Что такое полимерные отходы, их переработка и утилизация. Свойства: поведение вторичного сырья при переработке Виды переработки полимеров

ВВЕДЕНИЕ

На основе поливинилхлорида (ПВХ) получают более 3000 видов композиционных материалов и изделий, используемых в электротехнической, лёгкой, пищевой, автомобильной промышленности, машиностроении, судостроении, при производстве стройматериалов, медицинского оборудования и т.д., что обусловлено его уникальными физико-механическими, диэлектрическими и другими эксплуатационными свойствами.

Однако в настоящее время применение ПВХ постепенно ограничивается, что связано, прежде всего, с экологическими проблемами, возникающими при эксплуатации изделий, их утилизации и вторичной переработке. При старении полимеров на основе ПВХ наряду с потерей физико-механических свойств наблюдается негативное воздействие на окружающую среду и человека, обусловленное процессами дегидрохлорирования ПВХ, усиливающимися при температуре 50 -- 80 °С (образуются высокотоксичные хлорсодержащие полиароматические соединения).

УТИЛИЗАЦИЯ ВТОРИЧНОГО ПОЛИМЕРНОГО СЫРЬЯ

В настоящее время существуют следующие пути полезного использования вторичного полимерного сырья:

Сжигание с целью получения энергии;

Термическое разложение (пиролиз, деструкция, разложение до исходных мономеров и др.);

Повторное использование;

Вторичная переработка.

Сжигание отходов в мусоросжигательных печах не является рентабельным способом утилизации, поскольку предполагает предварительную сортировку мусора. При сжигании происходит безвозвратная потеря ценного химического сырья и загрязнение окружающей среды вредными веществами дымовых газов.

Значительное место в утилизации вторичного полимерного сырья уделяется термическому разложению как способу преобразования ВПС в низкомолекулярные соединения. Важное место среди них принадлежит пиролизу. Пиролиз - это термическое разложение органических веществ с целью получения полезных продуктов. При более низких температурах (до 600°С) образуются в основном жидкие продукты, а выше 600°С - газообразные, вплоть до технического углерода.

Пиролиз ПВХ с добавлением отходов ПЭ, ПП и ПС при Т=350°С и давлении до 30 атм в присутствии катализатора Фриделя-Крафтса и при обработке смеси водородом позволяет получать много ценных химических продуктов с выходом до 45%, таких, как бензол, толуол, пропан, кумол, альфа-метилстирол и др., а также хлористый водород, метан, этан, пропан. Несмотря на ряд недостатков, пиролиз, в отличие от процессов сжигания ГБО, дает возможность получения промышленных продуктов, используемых для дальнейшей переработки.

Еще одним способом трансформации вторичного полимерного сырья является каталитический термолиз , который предусматривает применение более низких температур. В некоторых случаях щадящие режимы позволяют получать мономеры, например, при термолизе ПЭТФ, ПС и др. Получаемые мономеры могут быть использованы в качестве сырья при проведение процессов полимеризации и поликонденсации. В США из использованных ПЭТФ-бутылок получают дефицитные мономеры - диметилтерефталат и этиленгликоль, которые вновь используются для синтеза ПЭТФ заданной молекулярной массы и структуры, необходимой для производства бутылок.

Наиболее предпочтительными способами утилизации вторичного полимерного сырья с экономической и экологической точек зрения представляется повторное использование и вторичная переработка в новые виды материалов и изделий.

Повторное применение предполагает возвращение в производственный цикл использованной упаковки после ее сбора и соответствующей обработки (мойки, сушки и др. операций), а также получения разрешения санитарных органов на ее повторное применение при непосредственном контакте с пищевыми продуктами. Этот путь пригоден, главным образом, для бутылочной тары из ПЭТФ.

Вторичная переработка отходов получила широкое распространение во многих странах мира. Этим путем смешанные отходы из полимерных материалов могут перерабатываться в изделия различного назначения (строительные панели, декоративные материалы и т.п.). В США, где особенно велико использование полиэтилентерефталатной тары, принята и реализуется национальная программа, в соответствии с которой к началу XXI столетия уровень вторичной переработки бутылок из ПЭТФ будет доведен до 25-30% (по сравнению с 9-10% в начале девяностых годов). Программа предусматривает выполнение четырех этапов: -организация сбора использованной тары у населения; - сортировка собранного сырья;

Переработка (предварительная и окончательная) в изделия народнохозяйственного назначения;

Сбыт получаемых изделий.

Программа предусматривает также создание пунктов сбора по всей стране с привлечением до 50% всего населения, координационных центров, налаживание различных связей, рекламу, публикацию сведений по сбору отходов, создание банка данных, обучение населения, создание "горячих" линий (до 800) для передачи своевременной информации и др. мероприятия. Одним из перспективных направлений в этой области является производство гранулята из отсортированного сырья с использованием различных добавок, повышающих его качество (стабилизаторов, красителей, модификаторов и др.), идущего на переработку в изделия различными способами переработки.

В основе вторичной переработки отходов, например, в Германии лежит "Дуальная система", включающая сортировку и переработку отдельных видов вторичного сырья на предприятиях-производителях материалов и упаковки из них. Для облегчения сбора отходов и направления их на переработку создана система, предусматривающая прием использованной упаковки и ее направление на вторичную переработку при наличии экологической маркировки "Зеленая точка" (Der Grune Punkt). Этот знак обозначает, что данная упаковка подлежит вторичной переработке или повторному использованию, и присваивается упаковкам, прошедшим специальный конкурс, что является основным принципом "Дуальной системы". Обычно для эффективной переработки ВПС его подвергают модификации. Существуют следующие методы модификации ВПС: - химические (сшивание пероксидами, например, пероксидом дикумила, малеиновым ангидридом, кремнийорганическими жидкостями и др.);

Физико-химические (введение различных добавок органической природы, например, технических лигнинов, сажи, термоэластопластов, восков и др.), создание композиционных материалов;

Физические (введение неорганических наполнителей: мела, оксидов, графита и др.) и технологические (варьирование режимов переработки). Введение полиорганосилоксанов совместно с инициирующими добавками и последующей гомогенизацией перерабатываемого сырья позволяет регенерировать сильно изношенные материалы и восстанавливать требуемый уровень их технологических свойств. В зависимости от используемой среды и режима обработки происходит образование привитых сополимеров или пространственно-структурированных систем с образованием поперечных силоксановых связей. Их высокая прочность и низкая плотность молекулярной упаковки в полисилоксанах обеспечивает эластичность материала при одновременном улучшении механических свойств, термостабильности, атмосферо- и химстойкости.

Механические характеристики вторичного ПА из изношенных изделий можно существенно улучшить путем термической обработки сырья различными средами-теплоносителями (вода, минеральное масло и др.) с одновременным ИК-облучением. Термообработка в среде теплоносителя осуществляется по принципу отжига и включает операции нагрева, выдержки и охлаждения. При этом уровень физико-механических показателей определяется видом теплоносителя, режимом термообработки и временем сушки, которое может составлять от 1,5 до 2,5 часов. В основе большинства предлагаемых способов лежит радикальноцепной механизм взаимодействия между активными группами вводимой добавки или наполнителя и окисленными фрагментами базового полимера. Среди всех имеющихся методов наибольший практический интерес представляет композиционные материалы из вторичного полимерного сырья. Одной из функциональных модифицирующих добавок может служить природный полимер - лигнин, являющийся отходом целлюлозно-бумажной и гидролизной переработки древесины. Он представляет собой продукт метаболизма древесины и других растений, накапливаемых в процессе лигнификации в срединной пластинке и клеточной стенке, составляя 30% всей ее массы (остальные 70% приходятся на целлюлозу и гемицеллюлозу).

По своей химической природе лигнин относится к полифункциональным фенолам, основному классу стабилизаторов полимеров, и оказывает достаточно эффективное свето- и термостабилизирующее воздействие на окисляемые и окисленные полимеры. Технология получения из него микронизированного продукта с применением электромагнитного измельчения разработана в МГУПБ.

Помимо эффективного модификатора вторичного полимерного сырья гидролизный лигнин после соответствующей обработки и подготовки в виде гидролизной муки (микролигнина) может быть использован для получения таких ценных в технологии переработки пластмасс продуктов, как ароматические стабилизаторы, антиоксиданты, структурообразователи и модифицирующие добавки для термопластов, наполнители - для реактопластов, сорбенты медицинского назначения типа "ЭКОЛИС" для выведения из организма токсинов, тяжелых металлов и др. вредных для живого организма веществ, в качестве лекарственного препарата при лечении цирроза печени (исследовалось на кроликах), для получения ванилина и др. целей. В ряде европейских стран проблема утилизации использованных пластмассовых упаковок неразрывно связана с налаживанием четкой службы их сбора, сортировки и разделения смешанных отходов, поскольку эти операции являются самыми трудоемкими.

В странах ЕС вопросы утилизации отходов упаковки решаются в рамках единого для этих стран закона, направленного на предупреждение нарастания объемов полимерной упаковки и тары, рациональных способов их утилизации, главным образом вторичной переработкой, организацией рациональной системы сбора и т.д.

Работы в области утилизации вторичного полимерного сырья были начаты в России в конце 70-х - начале 80-х годов.

Вторичная переработка поливинилхлорида

В процессе переработки полимеры подвергаются воздействию высоких температур, сдвиговых напряжений и окислению, что приводит к изменению структуры материала, его технологических и эксплуатационных свойств. На изменение структуры материала решающее влияние оказывают термические и термоокислительные процессы.

ПВХ - один из наименее стабильных карбоцепных промышленных полимеров. Реакция деструкции ПВХ - дегидрохлорирование начинается уже при температурах выше 100 °С, а при 160 °С реакция протекает очень быстро. В результате термоокисления ПВХ происходят агрегативные и дезагрегативные процессы - сшивание и деструкция.

Деструкция ПВХ сопровождается изменением начальной окраски полимера из-за образования хромофорных группировок и существенным ухудшением физико-механических, диэлектрических и других эксплуатационных характеристик. В результате сшивания происходит превращение линейных макромолекул в разветвленные и, в конечном счете, в сшитые трехмерные структуры; при этом значительно ухудшаются растворимость полимера и его способность к переработке. В случае пластифицированного ПВХ сшивание уменьшает совместимость пластификатора с полимером, увеличивает миграцию пластификатора и необратимо ухудшает эксплуатационные свойства материалов.

Наряду с учетом влияния условий эксплуатации и кратности переработки вторичных полимерных материалов, необходимо оценить рациональное соотношение отходов и свежего сырья в композиции, предназначенной к переработке.

При экструзии изделий из смешанного сырья существует опасность брака из-за разной вязкости расплавов, поэтому предлагается экструдировать первичный и вторичный ПВХ на разных машинах, однако порошкообразный ПВХ практически всегда можно смешивать с вторичным полимером .

Важной характеристикой, определяющей принципиальную возможность вторичной переработки ПВХ отходов (допустимое время переработки, срок службы вторичного материала или изделия), а также необходимость дополнительного усиления стабилизирующей группы, является время термостабильности.

Методы подготовки отходов поливинилхлорида

Однородные производственные отходы, как правило, подвергаются вторичной переработке, причем в случаях, когда глубокому старению подвергаются лишь тонкие слои материала.

В некоторых случаях рекомендуется использовать абразивный инструмент для снятия деструктированного слоя с последующей переработкой материала в изделия, которые не уступают по свойствам изделиям, полученным из исходных материалов.

Для отделения полимера от металла (провода, кабели) используют пневматический способ. Обычно выделенный пластифицированный ПВХ может использоваться в качестве изоляции для проводов с низким напряжением или для изготовления изделий методом литья под давлением. Для удаления металлических и минеральных включений может быть использован опыт мукомольной промышленности, основанный на применении индукционного способа, метод разделения по магнитным свойствам. Для отделения алюминиевой фольги от термопласта используют нагрев в воде при 95…100 °С.

Предлагается негодные контейнеры с этикетками погружать в жидкий азот или кислород с температурой не выше -50 °С для придания этикеткам или адгезиву хрупкости, что позволит затем их легко измельчить и отделить однородный материал, например бумагу.

Энергетически экономичен способ сухой подготовки пластмассовых отходов с помощью компактора. Способ рекомендуется для переработки отходов искусственных кож (ИК), линолеумов из ПВХ и включает ряд технологических операций: измельчение, сепарацию текстильных волокон, пластикацию, гомогенизацию, уплотнение и грануляцию; можно также вводить добавки. Подкладочные волокна отделяются трижды - после первого ножевого дробления, после уплотнения и вторичного ножевого дробления. Получают формовочную массу, которую можно перерабатывать литьем под давлением, содержащую еще волокнистые компоненты, которые не мешают переработке, а служат наполнителем, усиливающим материал.

Изделия из полимеров сегодня являются неотъемлемой частью нашей повседневной жизни, однако, одновременно с ростом объемов производства таких изделий, вполне естественно, что и количество твердых отходов также увеличивается.

Сегодня полимерные отходы составляют примерно двенадцать процентов от всего бытового мусора, и их количество постоянно растет. И естественно, что вторичная переработка полимеров сегодня является одной из самых остро стоящих проблем, ведь без нее человечество может буквально утонуть в горах мусора.

Утилизация полимеров сегодня является не только проблемой, но и весьма перспективным направлением бизнеса, поскольку из казалось бы бросового сырья – бытового мусора, можно получить множество полезных веществ. К тому же данная технология переработки мусора (ТБО) является куда более безопасным методом утилизации полимерных отходов, чем традиционное сжигание, которое наносит ощутимый вред экологии.

Технология переработки полимеров

Итак, что собой представляет переработка полимеров?

Для превращения полимерных отходов в сырье, пригодное для дальнейшей переработки в изделия, необходимо его предварительно обработать. Выбор способа предварительной обработки в первую очередь зависит от степени загрязненности отходов и источника их образования. Так, однородные отходы производства обычно перерабатывают прямо на месте их образования, поскольку в данном случае требуется незначительная предварительная обработка – всего лишь измельчение и грануляция.

Однако отходы в виде изделий, вышедших из употребления, требуют куда более основательной подготовки. Итак, предварительная обработка полимерных отходов обычно включает в себя следующие этапы:

  1. Грубая сортировка и идентификация для отходов смешанного типа.
  2. Измельчение отходов.
  3. Разделение смешанных от­ходов.
  4. Мойка отходов.
  5. Сушка.
  6. Грануляция.

Предварительная сортировка предусматривает собой грубое разделение полимерных отходов по различным признакам: виду пластмассы, цвету, форме и габаритам. Предварительная сортировка производится, как правило, вручную на ленточных конвейерах или столах. Также технология переработки полимеров подразумевает, что при сортировке из отходов удаляются различные посторонние включения.

Вышедшие из употребления и попавшие на завод по переработке мусора полимерные ПО отходы, в которых содержание посторонних примесей не превышает 5 %, поступают на сортировочный узел, где из них удаляют случайные инородные включения. Отходы, прошедшие сортировку, измельчаются в ножевых дробилках до получения рыхлой массы, размер частиц которой составляет 2…9 мм.

Измельчение – один из важнейших этапов подготовки отходов к переработке, поскольку степень измельчения определяет сыпучесть, размеры частиц и объемную плотность получаемого продукта. А регулирование степени измельчения позволяет повысить качество материала благодаря усреднению его технологических характеристик. Таким образом упрощается и переработка полимеров.

Весьма перспективным методом измельчения отходов полимеров является криогенный, благодаря которому можно получать порошки из полимерных отходов со степенью дисперсности от 0,5 до 2 мм. Использование данной технологии имеет ряд преимуществ перед традиционным механическим измельчением, поскольку благодаря нему можно добиться снижения продолжительности смешения и лучшего распределение компонентов в смеси.

Разделение смешанных отходов пластмасс по видам проводят следующими способами:

  1. Флотационный.
  2. Разделение в тяжелых средах.
  3. Аэросепарация.
  4. Электросепарация.
  5. Химические методы.
  6. Методы глубокого охлаждения.

Наиболее распространенный из них сегодня метод флотации, при котором разделение пластмасс производится благодаря добавлению в воду различных поверхностно-активных веществ, благодаря которым избирательно изменяются гидрофильные свойства полимеров.

В некоторых случаях довольно эффективным способом разделения полимеров является оказаться их растворение и в общем растворителе. Обрабатывая полученный раствор паром, выделяют ПВХ, смесь полиолефинов и ПС, причем чистота продуктов выходит не менее чем 96 %.

Именно две этих методики являются экономически более целесообразными из всех перечисленных нами выше.

Далее измельченные отходы полимеров подают в моечную машину на отмывку. Отмывку производят в несколько приемов с использованием специальных моющих смесей. Отжатую в центрифуге полимерную массу с влажностью от 10 до 15 %, подают для окончательного обезвоживания в сушильную установку, где она высушивается до содержания влаги в 0,2 %.

После этого масса попадает в гранулятор, где происходит уплотнение материала, благодаря чему облегчается его дальнейшая переработка и усредняются характеристики вторичного сырья. Конечным результатом гранулировки является получение материала, который может переработать стандартное оборудование для переработки полимеров.


Итак, понятно, что переработка отходов полимеров это дело достаточно непростое, и требует наличия определенного оборудования. Какое же именно оборудование для вторичной переработки полимеров используется сегодня?

  • Линии мойки полимерных отходов.
  • Дробилки полимеров.
  • Экструдеры для рециклинга.
  • Ленточные транспортеры.
  • Шредеры.
  • Агломераторы.
  • Линии гранулирования, грануляторы.
  • Ситозаменители.
  • Смесители и дозаторы.

Если у вас имеется все необходимое для переработки полимеров оборудование, то вы можете приступать к делу и на своем опыте убедиться, что сегодня переработка мусора (ТБО) это не только забота об экологии планеты, но и отличное капиталовложение, поскольку рентабельность данного бизнеса весьма высока.

Использование вторичного сырья в качестве новой ресурсной базы ‑ одно из наиболее динамично развивающихся направлений переработки полимерных материалов в мире. Для России оно является новым. Однако интерес к получению дешевых ресурсов, которыми являются вторичные полимеры, весьма ощутим, поэтому мировой опыт их вторичной переработки должен быть востребован.

В странах, где охране окружающей среды придают большое значение, объемы переработки вторичных полимеров постоянно увеличиваются. Законодательство обязывает юридических и частных лиц выбрасывать полимерные отходы (гибкую упаковку, бутылки, стаканчики и т. д.) в специальные контейнеры для их последующей утилизации. Сегодня на повестку дня становится не только задача утилизации отходов полимерных материалов, но и восстановления ресурсной базы. Однако возможность использования полимерных отходов для повторного производства ограничивается их нестабильными и худшими по сравнению с исходными полимерами механическими свойствами. Конечная продукция с их использованием часто не удовлетворяет эстетическим критериям. Для некоторых видов продукции использование вторичного сырья вообще запрещено действующими санитарными или сертификационными нормами. Например, в ряде стран действует запрет на использование некоторых вторичных полимеров для производства пищевой упаковки.

Сам процесс получения готовой продукции из вторичных пластиков связан с рядом трудностей. Повторное использование утилизируемых материалов требует особой перенастройки параметров технологического процесса в связи с тем, что вторичный материал изменяет свою вязкость, а также может содержать неполимерные включения. В некоторых случаях к готовой продукции предъявляются особые механические требования, которые просто невозможно соблюсти при использовании вторичных полимеров. Поэтому для использования вторичных полимеров необходимо достижение баланса между заданными свойствами конечного продукта и средними характеристиками вторичного материала. Основой для подобных разработок должна стать идея создания новых изделий из вторичных пластиков, а также частичной замены первичных материалов вторичными в традиционных изделиях. В последнее время процесс вытеснения первичных полимеров на производствах настолько интенсифицировался, что только в США производится более 1400 наименований изделий из вторичных пластмасс, которые раньше производились только с использованием первичного сырья.

Таким образом, продукты вторичной переработки пластмасс могут использоваться для производства изделий, ранее производимых из первичных материалов. Например, возможно производство пластиковых бутылок из отходов, т. е. переработка по замкнутому циклу. Также вторичные полимеры пригодны для изготовления объектов, свойства которых могут быть хуже, чем у аналогов, изготовленных с использованием первичного сырья. Последнее решение носит название "каскадной" переработки отходов. Она с успехом применяется, например, компанией FIAT auto, которая перерабатывает бамперы отслуживших свой срок автомобилей в патрубки и коврики для новых машин.

Проблемы и перспективы повторного использования пластиков мы рассмотрим на примере полиэтилентерефталата (ПЭТ), полиэтилена, полипропилена и полистирола.

ПЭТ

ПЭТ обладает достаточно стабильными механическими свойствами. Поэтому вторичный материал на его основе достаточно легко поддается переработке. Основным сырьем для переработки служат столь распространенные пластиковые бутылки из-под напитков. Важно и то, что вторичный ПЭТ гомогенизируется легче, чем другие вторичные пластмассы. В развитых странах сбор ПЭТ-отходов в достаточной степени налажен, как и технология их переработки. Общемировой объем переработки вторичного ПЭТ достигает 1 млн т ежегодно.

Процесс переработки ПЭТ-отходов не требует их пластификации. Они отсортировываются от других видов полимерной тары (на основе ПВХ или ПЭ), затем измельчаются, проходят мойку и очистку от этикеток, клеев, остатков пакуемых составов и прочих загрязнителей, а после этого агломерируются или гранулируются. Вторичным ПЭТ-полимерам при переработке свойственны те же проблемы, что и исходной ПЭТ-основе: низкий порог неньютоновского поведения (когда скорость сдвига сказывается на изменении вязкости полимера), чувствительность к нагреву и, наконец, необходимость просушки. Более того, в процессе сушки, и переработки вторичный материал претерпевает некоторую потерю вязкости, что вызвано не только температурными и деформирующими воздействиями в процессе пластикации полимера, но и присутствием загрязнителей (влаги, клея, красителей и т. д.). Эти факторы приводят к снижению молекулярной массы полимера. В таблице 1 приведены величины прочности (σ) и относительного удлинения (ε) при разрыве пленочных образцов из первичного ПЭТ и образцов переработки вторичного ПЭТ экструзией с предварительной сушкой и без сушки. Недостаточная сушка утилизируемой основы может значительно ухудшить свойства вторичного материала.

Таблица 1

Область их дальнейшего применения перерабатываемых ПЭТ-отходов определяют их молекулярные веса. Молекулярный вес ПЭТ рассчитывается исходя из его характеристической вязкости. В таблице 2 приведен диапазон ее значений для различных областей применения ПЭТ.

Таблица 2. Характеристическая вязкость ПЭТ в зависимости от области применения

Очевидно, что вторичные полимеры, лежащие в основе различных видов продукции и, соответственно, обладающие разными молекулярными весами (характеристической вязкостью), требуют совершенно разных технологий вторичной переработки. Вторичный ПЭТ не всегда может служить основой для повторного производства исходной продукции.

Другая проблема переработки ПЭТ-отходов связана с вероятным присутствием в них ПВХ. Даже при тщательной сортировке ПЭТ-бутылок есть вероятность попадания ПВХ и ПЭ примесей в состав вторичного материала. При температуре переработки ПЭТ ПВХ разлагается, выделяя соляную кислоту, которая вызывает интенсивную деструкцию полимера. Поэтому нужно максимально снизить присутствие ПВХ в составе ПЭТ-отходов. Допустимое содержание ПВХ не превышает 50 промилле.

Чаще всего ПЭТ-отходы используются повторно для производства пластиковых бутылок, пленок и волокна. Реологические и механические свойства вторичного состава ПЭТ позволяют использовать при изготовлении емкостей для моющих средств, что делает его хорошей альтернативой ПВХ и ПЭВП. Вторичный ПЭТ также часто используется в качестве промежуточного слоя при производстве трехслойной аморфной пленки и выдуве трехслойных ламинированных бутылок с внешними слоями из первичного полимера. Применение соэкструзии смесей из переработанного вторичного и первичного ПЭТ позволяет улучшить реологические свойства вторичного полимера, сделав его более пригодным для выдува.

Не менее важной областью применения вторичного ПЭТ является производство волокон. Процесс формования волокна требует от пластифицируемого вторичного полимера тех же реологических свойств (градиента скорости потока и неизотермального вытягивания), которыми обладает первичный полимер. Как правило, ПЭТ-волокно, формируемое из вторичной основы, имеет механические свойства, удовлетворяющие условиям производства широкой гаммы продуктов.

Вторволокно перерабатывается в текстиль или тканые основы для производства одежды и ковровых покрытий. Эти приложения могут использовать до 100 % вторичного полимера. Чаще всего ПЭТ-волокно применяют в качестве синтетического утеплителя для зимней одежды либо готовой плисовой фактуры для ее пошива одежды.

У ПЭТ-волокна есть ряд преимуществ перед другими синтетическими волокнами. Например, ковры из ПЭТ-волокна не теряют цвет и не требуют специальной химической обработки, необходимой коврам из нейлоновых волокон. ПЭТ-волокна и окрашиваются легче, чем нейлон. Волоконные полотна из ПЭТ, изготовленные по технологии melt-blown, применяются для производства шумоизолирующих материалов, геотекстиля, фильтрующих и абсорбирующих элементов, синтепона. Наконец, небольшой объем вторичного ПЭТ используется для изготовления автомобильных компонентов, электротехнических изделий, различной фурнитуры методом литья под давлением.

Полиэтилен

Из полиэтилена низкой плотности (ПЭНП) и линейного полиэтилена (ЛПЭНП) изготавливаются пленки для бытовой упаковки (в том числе пластиковые пакеты, сумки и мешки) и для промышленной упаковки (например, мешки для сельхозудобрений), которые и являются сырьем для дальнейшей вторичной переработки. В первом случае переработка достаточно проста, т. к. качество вторматериала очень близко к качеству первичного полимера из-за короткого жизненного цикла продукта. Полимер подвергается воздействию внешних факторов на непродолжительный срок и претерпевает лишь незначительный распад структуры. В большей степени структура материала страдает в процессе его регенерации посредством пластификации. Другим источником неудовлетворительных свойств переработанного вторичного материала может служить использование отходов с разными молекулярными структурами (например, одновременно ПЭНП и ЛПЭНП), что непременно приводит к снижению механических свойств получаемого материала.

При вторичном использовании промышленной упаковки дело обстоит несколько сложнее. Как правило, пленка промышленного назначения имеет больший жизненный цикл, чем бытовая. Воздействие солнечных лучей, температурных колебаний и т. д. также оказывает пагубное воздействие на структуру полимера. Ко всему прочему, использованные промышленные полиэтиленовые пленки могут содержать значительные загрязнения в виде пыли и мелкодисперсных компонентов, которые практически невозможно удалить даже при самой тщательной мойке. Естественно, это негативно сказывается на свойствах вторичных материалов.

Применение всех вторичных пластиков рассчитывается исходя из их усредненных свойств. В случае ПЭНП и ЛПЭНП можно с той или иной степенью уверенности утверждать, что полимерное сырье вторичных пленок этих типов может перерабатываться в тех же условиях (и примерно с теми же конечными свойствами), что и первичные пластики. В качестве примеров утилизации ПЭНП можно назвать повторное производство пленки для бытовой и торговой упаковки, пакетов для несыпучего мусора, а также садовой мульчирующей пленки. Свойства материала готовой продукции очень близки к свойствам первичной полимерной основы, однако количество циклов повторной переработки "продукта в продукт" ограничено из-за ухудшения свойств полимера в процессе многократно повторяющегося процесса плавления материала. На последнем цикле утилизируемая пленка годна лишь для производства садовой мульчирующей пленки, от которой требуются достаточно скромные механические свойства (нередко в нее добавляется обыкновенная сажа).

Стретч-пленки имеют полимерные добавки, которые проявляют себя как загрязнители, требуя значительного добавления первичного сырья: вторичная стретч-пленка смешивается в низкой пропорции (15-25 %) с первичным полимером. При вторичной переработке пленки агропромышленного происхождения возникает ряд трудностей, вызванных не только ухудшением механических свойств полимерной основы и посторонними включениями, но и фотоокислительными процессами, снижающими оптические свойства материала. Получаемая вновь пленка приобретает желтый оттенок.

В настоящее время наиболее перспективным направлением переработки отходов из ПЭНП и ЛПЭНП (да и из любых других полимеров) считается создание промежуточных материалов для замены традиционных материалов из дерева. Основное преимущество полимерного вторсырья над деревом - его биологическая стойкость: полимеры не подвергаются разрушению микроорганизмами и могут длительное время находиться в воде без угрозы для структуры. Для улучшения механических свойств в состав полимеров вводятся различные инертные добавки, например, пылевидная древесная стружка или волокна. Рынок такой продукции огромен. Компания US Plastic Lumber Corp. оценивает его в 10 млрд долл.

Из полиэтилена высокой плотности изготавливаются, например, канистры для жидких продуктов. Процесс переработки ПЭВП-отходов требует специальной очистки вторпродуктов (например, емкостей для ГСМ). Кроме того, часто возникают проблемы, связанные с разрушением ПЭВП в процессе пластификации по причине сопровождающих процесс больших механических усилий. Область применения вторичного ПЭВП весьма широка и отличается многообразием технологических процессов. Он часто используется для производства пленки, емкостей самого разного объема, ирригационных труб, различных полуфабрикатов и т. д. Наибольшее применение вторичный ПЭВП нашел в производстве емкостей (канистр) методом выдувного формования. Реологические свойства вторично перерабатываемых полимеров высокой плотности не позволяют выдувать большие емкости, поэтому объем таких канистр ограничен. Типичная область использования канистр на основе ПЭВП-отходов ‑ упаковка ГСМ и моющих средств.

Канистры могут изготавливаться либо полностью на основе полимерных отходов, либо со экструзией с первичным гранулятом. В последнем случае слой вторполимера формирует сердцевину между двумя слоями первичного полимера. Канистры, полученные таким путем, используют для розлива моющих средств целый ряд компаний (Procter & Gamble, Unilever и т. д.).

Другой пример массовой продукции из вторичного ПЭВП ‑ ирригационные трубы. Как правило, они изготавливаются из смеси вторичного и первичного полимеров в разных соотношениях. Учитывая, что ирригационные трубы не предназначены для использования под давлением, механические свойства вторичного ПЭВП как нельзя лучше подходят для их производства. Высокую вязкость ПЭВП, полученного при переработке канистр и пленок, часто удается компенсировать низкой вязкостью первичного полимера, за счет чего можно улучшить ударопрочность. Производство труб с большим диаметром из вторичного ПЭВП ‑ тоже не проблема: диаметр ирригационных и дренажных труб достигает 630 мм.

При использовании технологии литья под давлением процентное содержание вторичного пластика ниже. Эта технология применяется для изготовления обшивочных панелей, коммунальных мусорных контейнеров и т. д. Рынок обшивочных панелей очень привлекателен благодаря своей большой емкости. Подсчитано, что один только рынок США потребляет 2 млрд единиц обшивочных панелей и досок, в качестве которых все еще используются традиционные пиломатериалы.

Что касается производства пленки с повышенной стойкостью к ударным воздействиям и высокой прочностью на разрыв, то в этом случае вторичный ПЭВП может быть использован только с добавками ПЭНП и ЛПЭНП.

Полипропилен

Основным источником вторичного полипропилена являются пластиковые короба, корпуса аккумуляторных батарей, бамперы и другие пластиковые детали автомобилей. В меньшей степени вторичной переработке подвергаются упаковочные изделия из этого материала. Качество вторичного ПП зависит от условий, в которых находилось изделие в процессе эксплуатации. Чем меньше оно пострадало от внешних воздействий, тем ближе свойства вторичного материала к свойствам первичного. Однако условия эксплуатации редко бывают столь благоприятными. Лишь в редких случаях автомобильные пластиковые компоненты могут быть переработаны по замкнутому циклу: например, компания Renault при производстве модели Megane использует переработанные бамперы из ПП для изготовления новых. Как правило, вторичный ПП используется для производства других автомобильных деталей, к которым предъявляются менее жесткие требования, ‑ вентиляционных патрубков, уплотнений, ковриков и т. д. Этот пример укладывается в классическую схему каскадной утилизации.

Вторичный ПП также используется в различных смесях с первичным ПП или другими полиолефинами при литье под давлением (короба, корпуса) или экструзии (различные профили и полуфабрикаты).

Полистирол

Возможности вторичной переработки полистирольных отходов гораздо скромнее. Это объясняется меньшей диффузией по сравнению с другими пластиками и, самое главное, меньшей разницей в цене между исходным и вторичным сырьем. Кроме того, изделия из полистирола в процессе производства часто претерпевают значительную объемную вытяжку, что усложняет вторичную переработку и сказывается на общей себестоимости утилизации. Очень небольшая часть полистиролов, бывших в употреблении, перерабатывается в исходные продукты. Примерами повторного использования полистирольных отходов являются изоляционные панели, упаковочные материалы, утепляющая обшивка труб и другие изделия, в которых оптимальным образом могут быть использованы хорошие термоизоляционные, шумопоглощающие и ударопрочные свойства вторичного полистирола. В ряде случаев структура перерабатываемого полистирола уплотняется за счет использования специальных переходных технологий, и полученный таким образом материал используется в областях применения кристаллического полистирола. Наиболее интересное применение такого материала ‑ производство профилей, ранее изготавливавшихся только из дерева (оконных рам, полов и т. д.). В этом случае свойства переработанного полистирола ничем не уступают свойствам дерева, а по показателям длительности жизненного цикла в естественных условиях даже превосходят его.

Смеси пластиков

Утилизация изделий, состоящих из комбинации различных полимеров, является насколько трудоемкой, настолько и перспективной задачей. С одной стороны, при создании вторичных материалов с допустимыми механическими свойствами из смесей пластиков отпадает необходимость в первичной (на коммунальном уровне) и вторичной (на уровне утилизационного производства) сортировке бытового и промышленного мусора, что должно положительно сказаться на себестоимости переработки. С другой стороны, свойства получаемых материалов не очень-то хороши, т. к. полимеры, составляющие их основу (преимущественно ПЭ, ПП, ПЭТ, ПС и ПВХ), несовместимы между собой и образуют многокомпонентную систему с низким межфазным взаимодействием. Более того, присутствие загрязнителей ‑ частиц бумаги, металла, красителей ‑ приводит к дальнейшему ухудшению физико-механических свойств.

Практически во всех случаях свойства смеси оказываются намного хуже свойств каждого компонента по отдельности. Для достижения видимых успехов в утилизации многокомпонентных отходов необходимо вести переработку с максимально коротким циклом. Задача состоит в том, чтобы, с одной стороны, избежать лишних материальных затрат, а с другой ‑ сократить время переработки, не давая возможности полимерам, входящим в состав материала, начать разрушаться. По этой причине необходимо выдерживать рабочую температуру низкой, даже несмотря на то, что определенные компоненты (например, ПЭТ) останутся в твердом состоянии и будут вести себя как инертные наполнители. Необходимо также выбирать им приложения, которые не требуют высоких механических свойств и не обладают значительными габаритами. Только так можно избежать серьезного влияния себестоимости переработки на конечную стоимость изделия, а также нивелировать невысокие механические свойства многокомпонентного полимера малыми размерами изделий, формируемых из него.

Оборудование

Различные виды оборудования для переработки полимерных отходов производятся во всех развитых индустриальных странах. Есть производители отдельных видов оборудования для «рециклинга» и в СНГ ‑ например, ОАО "Кузполимермаш" (Россия), Барановичский станкостроительный завод (Беларусь).

Однако в комплексных решениях нет равных таким известным европейским фирмам, как Erema GmbH, Artoc Maschinenbau GesmbH, NGR GmbH, General Plastics GmbH (Австрия), Gamma Meccanica, Tria S.p.A. (Италия), Erlenbach GmbH, Sikoplast Maschinenbau, Heinrich Koch GmbH (Германия), ORVAK (Швеция). Сегодня эти компании активно выходят на российский рынок.

В составе Группы CREON

Рециклинг полимеров, столь развитый в европейских странах, в России пока находится в зачаточном состоянии: раздельный сбор отходов не налажен, нормативная база отсутствует, инфраструктуры нет, как нет и сознательности среди большей части населения. Однако игроки рынка смотрят в будущее с оптимизмом, возлагая надежды в том числе на Год экологии, который объявлен в стране в 2017 г. указом Президента.

Третья международная конференция «Вторичная переработка полимеров 2017», организованная компанией INVENTRA, состоялась в Москве 17 февраля. Партнерами мероприятия выступили Polymetrix, Uhde Inventa-Fischer, Starlinger Viscotec, MAAG Automatik, Erema и Moretto; поддержку оказали Nordson, DAK Americas и PETplanet. Информационный спонсор конференции – журнал «Полимерные материалы».

«Сейчас ситуация не вдохновляет, но ее улучшение – дело времени, - отметил в приветственном слове управляющий директор Группы CREON Сергей Столяров. – При высоких ценах на первичное сырье спрос на переработанные полимеры и изделия из них будет расти. В то же время появление отечественного сырья сместит структуру потребления первичного ПЭТФ в сторону волокон и пленок. В этой связи использование вторичных полимеров становится особенно перспективно».

По итогам 2016 г. объем мирового сбора ПЭТФ для вторичной переработки составил 11.2 млн т, сообщила консультант PCI Wood Mackenzie Хелен МакГиу. Основная доля пришлась на страны Азии - 55%, в Западной Европе собрано 17% от мирового объема, в США - 13%. По прогнозу эксперта, к 2020 г. сборы ПЭТФ для рециклинга превысят 14 млн т, а в процентном выражении уровень сбора достигнет 56% (сейчас 53%). Основной рост ожидается за счет азиатских стран, в частности, Китая.

На данный момент наибольший уровень сбора наблюдается в Китае, он составляет 80%, примерно такого же показателя достигли и другие азиатские страны. По словам г-жи МакГиу, из собранного в 2016 г. ПЭТФ (а это, напомним, 11.2 млн т) производственные потери составили 2.1 млн т, соответственно, хлопьев было получено 9.1 млн т. Основное направление дальнейшей переработки – волокна и нити (66%).

К 2025 г. в Европе будет перерабатываться 60% бытовых отходов, в 2030 г. этот показатель вырастет до 65%. Такие поправки планируются в Рамочную директиву по отходам, сообщил Каспарс Фогельманис, председатель Совета директоров Nordic Plast. Сейчас уровень рециклинга гораздо ниже - в Латвии, например, он составляет всего 21%, в среднем в Европе – 44%. При этом объемы производимой в Прибалтике пластмассовой упаковки ежегодно растут, наиболее распространенные перерабатываемые полимеры - пленка ПЭНП, ПЭВП и ПП.

В России по итогам 2016 г. потребление вторичного ПЭТФ (reПЭТФ) составило около 177 тыс. т, из них на внутренний сбор пришлось 90%. Как сообщил Константин Рзаев, председатель Совета директоров ГК «ЭкоТехнологии», почти 100% импорта пришлось на ПЭТ-хлопья для производства полиэфирного волокна. Крупнейшие страны-поставщики - это Украина (более 60%), а также Казахстан, Белоруссия, Азербайджан, Литва и Таджикистан.

Константин Рзаев отметил, что в прошлом году уровень сбора впервые превысил 25%, и это позволяет говорить о появлении в России полноценной отрасли, уже представляющей интерес для инвестиций. Сегодня главным потребителем (62% всего объема) и драйвером цены по-прежнему является сегмент вторичного ПЭТ-волокна. Но изменения в законодательстве и тренд к приоритетному использованию вторичных материалов в рамках стратегий Устойчивого Развития транснациональных компаний-производителей ТНП обеспечивают благоприятную почву для развития другого ключевого сегмента потребления reПЭТФ - bottle-to-bottle.

За прошедший год не появилось новых крупных производств, потребляющих reПЭТФ, однако постепенно растет его использование в сегменте «лист». Однако уже в 2017 г. ожидается открытие новых производств вторичного ПЭТ-волокна и расширение существующих, что вместе с курсом рубля будет основным фактором влияния на баланс рынка и цены на reПЭТФ.

Однако есть немало других направлений - пока неразвитых, но достаточно перспективных, где рециклированный ПЭТФ тоже востребован. Как рассказал почетный президент АРПЭТ Виктор Керницкий, это нити для мебельных тканей, обивки автомобилей и различных видов геосинтетики, вспененные материалы для тепло- и звукоизоляции, сорбционные материалы для очистки сточных вод, а также волокна, армирующие битум, для дорожного строительства. По словам эксперта, существует множество новых технологий переработки и сфер применения, и целью государственной политики должно быть не ограничение применения ПЭТФ, а сбор и рациональное использов ание его отходов.

Тему продолжила Любовь Меланевская, исполнительный директор ассоциации «РусПЭК», которая рассказала о первых итогах введения в России расширенной ответственности производителей (РОП). Она вступила в действие в 2016 г., ее цель - создать постоянный, платежеспособный и растущий спрос на переработку отходов продукции и упаковки. По прошествии года уже можно сделать некоторые выводы, основной из которых - существует ряд проблем, из-за которых механизм по реализации РОП зачастую попросту не работает. Как рассказала на конференции г-жа Меланевская, налицо необходимость изменения и дополнения существующего регулирования. В частности, при декларировании товаров, включая упаковку, производители столкнулись с несовпадением кодов упаковки товаров с кодами, указанными в принятых нормативных актах, вследствие чего многие производители и импортеры не смогли подать декларации, т.к. не нашли себя в регулировании. Решением стал отказ от кодов и предложение перейти на идентификацию упаковки по материалам.

В дальнейшем, считает «РусПЭК», необходимо принятие единой сквозной терминологии для всех элементов РОП и определение однозначных, понятных и прозрачных условий для заключения контрактов с операторами по обращению с отходами. В целом же ассоциация поддерживает закон о РОП как нужный и позитивный для отрасли.

При внедрении и популяризации в стране рециклинга ПЭТФ огромное значение имеет и наличие современных технологий (как правило, их предоставляют иностранные компании). Так, Polymetrix предлагает современные комплексные решения по вторичной переработке ПЭТФ, включая собственную технологию SSP, для рециклинга ПЭТ-бутылок в пищевой бутылочный полиэтилентерефталат. Сейчас в мире работает 21 такая линия, рассказал Данил Поляков, региональный менеджер по продажам. Технология ориентирована на рынок премиум-класса и предполагает переработку бутылок в гранулы для пищевых контейнеров. Первым этапом является мойка, где происходит полное удаление волокон бумаги и поверхностных загрязнений, а также этикеток и клея. Далее бутылки измельчаются в хлопья, которые сортируются по морфологии и по цвету. Затем происходит получение гранул и далее – конечная полная очистка и восстановление характеристик полимера на стадии SSP.

Viscotec предлагает своим потребителям технологию переработки ПЭТ-бутылок в листы, говорит представитель компании Герхард Осбергер. Так, реакторы твердофазной поликонденсации viscoSTAR и deCON предназначены для очищения и повышения вязкости ПЭТ-гранул и хлопьев. Их используют после гранулятора, перед производственным экструзионным оборудованием или как самостоятельную установку. Линия ViscoSHEET способна производить ленту, изготовленную на 100% из вторичного ПЭТФ и полностью пригодную для использования с пищевыми продуктами.

Представитель компании Erema Кристоф Вьосс рассказал о поточном производстве пищевых пластиковых бутылок из ПЭТ-хлопьев. Система VACUREMA® инлайн дает возможность перерабатывать флексы напрямую в готовый термоформовочный лист, бутылочную преформу, в готовую упаковочную ленту или мононить.

Подводя итоги конференции, ее участники определили основные факторы, сдерживающие развитие рециклинга полимеров в России. Главным из них они назвали отсутствие регулирующих нормативных документов:

«Тем не менее, есть еще один фактор, который мы не можем не учитывать, - это общественное сознание, - рассуждает директор конференции Рафаэль Григорян. – К сожалению, наш менталитет сегодня таков, что раздельный сбор отходов воспринимается скорее как баловство, нежели как норма. И какие бы подвижки мы ни наблюдали в других сферах, необходимо прежде всего менять мышление наших сограждан. Без этого даже самая современная инфраструктура окажется бесполезной».

Вторичная переработка полимеров в России становится все более перспективной. Увеличивается количество проектов по раздельному сбору отходов, а продукция, изготовленная с использованием таких материалов, находит широкое применение в различных отраслях. Однако развитию рынка все еще мешает ряд факторов.

16 февраля в Москве прошла Четвертая международная конференция «Вторичная переработка полимеров 2018». Партнерами стали компании Viscotec и KRONES, генеральным информационным партнером - журнал «Полимерные материалы». Мероприятие прошло при поддержке ГК INTRATOOL, EREMA и PETplanet.

Генеральный директор INVENTRA Рафаэль Григорян, приветствуя собравшихся, отметил, что региональные операторы в перспективе могут стать крупнейшими игроками в сегменте вторичной переработки полимеров. Их основной источник доходов сегодня - оплачиваемый населением тариф по управлению отходами, но объемы поступающих средств могут быть недостаточны для получения прибыли. В данной связи региональные операторы, обладающие обширной ресурсной базой, заинтересованы в сортировке, переработке и производстве товаров из вторсырья, дабы извлечь максимальную выгоду.

Обсуждение состояния дел в сегменте началось с выступления председателя совета директоров ГК «Чистый город» Полины Вергун, которая сообщила, что сфера обращения с отходами в России выглядит следующим образом: 5% отправляются на переработку, 10% - на полигоны, отвечающие экологическим требованиям, а 85% попадают на объекты, которые не обеспечивают экологическую безопасность.

Среди основных проблем отрасли г-жа Вергун выделила: размещение отходов на несанкционированных свалках и отсутствие достаточного количества объектов сферы обращения с отходами. А основные трудности в сегменте вторичной переработки - отсутствие сортировочных и перерабатывающих мощностей, разрозненность рынка и неразвитость системы раздельного сбора.

Решение вышеперечисленных проблем, по словам выступающей, уже найдено: внедрение института регионального оператора в сфере обращения с отходами, запрет на захоронение отдельных компонентов и увеличение ставок и нормативов экологического сбора. Также эксперт отметила, что важно участие малого бизнеса в организации деятельности по обращению с отходами.

«Учитывая проводимую реформу по обращению с отходами, важно начать строительство федеральных экотехнопарков, перерабатывающих вторичное сырье, которое будет отбираться на вводимых в настоящий момент региональных технопарках уже сегодня, т.к. имеющихся перерабатывающих мощностей будет недостаточно для объемов вторсырья в новой системе, - продолжила г-жа Вергун, - в ее рамках проходит взаимодействие на уровне региональных и федеральных экотехнопарков, определяются направления переработки вторичного сырья с целью импортозамещения и вырабатываются совместные решения по усовершенствованию нормативно-правовой базы, в том числе - обоснование увеличения нормативов и ставок утилизации».
Кроме того, выступающая отметила, что в ближайшие несколько лет сбор пластиковых отходов увеличится в разы и не совсем понятно, есть ли на сегодняшний день в России достаточный объем потребления изделий из вторичных полимеров. «Мы готовы на своей территории дать определенные мощности для развития сторонних предприятий, если это будет целесообразно и выгодно обеим сторонам» - резюмировала г-жа Вергун.

Председатель совета директоров «Экотехнологии» Константин Рзаев рассказал о своем видении ситуации и напомнил, что всего в России потребляется 5 млн т полимерного сырья, внушительная часть которых остаётся в использовании на десятки лет (рамы окон, трубы, геоматериалы), а в «мусор» попадает прежде всего полимерная упаковка.

По мнению докладчика, с учетом предполагаемого резкого увеличения сбора пластиковых отходов на сортировках усилиями региональных операторов можно ожидать дополнительно 100–150 тыс. т ПЭТ и еще несколько сотен тысяч тонн другой полимерной упаковки в ближайшие несколько лет.

Г-н Рзаев в продолжение разговора отметил, что предыдущие два-три года задали некоторые тренды в сфере переработки отходов пластмасс, появились факторы, влекущие за собой рост отрасли и новые возможности. Среди таковых докладчик отметил принятие законов 458 и 503 Ф3, введение расширенной ответственности производителя, запуск все большего числа мусоросортировочных комплексов, а также начатую с 2018 г. реализацию запрета на захоронение отходов, в состав которых входят полезные компоненты. Территориальные схемы разработаны почти во всех регионах, примерно треть из них выбрали регоператоров по обращению с ТКО, все больше организаций узнают о расширенной ответственности производителя и экологическом сборе.

Безусловно, экологичность становится трендом. Но у сегмента по-прежнему существуют проблемы: низкие масштабы сбора фракций для переработки, высокая доля игроков, остающихся «в тени», неструктурированность отрасли - изменится ли это в наступившем году? Вопрос остается открытым.


Эксперт оценил потребление вторичного ПЭТФ (в виде ПЭТ-хлопьев) на 2017 г. в 151 тыс. т, из которых внутреннее производство - 136 тыс. т, импортировано примерно 16 тыс. т, а на экспорт ушло 877 т. Практически 100% импорта - ПЭТ-хлопья для производства полиэфирного волокна. Среди крупнейших стран-поставщиков: Украина, Белоруссия-Казахстан-Кыргызстан, Литва, Азербайджан и Великобритания.

Структура потребления вторичного ПЭТФ на сегодняшний день выглядит следующим образом: 65.4% приходится на полиэфирное волокно, около 18% - преформы, 12.7% - лента, шпагат, на пленку и листы - 2.7% и менее 1% - остальные сегменты (смолы и др.) Крупнейшие переработчики - производители полиэфирного волокна («Комитекс», «РБ-Групп», «Технопласт», «Политекс», «Номатекс», «Селена», «Вторком»), «Спекта» (лидер российского рынка упаковочных лент), а также единственный производитель ПЭТ-гранулята пищевого качества завод «Пларус».

Объем поставок вторичного полиэтилена в Россию, для сравнения, в 2014 г. был 1.9 тыс. т, к 2016 г. поднялся до 3.3 тыс т, однако в 2017 г. вновь опустился и составил примерно 3.1 тыс. т. Среди крупнейших поставщиков по данным за прошедший год - Польша (2.2 тыс. т) и Болгария (777 т).

В Европе в среднем производится 492 кг отходов на человека в год, из которых перерабатывается меньшая часть - 42%, а оставшиеся 58% захороняются или сжигаются, сообщил генеральный директор PET Baltija Каспарс Фогельманис в своем докладе, посвященном рециклингу пластмасс в Европе.

Сегодня практически 50% всего собираемого и перерабатываемого объема пластика в ЕС приходится на Францию, Германию и Италию. К этим странам примыкают Испания и Великобритания, формируя пятерку крупнейших игроков и собирая около 71% всего объема отходов в Ес. Европейской Комиссией предложено увеличить процент переработки всего потока пластиковых отходов в ЕС до 55% к 2025 г.


Импорт ПЭТ-отходов в Китай сократился в 3-м квартале 2017 г. на 177.6 тыс. т или 26% по сравнению с показателями за 2016 г., которые составили 517 тыс. т. К концу 2017 г. китайскими властями был запрещен ввоз 24 видов материалов, включая бумагу и пластик. По заявлению правительства страны, впредь они будут принимать только перерабатываемые материалы с уровнем загрязнения не более 0.3%.

Очевидно, что запрет, наложенный Китаем, влияет на переработку по всему миру: это распространяется на страны ЕС-27, где 87% собираемого переработанного пластика доставляется непосредственно или косвенно через Гонконг в Китай. Япония и США также пользуются тем, что Китай скупает их переработанный пластик. В прошлом году Америка экспортировала 1.42 млн т пластиковых отходов, что, по оценке г-на Фогельманиса, принесло Китаю почти $500 млн.


С докладом о механизмах реализации расширенной ответственности производителя (которые предусмотрены двумя способами: самостоятельно или через оплату экологического сбора) выступила исполнительный директор «РусПЭК» Любовь Меланевская.

«По плану государство в 2017 г. должно было собрать 6.5 млрд руб. в качестве экологического сбора, а по факту собрали 1.3 млрд руб. Что нужно, чтобы РОП заработала? Понятные правила игры, равноправный вклад бизнеса, государства и населения, а также поддержка „первых ласточек“ по самостоятельной реализации РОП», - поделилась г-жа Меланевская.

К успеху в сложившейся ситуации, по словам выступающей, может привести синхронное принятие законодательных актов, наделение обязательствами органов власти по внедрению раздельного сбора мусора и ответственностью за недостижение целевых показателей по РСО, а также внедрение инфраструктуры по РСО. Законом по РСО, принятым в конце 2017 г., положено начало перемен. Последуют ли дальнейшие улучшения? Время покажет.


Руководитель проекта «ТехноНИКОЛЬ» Анна Даутова считает, что в России пока отсутствует культура и широкая практика сбора и переработки полистирольных отходов, но этот процесс может возглавить их компания, и тогда важная экологическая проблема в масштабах страны будет решаться.

Переработка полистирольных отходов требует менее 10% от ресурсов, совокупно затраченных на производство первичных полимеров. При этом для выпуска ряда изделий можно в большом объеме использовать вторичные. Говоря о мировом опыте, выступающая отметила, что компании Torox и Ursa - основные игроки на европейском рынке вторпереработки полистирола. По предоставленным докладчиком данным, ежегодно в Европе вторично перерабатывается 50 тыс. т вспененного полистирола, а в Японии, при емкости рынка первичного вспененного полистирола в 132 тыс. т, собирается и используется повторно 125 тыс. т.

Генеральный директор дочерней компании «Ерема» Калоян Илиев представил информацию о предварительной вакуумной обработке при повышенной температуре перед экструзией, благодаря которой в стабильной технологической среде влажность и миграционные вещества удаляются из материала уже до экструзии. Такая обработка и короткий экструзионный шнек обеспечивают непрерывное производство одобренных для пищевого применения ПЭТФ-гранул с высокими и стабильными значениями вязкости и хорошими показателями цвета.

Повышаются мировые показатели по сбору отходов, Азия - лидер. Законодательство становится строже: поощряется переработка материалов и одновременно вводятся ограничения по захоронению отходов и использованию энергии, что, однозначно, должно отразиться на мировой экологии положительно, сообщил начальник отдела продаж Krones Питер Хартель и рассказал о решениях компании по переработке пластмасс. Модульные системы Krones полностью адаптируются под индивидуальные потребности и могут поставляться как отдельными машинами, так и в виде заводов под ключ. Технология переработки MetaPure позволяет получать хлопья или гранулы различного качества, вплоть до ПЭТ пищевого класса в соответствии с FDA и другими системами сертификации.

В завершение разговор зашел о ПЭТ-упаковке. По утверждению представителя Starlinger Viscotec Герхарда Оссбергера, есть три условия успешной ПЭТ-упаковки: оптический вид (яркий цвет, полная прозрачность и никаких дефектов), пищевая безопасность (100% безопасная упаковка для здоровья человека), механические характеристики (максимальная возможность штабелирования и складирования, прочность). Сушка deCON и экструзионная линия viscoSHEET удаляет пыль, чтобы уменьшить визуальные дефекты, сушит сырьё для обеспечения максимальной вязкости и при этом максимальной прочности, а также очищает входящее вторичное сырьё для 100% пищевой безопасности. Таким образом Viscotec создаёт качественную «защиту» для товара.




Что еще почитать