм - ширина одной лопасти
  • с противоположного торца делается то же самое
  • крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
  • вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
  • лопасти присоединяются к ступице

Форма лопастей имеет следующее строение:

  • торцевые части одинаковы по ширине - 44 мм
  • посередине ширина лопасти составляет 55 мм
  • на расстоянии 0,15 длины ширина лопасти составляет 88 мм

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего - стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора - нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части - к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5-6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти - 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь - это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь - это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05-0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9-12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.

Центробежный вентилятор — устройство механического типа, которое способно работать с воздушными или газовыми потоками, имеющими низкий уровень увеличения давления. Крутящаяся крыльчатка обеспечивает движение воздушных масс. Система работы заключается в том, что кинетическая энергия увеличивает давление потока, который и оказывает противодействие всем воздуховодам и заслонкам.

Центробежный вентилятор намного мощнее осевого, при этом имеет экономных расход электроэнергии.

Данное устройство позволяет изменить направление воздушной массы с уклоном в 90 градусов. При этом во время работы вентиляторы не создают много шума, а за счет своей надежности их диапазон рабочих условий достаточно широк.

Некоторые особенности

Хотелось бы обратить внимание, что принцип действия центробежного вентилятора построен таким образом, что он качает постоянный объем воздуха, а не массу, что позволяет фиксировать скорость расхода воздуха. Кроме того, такие модели намного экономичней, чем осевые аналоги, а конструкцию при этом имеют проще.

Схема элементов центробежного вентилятора: 1 – ступица, 2 – основной диск, 3 – рабочие лопатки, 4 – передний диск, 5 – лопастная решетка, 6 – корпус, 7 – шкив, 8 – подшипники, 9 – станина, 10, 11 – фланцы.

Автопромышленность использует данные вентиляторы, чтобы охлаждать двигатели внутреннего сгорания, которые отдают «в пользование» свою энергию такому аппарату. Также это вентиляционное устройство применяется для перемещения газовых смесей и материалов в вентиляционных системах.

Могут использоваться как одно из составляющих систем отопления или охлаждения. Такая техника применима и с целью очистки и фильтрации промышленных систем.

Для обеспечения нужного уровня давления и расхода используется обычно целая серия вентиляторов. Конечно, центробежные модели имеют более высокую мощность, но при этом остаются экономичными (всего лишь 12% затрат от электричества).

Устройство центробежного вентилятора состоит из крыльчатки, которая оснащена несколькими шеренгами лопастей (ребер). В центре расположен вал, который проходит через весь корпус. Воздушные массы попадают с края, где находятся лопасти, далее за счет конструкции происходит их поворот на 90 градусов, а затем благодаря центробежной силе они разгоняются еще больше.

Вернуться к оглавлению

Типы приводных механизмов

Во многом на работу вентилятора, а именно на вращение лопастей, влияет тип привода. На сегодняшний день их 3:

  1. Прямой. В данном случае крыльчатка напрямую соединена с валом двигателя. От скорости вращения мотора будет зависеть и скорость лопастей. В качестве недостатка этой модели выделяют следующие: если двигатель не имеет регулировки своей скорости, то и вентилятор будет работать в одном режиме. Но если учесть, что холодный воздух имеет более высокую плотность, то кондиционирование будет само по себе происходить быстрее.
  2. Ременный. В данном типе устройства имеются шкивы, которые расположены на валу двигателя и крыльчатки. Соотношение диаметров шкивов обоих элементов влияют на скорость работы лопастей.
  3. Регулируемый. Тут регулировка скорости происходит за счет наличия гидравлической или магнитной муфты. Ее месторасположение — промеж валов мотора и импеллера. Чтобы проще было осуществить этот процесс, такие центробежные вентиляторы имеют автоматизированные системы.

Вернуться к оглавлению

Составляющие центробежного вентилятора

Схема рабочих колес центробежных вентиляторов: а – барабанная, б – кольцевая, в, г – с коническими покрывающими дисками, д — однодисковые, е — бездисковые.

Как и любая другая техника, вентилятор будет исправно работать только при соответствующих элементах конструкции.

  1. Подшипники. Чаще всего данный тип устройства имеет маслонаполненные подшипники роликового типа скольжения. Отдельные модели могут обладать водяной системой охлаждения, которая чаще всего применяется в работе с горячими газами, что предотвращает перегрев подшипников.
  2. Лопасти и заслонки. Основная функция заслонок — управление газовыми потоками при входе и выходе. Отдельные модели центробежных эксгаустеров могут иметь их с обеих сторон или только с одной — входа или выхода. «Входящие» заслонки управляют количеством поступаемого газа или воздуха, а «выходящие» сопротивляются воздушному потоку, который управляет газом. Заслонки, что расположены на входе лопастей, способствуют уменьшению потребления электроэнергии.

Сами плицы находятся на втулке колеса центростремительного вентилятора. Есть три стандартных расположения лопастей:

  • лопасти загнуты вперед;
  • лопасти загнуты назад;
  • лопасти прямые.

В первом варианте лопасти имеют лезвия с направлением по движению колеса. Такие вентиляторы «не любят» твердых примесей в эрлифтных потоках. Основное их назначение — большой поток с низким давлением.

Второй вариант оснащен искривленными лезвиями против движения колеса. Таким образом достигается аэродинамический швеллер и относительная экономичность конструкции. Такой способ применяется в работе с потоками газовой консистенции низкого и умеренного уровня насыщения жесткими компонентами. В качестве дополнения имеют покрытие от повреждений. Очень удобно то, что такой центробежный вентилятор имеет широкий диапазон регулировок скоростей. Они намного эффективней моделей с лопастями, изогнутыми вперед или прямыми, хотя последние и стоят дешевле.

Третий вариант имеет лопасти, которые расширяются сразу от втулки. Такие модели имеют минимальную чувствительность к оседанию твердых частиц на лопастях вентилятора, но при этом издают много шума во время эксплуатации. Также они имеют быстрый темп работы, низкие объемы и высокий уровень давления. Часто используют с целью аспирации, в пневматических системах для транспортировки материалов и в других схожих работах.

Вернуться к оглавлению

Типы центробежных вентиляторов

Есть определенные стандарты, по которым изготавливается данная техника. Следует выделить следующие типы:

    1. Аэродинамическое крыло. Такие модели имеют широкое применение в сфере непрерывных работ, где постоянно присутствуют высокие температуры, чаще всего это нагнетательные и вытяжные системы. Имея высокий показатель по производительности, они бесшумны.
    2. Обратно загнутые лопасти. Обладают высокой эффективностью. Конструкция этих вентиляторов препятствует накоплению пыли и мелких частиц на лопастях. Имеет достаточно прочную конструкцию, что позволяет применять их для областей с высоким угнетением.
    3. Ребра, изогнутые в обратную сторону. Рассчитаны для большой кубатуры воздушных масс с относительно низким уровнем давления.
    4. Радиальные лопасти. Достаточно прочны, могут обеспечить высокое давление, но со средним уровнем эффективности. Направляющие ротора имеют специальное покрытие, которое защищает их от эрозии. Кроме того, такие модели имеют достаточно компактные габариты.
    5. Ребра, загнутые вперед. Предназначены для тех случаев, когда предстоит работа с большими объемами воздушных масс и наблюдается высокое давление. Эти модели тоже имеют хорошую стойкость к эрозии. В отличие от моделей «заднего» типа такие агрегаты имеют меньшие размеры. Такой вид крыльчатки имеет самый большой расход объема.
    6. Гребное колесо. Данное устройство — открытое колесо без какого-либо корпуса или кожуха. Применим для помещений, где присутствует большая запыленность, но при этом, увы, такие устройства не обладают высокой эффективностью. Допустимо использование при высоких температурах.



Что еще почитать