Использование вторичного полимера в технологии bfs. Вторичная переработка полимерной продукции. Рентабельность оборудования для переработки полимеров

Оборудование для переработки пластика (полимеров) – это специальные станки и дополнительные устройства, объединенные в производственную линию, которая служит для обработки или переработки полимеров (пластмасс) в полезные и ценные материалы для дальнейшего использования в строительной, текстильной, химической, нефтяной и иных областях промышленности.

Классификация оборудования для переработки пластика

В зависимости от функциональных особенностей и назначения все оборудование для переработки пластика разделяют на:

  1. Оборудование для хранения и дозирования материалов/сырья. Как правило, это бункеры с устройствами для сортировки (фильтрации) и выгрузки материалов/сырья.
  2. Аппараты для транспортировки. Они бывают вакуумными или пневматическими.
  3. Машины для измельчения и разлома – дробилки, бегуны, шредеры, гидроразбиватели, кавитаторы и прочие.
  4. Смесители. Используются для механического разделения веществ посредством взаимного перемещения частиц.
  5. Валковые машины. Необходимы для формирования (создания) разлома и дробления полимерных композиций.
  6. Экструзионное оборудование. С его помощью полимерные материалы перерабатывают в те или иные изделия посредством непрерывного продавливания расплавленного сырья через формирующую головку, геометрическая форма которой определяет профиль конечного изделия.
  7. Литьевые машины. Это оборудование для переработки полимеров, применяемое для изготовления пластиковых композиций из порошкообразного или гранулированного сырья, которое перемещают или сдавливают в формирующей полости литьевой формы, где оно затвердевает, а после остывания извлекается.
  8. Машины для экструзионно-раздувного формования. Их, согласно методу формирования изделия из заготовки, делят на раздувные, экструзионные и литьевые механизмы.
  9. Вулканизационные машины и прессы. Бывают непрерывного или периодического действия и используются для создания изделий из порошкообразного или гранулированного сырья.
  10. Наносные и пропиточные машины. Применяются для нанесения полимерных покрытий на специальную подложку.
  11. Моечные комплексы. Необходимы для предварительной очистки полимера после грануляции или измельчения, но до его переработки.

Машины для переработки пластика

Основными машинами из большого количества разновидностей специального оборудования для переработки полимеров считаются следующие агрегаты:

  • дробилки – агрегат действует по принципу блендера, разрезая цельные изделия на небольшие кусочки;
  • агломераторы – в них небольшие кусочки полимера подвергаются еще большему дроблению, а затем спеканию в небольшие комочки;
  • грануляторы – с их помощью смесь, полученная из агломератора, нагревается и разрезается на гранулы.

Менее важным, но все же необходимым считается следующее оборудование по переработке пластика:

  • узлы моечной линии;
  • транспортировочные узлы;
  • разного вида сепараторы;
  • сушилки.

Оборудование для запуска мини-завода

Для того чтобы запустить небольшой завод по утилизации пластика, требуется следующее оборудование для обработки полимеров.

  1. Основное оборудование:
    • дробилка или шредер;
    • агломератор;
    • при необходимости – гранулятор.
  2. Дополнительное оборудование:
    • ванна горячей мойки;
    • 1-2 центрифуги;
    • экструдеры для рециклинга;
    • ситозаменители;
    • смесители и дозаторы;
    • флотационная мойка;
    • соединяющие агрегаты (пневмо- или вакуумный транспорт).
    • модуль управления.

Основные производители агрегатов для переработки полимеров

Наиболее востребованными производителями оборудования для переработки пластика являются следующие компании:

Европейские.

  1. HGMA Wulf GmbH – немецкий производитель с отличной репутацией, который изготавливает не только оборудование для первичной и вторичной обработки полимеров, но и землеройную и строительную технику.
  2. Global Tech – польская фирма, делающая быстрые и надежные стационарные и мобильные дробилки.
  3. Herbold Meckesheim – отличный немецкий производитель агрегатов для всего цикла обработки и переработки пластмасс.

Китайские.

  1. China IS-MAC Machinery – самый крупный китайский производитель экструзионного оборудования для переработки пластиковых бутылок и прочих пластмасс.
  2. LISHENG INDUSTRIAL – производитель моек, дробилок, печатных машин и другого оборудования.
  3. Blue Ocean – изготавливает экструзионные машины и установки для литья.

Российские.

  1. ГК Полимер Систем Групп (Новосибирск) – производит все необходимое для обработки полимеров.
  2. ENGEL Austria GmbH (Москва) – делает термопласт-автоматы для литья из пластмасс, агрегаты для переработки резины/силикона и прочее.
  3. СтанкоПэт (Москва) – производит почти весь спектр оборудования для переработки пластика.

Рентабельность оборудования для переработки полимеров

Примерная смета по комплектации небольшого завода по переработке полимеров будет включать в себя расходы на:

  • закупку линии оборудования для переработки пластиковых бутылок – около 10 000 долларов;
  • перевозку и установку оборудования – до 15% от стоимости оборудования (1 500 долларов);
  • оплату труда сотрудникам – около 7 000 долларов;
  • аренду (+ ремонт) помещения – 10 000 долларов;
  • прочие мероприятия – 5 000 долларов.

При этом тонна переработанного пластика стоит около 750 долларов, в то время как закупка сырья обойдется в 100 долларов за тонну.
Указанный уровень инвестиций рассчитан на мини-завод с закупкой оборудования для переработки пластиковых бутылок и схожих полимерных изделий с производительностью 1 тонна в день, т.е. с доходом от 7 000 до 9 000 долларов в месяц. При такой окупаемости завод начнет приносить чистую прибыль на второй год своей деятельности (через 15-20 месяцев).

Следует уточнить, что срок окупаемости, как и затраты на открытие завода, могут быть меньше, если:

  • будут получены преференции со стороны государства;
  • завод будет открыт недалеко от места, где сортируется пластмасса для последующей переработки;
  • на завод будут выделены безвозмездные инвестиции из международных фондов по защите природы.

Получение сырья и его сбыт

В зависимости от линии производства и пожелания владельца, завод по переработке пластмасс может производить гранулированное или порошкообразное полимерное сырье. Сбыт подобной продукции, как правило, не является чем-то сложным, поскольку она пользуется большим и постоянным спросом в следующих направлениях:

  • производство нетканых материалов;
  • изготовление строительных материалов;
  • производство полимерных изделий народного употребления;
  • изготовление химических волокон;
  • в качестве добавки к первичному сырью (удешевляет себестоимость).

Заводы с соответствующими линиями производства широко представлены во всех регионах и остро нуждаются в дешевом сырье.

Кроме того, линию по переработке полимеров можно продлить дополнительным оборудованием и уже самостоятельно изготавливать некоторые виды изделий из пластика. Например:

  • упаковочные сетки для овощей и фруктов;
  • мешки для мусора;
  • пакеты;
  • мебельную фурнитуру;
  • полимерную черепицу;
  • различные трубы, формы, детали для сантехники или канализации;
  • аксессуары или технические детали для автомобилей;
  • емкости для хранения жидкости;
  • прочие небольшие изделия из полимера.

Термопласты -это пластмассы, которые после формования изделия сохраняют способность к повторной переработке. Они могут многократно размягчаться при нагревании и затвердевать при охлаждении, не теряя своих свойств. Именно этим обусловлен огромный интерес к вторичной переработке термопластовых отходов -как бытовых, так и промышленных.

Состав твердых бытовых отходов (ТБО) в столице заметно отличается от среднего по России. Ежегодно в Москве образуется порядка 110 тыс. т твердых бытовых отходов. Из них полимерных — 8-10 %, а в коммерческих отходах крупных предприятий эта цифра достигает 25 %.

Отдельно в структуре ТБО следует выделить пластиковые бутылки. Ежегодно только в Москве их выбрасывается порядка 50 тыс. т. Согласно результатам Международной научно-практической конференции «Упаковка и окружающая среда», 30 % всех полимерных отходов составляют бутылки из полиэтилена и поливинилхлорида. Однако в настоящее время, по данным ГУП «Промотходы», в Москве и области ежегодно перерабатывается не более 9 тыс. т полимерных отходов, выделенных из ТБО. Причем половина из них — на территории Московского региона. Каковы же причины столь незначительной переработки термопластовых отходов?

Организация сбора

На сегодняшний день задействованы несколько каналов сбора пластмассовых отходов.

Первый и основной из них — сбор и вывоз отходов крупных торговых комплексов. Это сырье представляет собой преимущественно использованную упаковку и считается наиболее «чистым» и лучше всего подходящим для дальнейшего применения.

Второй путь — селективный сбор мусора. На юго-западе Москвы городская администрация совместно с ГУП «Промотходы» проводит такой эксперимент. Во дворах нескольких жилых домов установлены специальные немецкие евроконтейнеры. Крышки у контейнеров с отверстиями: круглые — для ПЭТ-бутылок, большая прорезь — для бумаги. Контейнеры запираются, за ними ведется постоянный надзор. За два года собрано 12т пластиковых бутылок. Сегодня проект включает в себя лишь 19 жилых домов. По мнению экспертов, при охвате территории с проживанием более 1 млн. жителей выгода такой системы становится очевидной.

Третий вариант — сортировка ТБО на специализированных предприятиях (опытно-промышленный центр по сортировке отходов «Котляково», частное предприятие МСК-1, другие мусоросортировочные комплексы). Точно определить объем отсортированных отходов пока довольно сложно, однако доля этого источника вторичного сырья уже заметна. Некоторые коммерческие организации под контролем муниципальных властей организуют собственные пункты приема вторичного сырья (в том числе полимерных отходов) у населения. Там же обычно происходит первичная сортировка и прессование. Тем не менее, таких пунктов в городе крайне мало.

Заметная доля идущего на переработку вторичного сырья нелегально собирается на полигонах. Этим занимаются частные фирмы, а порой и управления самих полигонов. Собранные и отсортированные материалы продаются перекупщикам или напрямую производителям.

При переработке термопластов очень важна однородность используемых полимеров, степень загрязненности, цвет и вид (пленка, бутылки, лом), форма поставляемых отходов (спрессованность, упаковка и т. п.). В зависимости от этих и ряда других параметров степень пригодности конкретной партии к дальнейшей обработке (и, следовательно, ее рыночная стоимость) может заметно колебаться. Дороже всего стоит макулатура.

Сортировку, дробление и прессовку могут производить многочисленные посредники, мусоросортировочные комплексы, сами переработчики, структуры ГУП «Промотходы».

В большинстве случаев применяется ручная сортировка, поскольку соответствующее оборудование дорого и не всегда эффективно.

Переработка полимеров

Собранные и отсортированные отходы могут быть переработаны во вторичный гранулят либо сразу пойти на производство новой продукции (хозяйственные мешки и пакеты, одноразовая посуда, футляры для видеокассет, дачная мебель, полимерные трубы, древесно-полимерные плиты и т. п.).

Переработкой полимерных бытовых отходов в промышленном масштабе в Москве занимается только ОАО НИИ ПМ (производство изделий для нужд городского хозяйства в рамках программы по раздельному сбору мусора в Юго-Западном АО и по заказу столичной мэрии). ГУП «Промотходы» осуществляет дробление, мытье и сушку, далее хлопья по цене 400 $ за т везутся на дальнейшую переработку в НИИ ПМ.

Другие переработчики вторичного сырья либо слишком малы (мощности до 20 т в месяц), либо под видом переработки занимаются дроблением и дальнейшей перепродажей, в лучшем случае добавляют в свою продукцию дробленое сырье. Масштабным производством вторичного гранулята и агломерата в Москве практически никто не занимается.

По другим сведениям (Н.М. Чалая, НПО «Пластик»), переработкой полимеров, содержащихся в московских отходах, занимается множество мелких фирм, для которых эта деятельность не является основной. Ее стараются не афишировать, поскольку принято считать, что использование вторсырья при производстве продукции ухудшает ее качество.

Типичной компанией для данного рынка является производственный кооператив «Вторполимер», работающий напрямую с городской свалкой. Обитающие на свалке бомжи собирают там все пластмассовое: бутылки, игрушки, битые ведра, пленку и т. п. За определенную плату «товар» сдается посредникам, а они доставляют его во «Вторполимер». Здесь отслужившие свой век вещи моются и отправляются на переработку. Их сортируют по цвету, дробят и добавляют в пластмассу, которая идет на изготовление монтажных труб (они применяются при строительстве новых домов для изоляции электропроводки). Закупочная цена грязного пластикового лома — 1 тыс. руб. за т, чистого — 1,5 тыс. Более мелкие партии принимаются по цене 1 и 1,5 руб. за-кг соответственно.

Сортировка полимерных отходов осуществляется вручную. Основной критерий отбора — внешний вид изделия или соответствующая маркировка. Без маркировки упаковку из полистирола, поливинилхлорида или полипропилена визуально не различить. Бутылки чаще всего считают ПЭТ, пленку — полиэтиленом (конкретный вид ПЭ обычно не определяют), хотя она может вполне оказаться ПП или ПВХ. Линолеум — в основном ПВХ, вспененный полистирол (пенопласт) легко идентифицируется визуально, капроновые волокна и изделия технического назначения (шпули, втулки) обычно сделаны из полиамида. Вероятность совпадений при такой сортировке — около 80 %.

Анализ деятельности фирм, работающих на рынке вторичных материалов, позволяет сделать следующие выводы:

1) цены вторичных материалов на рынке определяются степенью их подготовки к переработке. Если взять за 100 % стоимость первичного полиэтиленового гранулята низкой плотности, то цена чистой измельченной подготовленной к переработке полиэтиленовой пленки составляет от 8 до 13 % стоимости первичного полимера. Цена агломерата полиэтилена — от 20 до 30 % стоимости первичного полимера;

2) цена большинства гранулированных вторичных полимеров, усредненных по составу, составляет от 45 до 70 % цены первичных полимеров;

3) цена вторичных полимеров сильно зависит от их цвета, то есть от качества предварительной сортировки полимерных отходов по цветам. Разница в цене вторичных полимеров чистых и смешанных цветов может достигать 10-20 %;

4) цены на изделия, полученные из первичных и вторичных полимеров, как правило, практически одинаковы, что делает использование вторичных полимеров в производстве исключительно выгодным.

В среднем цена на полимерные отходы, выделенные из ТБО, в зависимости от степени подготовленности, партии и вида колеблется от 1 до 8 руб./кг. Цены закупки у переработчиков в зависимости от партии и уровня загрязнения отражены в таблице 1.

Вид полимера

Цена за грязные отходы, руб. /кг

Цена за чистые отходы, руб. /кг

Цены за чистые отходы, $/т (на апрель 2002 г.)

Полистирол

Полиамид

Таблица 1

Цена чистых отходов из ТБО обычно равна цене промышленных и коммерческих отходов.

Рыночная цена закупки переработчиком полимерных отходов из ТБО складывается из цены закупки посредником у населения (примерно 25 % стоимости), платы за формирование крупнотоннажных партий отходов, сортировку, прессование и даже отмывку для наиболее дорогого (чистого) сырья.

Цены на такие продукты, как агломерат и гранулят, составляют в среднем 12-24 руб./кг (полиамид дороже остальных — 35-50 руб./кг, ПЭТФ — от 20 руб./кг). Дальнейшая переработка повышает прибавочную стоимость в зависимости от вида продукции на 30-200 %.

Инвестиционная привлекательность

По мнению большинства экспертов, вкладывать средства в переработку отходов полимеров выгодно, но только при опоре на государственную поддержку и законодательную базу, ориентированную на интересы переработчиков вторичного сырья.

На сегодня московский рынок складывается из 20-30 небольших компаний, занимающихся переработкой полимерных отходов в основном промышленного происхождения. Для рынка в целом характерны неформальные связи переработчиков с поставщиками, большая доля компаний, для которых этот бизнес является побочным, а также низкие объемы переработки (12-17 тыс. т в год). Можно предположить, что при наличии со стороны переработчиков стабильного спроса на такие отходы объемы предложений будут расти.

Надо заметить, что то количество полимерных отходов, которое реально идет сегодня на вторичную переработку, составляет весьма незначительную часть городских ТБО. И это при том, что спрос на полимеры и изделия из них постоянно повышается, а проблема утилизации отходов все больше беспокоит городские власти.

Сдерживающим фактором при строительстве новых перерабатывающих производств является неразвитость системы сбора отходов и отсутствие серьезных поставщиков. Совпадение интересов частного бизнеса и государства в этой сфере неизбежно должно привести к принятию законов, отвечающих интересам переработчиков вторсырья.

Настоящее и будущее

1. Ежегодный объем переработки ПЭТ в столице — 4-5 тыс. т в год. В планах московских властей стоит организация до 2003 г. системы селективного сбора ПЭТ-тары и создание двух производственных комплексов по ее переработке мощностью 3 тыс. т в год. В настоящее время завершается строительство двух частных производств по переработке ПЭТ совокупной мощностью б тыс. т ежегодно.

В ближайшие месяцы правительством Москвы должны быть приняты нормативные акты, регламентирующие деятельность переработчиков полимеров (точное их содержание пока не известно). Существующих и строящихся мощностей достаточно для обеспечения потребностей рынка. Рассматривается возможность государственной поддержки проектов ГУП «Промотходы» и фирмы «Интэко» (потенциальные мощности по переработке — 7-8 тыс. т в год).

2. Объем переработки ПП в Москве составляет 4-5 тыс. т в год, хотя ежегодно в городе выбрасывается порядка 50-60 тыс. т — в основном это пленка и мешки «биг-бэг». После переработки ПП в виде гранул добавляется в первичное сырье либо целиком идет на производство пластиковой посуды, хозяйственных пакетов и т. п.).

Отсутствие масштабных проектов по вторичному использованию этого полимера (как в случае с ПЭТ) открывает широкие возможности для инвестирования. Наиболее выгодной на данном этапе является переработка вторсырья в гранулят, поскольку в области производства товаров народного потребления конкуренция гораздо жестче.

3. Объем переработки ПЭ — также 4-5 тыс. т в год. Основной вид сырья — пленка, в том числе сельскохозяйственная. Всего же в городе ежегодно выбрасывается порядка 60-70 тыс. т полиэтиленового мусора. Как правило, предприятия, занимающиеся переработкой ПЭ, также имеют дело и с ПП. Одна из крупных компаний, через которую проходит порядка 2,5 тыс. т в год- «Пластполитен».

ПЭ отличает высокая стойкость к загрязнению. Однако существующий запрет на применение вторичного полимерного сырья при изготовлении пищевой упаковки ограничивает возможность сбыта.

Таким образом, наиболее рациональным на сегодня представляется строительство производственного комплекса по переработке отходов полиэтилена, полипропилена и ПЭТ в гранулят.

Это производство обязано включать в себя:

а) сортировку (требует специального обучения персонала для снижения доли другого вида полимера, что очень важно для качества продукта);

б) мойку (наибольшие потенциальные объемы сырья обычно не отсортированы и не отмыты);

в) сушку, дробление, агломерирование.

Экономически наиболее выгодно расположить этот комплекс в ближнем Подмосковье, поскольку цены на электричество, воду, аренду земли и промышленных площадей там существенно ниже, чем в столице (см. таблицу 2).

Вид полимера

Цена за чистые отходы, $/т

Цена на вторичный гранулят, $/т

Объем в ТБО

тыс. т в год

Таблица 2

Для эффективной работы подобного производства необходима поддержка государства. Возможно, имеет смысл частично пересмотреть существующие санитарные нормы переработки ТБО, а также обязать производителей полимерной продукции делать отчисления на переработку полимерных отходов. Кроме того, должны быть предприняты комплексные меры на уровне правительства Москвы и отдельных >ЖКХ, направленные на развитие системы селективного сбора и создание сети пунктов приема вторичного сырья.

Повышенный интерес государства к утилизации отходов уже отражен в бюджете: с 2002 по 2010 гг. на эти цели планируется израсходовать 519,2 млн. руб. из федерального бюджета. Бюджеты субъектов федерации предполагают выделить до 2010г. 11,4 млрд. руб. на реализацию программы «Отводы».

В 2001 г. Москва затратила на охрану окружающей среды 3,1 млрд. руб. На сегодняшний день стоимость уже реализуемых проектов по переработке бытовых отходов составляет 115,5 млн. руб.

Андрей Голиней,

В процессе эксплуатации изделий из полимеров появляются отходы.

Бывшие в употреблении полимеры под действием температуры, окружающей среды, кислорода воздуха, различных излучений, влаги в зависимости от продолжительности этих воздействий изменяют свои свойства. Значительные объемы полимерных материалов, которые эксплуатируются на протяжении длительного времени и выбрасываются на свалки, загрязняют окружающую среду, поэтому проблема утилизации полимерных отходов чрезвычайно актуальна. Вместе с тем, эти отходы являются хорошим сырьем при соответствующей корректировке композиций для изготовления изделий различного назначения.

К бывшим в употреблении полимерным строительным материалам относятся полимерные пленки, используемые для накрытия парников, для упаковки строительных материалов и изделий; настилы полов коровников: рулонные и плиточные полимерные материалы для полов, отделочные материалы для стен и потолков; теплозвукоизоляционные полимерные материалы; емкости, трубы, кабели, погонажные и профильные изделия и т.д.

В процессе сбора и утилизации вторичного полимерного сырья применяются различные методы идентификации полимеров. Среди множества методов наиболее распространены следующие:

· ИК–спектроскопия (сравнение спектров известных полимеров с утилизируемыми);

· ультразвук (УЗ). В основу положено затухание УЗ. Определяется индекс HL по отношению затухания звуковой волны к частоте. УЗ–прибор подключается к компьютеру и устанавливается на технологическую линию утилизации отходов. Например, индекс HL ПЭНП 2,003 10 6 сек с отклонением 1,0%, а HL ПА-66 - 0,465 10 6 сек с отклонением ± 1,5%;

· рентгеновские лучи;

· лазернопиролизная спектроскопия.

Разделение смешанных (бытовых) отходов термопластов по видам проводят следующими основными способами: флотационным, разделением в жидких средах, аэросепарацией, электросепарацией, химическими методами и методами глубокого охлаждения . Наибольшее распространение получил метод флотации, который позволяет разделять смеси таких промышленных термопластов, как ПЭ, ПП, ПС и ПВХ. Разделение пластмасс производится при добавлении в воду поверхностно-активных веществ, которые избирательно изменяют их гидрофильные свойства. В некоторых случаях эффективным способом разделения полимеров может оказаться растворение их в общем растворителе или в смеси растворителей. Обрабатывая раствор паром, выделяют ПВХ, ПС и смесь полиолефинов; чистота продуктов - не менее 96%. Методы флотации и разделения в тяжелых средах являются наиболее эффективными и экономически целесообразными из всех перечисленных выше.

Переработка полиолефинов, бывших в употреблении

Отходы сельскохозяйственной ПЭ пленки, мешков из-под удобрений, трубы различного назначения, вышедшие из эксплуатации, отходы других источников, а также смешанные отходы подлежат утилизации с последующим их использованием. Для этого применяют специальные экструзионные установки для их переработки. При поступлении полимерных отходов на переработку показатель текучести расплава должен быть не менее 0,1 г/10 мин.

Перед тем как начать переработку, производят грубое разделение отходов, учитывая их отличительные признаки. После чего материал подвергается механическому измельчению, которое может быть как при нормальной (комнатной) температуре или при криогенном способе (в среде хладоагентов, например, жидкого азота). Измельченные отходы подают в моечную машину на отмывку, производимую в несколько приемов специальными моющими смесями. Отжатую в центрифуге массу с влажностью 10–15% подают на окончательное обезвоживание в сушильную установку, до остаточного содержания влаги 0,2%, а затем в экструдер. Расплав полимера подается шнеком экструдера через фильтр в стренговую головку. На фильтре кассетного или перемоточного типа производится очистка расплава полимера от различных примесей. Очищенный расплав продавливается через стренговые отверстия головки, на выходе из которой происходит обрезка стренг ножами на гранулы определенного размера, которые затем падают в охлаждающую камеру. Проходя специальную установку, гранулы обезвоживаются, сушатся и затариваются в мешки. В случае, если необходимо переработать тонкие ПО пленки, то вместо экструдера применяют агломератор.

Cушку отходов производят различными методами, применяя полочные, ленточные, ковшовые, с «кипящим» слоем, вихревые и другие сушилки, производительность которых достигает 500 кг/ч. Из-за низкой плотности пленка всплывает, а грязь оседает на дне.

Обезвоживание и сушку пленки осуществляют на вибросите и в вихревом сепараторе, ее остаточная влажность составляет не более 0,1%. Для удобства транспортировки и последующей переработки в изделия производят грануляцию пленки. В процессе гранулирования происходит уплотнение материала, облегчается его дальнейшая переработка, усредняются характеристики вторичного сырья, в результате чего получают материал, который можно перерабатывать на стандартном оборудовании.

Для пластикации измельченных и очищенных отходов полиолефинов применяют одночервячные экструдеры с длиной шнека (25–33) D , оснащенные фильтром непрерывного действия для очистки расплава и имеющие зону дегазации, позволяющие получать гранулы без пор и включений. При переработке загрязненных и смешанных отходов используют дисковые экструдеры специальной конструкции, с короткими многозаходными червяками длиной (3,5–5) D , имеющими цилиндрическую насадку в зоне выдавливания. Материал плавится за короткий промежуток времени, причем обеспечивается быстрая гомогенизация расплава. Изменяя зазор между конусной насадкой и кожухом, можно регулировать усилие сдвига и силу трения, изменяя при этом режим плавления и гомогенизации переработки. Экструдер снабжен узлом дегазации.

Получение гранул производится в основном двумя способами: грануляцией на головке и подводным гранулированием. Выбор способа гранулирования зависит от свойств перерабатываемого термопласта и, особенно, от вязкости его расплава и адгезии к металлу. При грануляции на головке расплав полимера выдавливается через отверстие в виде стренг, которые отрезаются скользящими по фильерной плите ножами. Полученные гранулы размером 4– 5 мм (по длине и диаметру) ножом отбрасываются от головки в камеру охлаждения, а затем подаются в устройство отжима влаги.

При использовании оборудования с большой единичной мощностью применяют подводное гранулирование. При этом способе расплав полимера выдавливается в виде стренг через отверстия фильерной плиты на головке. Пройдя ванну охлаждения с водой, стренги поступают на устройство резки, где они режутся на гранулы вращающимися фрезами.

Температура охлаждающей воды, поступающей в ванну по противотоку движения стренг, поддерживается в пределах 40–60 °С, а количество воды составляет 20–40 м 3 на 1 т гранулята.

В зависимости от типоразмера экструдера (величины диаметра шнека и его длины) варьируется производительность, зависящая от реологических характеристик полимера. Число выходных отверстий в головке может быть в пределах 20–300.

Из гранулята получают упаковки для товаров бытовой химии, вешалки, детали строительного назначения, поддоны для транспортировки грузов, вытяжные трубы, облицовку дренажных каналов, безнапорные трубы для мелиорации и другие изделия, которые характеризуются пониженной долговечностью в сравнении с изделиями, полученными из первичного полимера. Исследования механизма процессов деструкции, протекающих при эксплуатации и переработке полиолефинов, их количественное описание позволяют сделать вывод о том, что получаемые изделия из вторичного сырья должны обладать воспроизводимыми физико-механическими и технологическими показателями.

Более приемлемым является добавление вторичного сырья к первичному в количестве 20–30%, а также введение в полимерную композицию пластификаторов, стабилизаторов, наполнителей до 40–50%. Химическая модификация вторичных полимеров, а также создание высоконаполненных вторичных полимерных материалов позволяет еще шире использовать полиолефины, бывшие в употреблении.

Модификация вторичных полиолефинов

Методы модификации вторичного полиолефинового сырья можно разделить на химические (сшивание, введение различных добавок, главным образом органического происхождения, обработка кремнийорганическими жидкостями и др.) и физико-механические (наполнение минеральными и органическими наполнителями).

Например, максимальное содержание гель-фракции (до 80%) и наиболее высокие физико-механические показатели сшитого ВПЭНП достигаются при введении 2–2,5% пероксида дикумила на вальцах при 130 °C в течение 10 мин. Относительное удлинение при разрыве такого материала - 210%, показатель текучести расплава составляет 0,1–0,3 г/10 мин. Степень сшивания уменьшается с повышением температуры и увеличением продолжительности вальцевания в результате протекания конкурирующего процесса деструкции. Это позволяет регулировать степень сшивания, физико-механические и технологические характеристики модифицированного материала. Разработан метод формования изделий из ВПЭНП путем введения пероксида дикумила непосредственно в процессе переработки и получены опытные образцы труб и литьевых изделий, содержащих 70–80 % гель-фракции.

Введение воска и эластопласта (до 5 масс. ч.) значительно улучшает перерабатываемость ВПЭ, повышает показатели физико-механических свойств (особенно относительное удлинение при разрыве и стойкость к растрескиванию - на 10% и с 1 до 320 ч соответственно) и уменьшают их разброс, что свидетельствует о повышении однородности материала.

Модификация ВПЭНП малеиновым ангидридом в дисковом экструдере также приводит к повышению его прочности, теплостойкости, адгезионной способности и стойкости к фотостарению. При этом модифицирующий эффект достигается при меньшей концентрации модификатора и меньшей продолжительности процесса, чем при введении эластопласта. Перспективным способом повышения качества полимерных материалов из вторичных полиолефинов является термомеханическая обработка кремнийорганическими соединениями. Этот способ позволяет получать изделия из вторичного сырья с повышенной прочностью, эластичностью и стойкостью к старению.

Механизм модификации заключается в образовании химических связей между силоксановыми группами кремнийорганической жидкости и непредельными связями и кислородосодержащими группами вторичных полиолефинов.

Технологический процесс получения модифицированного материала включает следующие стадии: сортировка, дробление и отмывка отходов; обработка отходов кремнийорганической жидкостью при 90±10 °C в течение 4–6 ч; сушка модифицированных отходов методом центрифугирования; перегрануляция модифицированных отходов.

Помимо твердофазного способа модификации предложен способ модификации ВПЭ в растворе, который позволяет получать порошок ВПЭНП с размером частиц не более 20 мкм. Этот порошок может быть использован для переработки в изделия методом ротационного формования и для нанесения покрытий методом электростатического напыления.

Наполненные полимерные материалы на основе вторичного полиэтиленового сырья

Большой научный и практический интерес представляет создание наполненных полимерных материалов на основе вторичного полиэтиленового сырья. Использование полимерных материалов из вторичного сырья, содержащих до 30% наполнителя, позволит высвободить до 40% первичного сырья и направить его на производство изделий, которые нельзя получать из вторичного (напорные трубы, упаковочные пленки, транспортная многооборотная тара и др.).

Для получения наполненных полимерных материалов из вторичного сырья можно использовать дисперсные и армирующие наполнители минерального и органического происхождения, а также наполнители, которые можно получать из полимерных отходов (измельченные отходы реактопластов и резиновая крошка). Наполнению можно подвергать практически все отходы термопластов, а также смешанные отходы, которые для этой цели использовать предпочтительней и с экономической точки зрения.

Например, целесообразность применения лигнина связана с наличием в нем фенольных соединений, способствующих стабилизации ВПЭ при эксплуатации; слюды - с получением изделий, обладающих низкой ползучестью, повышенной тепло- и атмосферостойкостью, а также характеризующихся небольшим износом перерабатывающего оборудования и низкой стоимостью. Каолин, известняк, сланцевая зола, угольные сферы и железо применяются как дешевые инертные наполнители.

При введении в ВПЭ мелкодисперсного фосфогипса, гранулированного в полиэтиленовом воске, получены композиции, имеющие повышенное удлинение при разрыве. Этот эффект можно объяснить пластифицирующим действием полиэтиленового воска. Так, прочность при разрыве ВПЭ, наполненного фосфогипсом, на 25% выше, чем у ВПЭ, а модуль упругости при растяжении больше на 250%. Усиливающий эффект при введении во ВПЭ слюды связан с особенностями кристаллического строения наполнителя, высоким характеристическим отношением (отношением диаметра чешуйки к толщине), причем применение измельченного, порошкообразного ВПЭ позволяет сохранить строение чешуек при минимальном разрушении.

Среди полиолефинов наряду с полиэтиленом значительные объемы приходятся на производство изделий из полипропилена (ПП). Повышенные прочностные свойства ПП в сравнении с полиэтиленом и стойкость его по отношению к окружающей среде свидетельствует об актуальности его рециклинга. У вторичного ПП содержится ряд примесей, таких как Ca, Fe, Ti, Zn, которые способствуют зародышам кристаллообразования и созданию кристаллической структуры, что приводит к повышению жесткости полимера и большим значениям как исходного модуля упругости, так и квазиравновесного. Для оценки механической работоспособности полимеров используют метод релаксационных напряжений при различных температурах. Вторичный ПП в одних и тех же условиях (в диапазоне температур 293–393 К) выдерживает гораздо большие механические напряжения без разрушения, чем первичный, что позволяет использовать его для изготовления жестких конструкций.

Переработка полистирола, бывшего в употреблении

Полистирольные пластики, бывшие в употреблении, могут быть использованы в следующих направлениях: утилизация технологических отходов ударопрочного полистирола (УПС) и акрилонитрилбутадиен-стирольного (АБС) – пластика методами литья под давлением, экструзии и прессования; утилизация изношенных изделий, отходов пенополистирола (ППС), смешанных отходов, утилизация сильно загрязненных промышленных отходов .

Значительные объемы полистирола (ПС) приходятся на вспененные материалы и изделия из них, плотность которых находится в пределах 15–50 кг/м 3 . Из этих материалов изготавливают матрицы форм для упаковки, кабельную изоляцию, ящики для затаривания овощей, фруктов и рыбы, изоляцию холодильников, рефрижератов, поддоны для ресторанов фаст-фуд, опалубку, теплозвукоизоляционные плиты для изоляции зданий и сооружений и т.д. Кроме того, при транспортировании бывших в употреблении таких изделий резко снижаются транспортные расходы из-за низкой насыпной плотности отходов вспененного ПС.

Один из основных методов рециклинга отходов вспененного полистирола - механический способ переработки. Для агломерации применяют специально разработанные машины, а для экструдирования - двухшнековые экструдеры с зонами дегазации.

Пункт потребителя является основным местом размещения оборудования для механического рециклинга отходов изделий из вспененного полистирола, бывших в употреблении. Загрязненные отходы вспененного ПС подлежат осмотру и сортируются. При этом извлекаются загрязнения в виде бумаги, металла, других полимеров и различных включений. Полимер измельчается, моется и подвергается сушке. Для обезвоживания полимера используется метод центрифугирования. Окончательное измельчение производится в барабане, а из него отходы поступают в специальный экструдер, в котором подготовленный к переработке полимер сжимается и расплавляется при температуре около 205–210 °C. Для дополнительной очистки расплава полимера устанавливается фильтр, который работает по принципу перемотки фильтрующего материала или кассетного типа. Отфильтрованный расплав полимера поступает в зону дегазации, где шнек имеет более глубокую нарезку в сравнении с компрессионной зоной. Далее расплав полимера поступает в стренговую головку, стренги охлаждаются, сушатся и гранулируются. В процессе механической регенерации отходов ПС происходят процессы деструкции и структурирования, поэтому важно, чтобы материал подвергался минимальному напряжению сдвига (функция геометрии шнека, числа оборотов и вязкости расплава) и малому времени пребывания под термомеханической нагрузкой. Снижение деструктивных процессов производится за счет галогенирования материала, а также введения в полимер различных добавок.

Механический рециклинг вспененного полистирола регулируется исходя из области применения вторичного полимера, например, для получении изоляции, картона, облицовки и т.д.

Существует метод деполимеризации отходов полистирола. Для этого отходы ПС или вспененного ПС измельчаются, загружаются в герметический сосуд, нагреваются до температуры разложения, а выделяющийся вторичный стирол охлаждается в холодильнике и полученный таким образом мономер собирается в герметическом сосуде. Метод требует полной герметизации процесса и значительных энергозатрат.

Переработка поливинилхлорида (ПВХ), бывшего в употреблении

Рециклинг вторичного ПВХ предусматривает переработку бывших в употреблении пленок, фитингов, труб, профилей (в т.ч. оконных рам), емкостей, бутылок, плит, рулонных материалов, кабельной изоляции и т.д.

В зависимости от состава композиции, которая может состоять из винипласта или пластиката и назначения вторичного ПВХ, способы рециклинга могут быть различными.

Для вторичного использования отходы ПВХ продукции подвергаются мойке, сушке, измельчению и сепарации различных включений, в т.ч. металлов. Если изделия изготовлены из композиций на основе пластифицированного ПВХ, то чаще всего используют криогенное измельчение. Если изделия изготовлены из жесткого ПВХ, то применяют механическое дробление.

Пневматический способ применяют для отделения полимера от металла (провода, кабели). Выделенный пластифицированный ПВХ может перерабатываться методом экструзии или литья под давлением. Метод разделения по магнитным свойствам может быть использован для удаления металлических и минеральных включений. Для отделения алюминиевой фольги от термопласта используют нагрев в воде при 95–100 °C.

Отделение этикеток от негодных контейнеров производится методом его погружения в жидкий азот или кислород с температурой около –50 °C, что придает этикеткам или адгезиву хрупкость и позволяет затем их легко измельчить и отделить однородный материал, например, бумагу. Для переработки отходов искусственных кож (ИК), линолеумов на основе ПВХ предлагается способ сухой подготовки пластмассовых отходов с помощью компактора. Он включает ряд технологических операций: измельчение, сепарацию текстильных волокон, пластикацию, гомогенизацию, уплотнение и грануляцию, где можно также вводить добавки.

Отходы кабеля с ПВХ изоляцией поступают в дробилку и транспортером подаются в загрузочный бункер криогенной шахты, которая представляет собой герметичную емкость со специальным транспортирующим шнеком. В шахту подается жидкий азот. Охлажденные дробленые отходы выгружаются на станок для измельчения, а оттуда они поступают на устройство для сепарации металлических включений, где хрупкий полимер осаждается и пропускается через электростатическую корону барабана сепаратора и там производится извлечение меди.

Значительные объемы бутылок из ПВХ, бывших в употреблении, требуют различных методов их утилизации. Заслуживает внимания метод разделения ПВХ от различных примесей по плотности раствора нитрата кальция в ванне.

Механический процесс рециклинга ПВХ бутылок предусматривает основные стадии процесса переработки отходов вторичных термопластов, но в отдельных случаях имеет свои отличительные особенности.

В процессе эксплуатации различных зданий и сооружений образуются значительные объемы металлопластиковых оконных рам на основе ПВХ композиций, бывших в употреблении. Поступающие на повторную переработку ПВХ рамы с каркасом, бывшие в употреблении, содержат приблизительно 30 %масс. ПВХ и 70 %масс. стекла, металла, дерева и резины. В среднем оконная рама содержит около 18 кг ПВХ. Поступающие рамы сгружаются в емкость шириной 2,5 м и длиной 6,0 м. Затем они спрессовываются на горизонтальном прессе и превращаются в секции длиной в среднем до 1,3–1,5 м, после чего материал допрессовывается с помощью катка и поступает на измельчитель, в котором ротор вращается с регулируемой скоростью. Крупная смесь из ПВХ, металла, стекла, резины и древесины подается на конвейер, а затем на магнитный сепаратор, где происходит отделение металла, а после чего материал поступает на вращающий сепарационный металлический барабан. Эта смесь классифицируется на частицы размером <4 мм, 4–15 мм, 15–45 мм, >45 мм.

Фракции (>45 мм) больше обычного размера возвращаются на повторное дробление. Фракцию размером 15–45 мм отправляют на разделитель металла, а затем к отделителю резины, представляющему собой вращающийся барабана с резиновой изоляцией.

После удаления металла и резины эту грубую фракцию отправляют назад на измельчение для дальнейшего уменьшения размера.

Полученная смесь размером частиц 4– 15 мм, состоящая из поливинилхлорида, стекла, мелкого остатка и деревянных отходов из силоса подается через сепаратор на барабанное сито. Здесь материал разделяется снова на две фракции размером частицы: 4–8 и 8– 15 мм.

Для каждого диапазона размера частицы используются по две отдельных линий обработки, которые в общей сложности составляют четыре линии обработки. Разделение дерева и стекла имеет место в каждой из этих линий обработки. Дерево отделяется путем использования наклонных вибрирующих воздушных сит. Дерево, которое легче относительно других материалов, транспортируется вниз потоком воздуха, а более тяжелые частицы (поливинилхлорид, стекло) транспортируются вверх. Разделение стекла выполнено в подобной манере на последующих ситах, где более легкие частицы (т.е. поливинилхлорид), транспортируются вниз, в то время как тяжелые частицы (т.е. стекло) транспортируются вверх. После удаления дерева и стекла соединяются фракции поливинилхлорида от всех четырех линий обработки. Металлические частицы обнаруживаются и удаляются с помощью электроники.

Очищенный поливинилхлорид поступает в цех, где он увлажняется и гранулируется до размера 3– 6 мм, после чего гранулы сушатся горячим воздухом до определенной влажности. Поливинилхлорид разделяется на четыре фракции размером частиц 3, 4, 5 и 6 мм. Любые гранулы с завышенными размерами (то есть > 6 мм) возвращаются на участок для повторного измельчения. Резиновые частицы отделяются от поливинилхлорида на вибрационных ситах.

Заключительный этап заключается в оптикоэлектронном процессе сортировки цвета, который отделяет белые частицы поливинилхлорида от цветных. Это выполняется для фракций каждого размера. Так как количество цветного поливинилхлорида является небольшим по сравнению с белым поливинилхлоридом, производится сортировка по размеру белых фракций поливинилхлорида, которые сохраняются в отдельных бункерах, пока цветные потоки поливинилхлорида смешиваются и сохраняются в одном бункере.

У процесса есть некоторые специальные особенности, которые делают операции экологически чистыми. Загрязнения воздуха не происходит, так как измельчение и воздушная сепарация оснащены системой извлечения пыли, собирающей пыль, бумагу и фольгу в воздушном потоке и подающей их в ловушку микрофильтра. Измельчитель и барабанное сито изолированы, чтобы уменьшить возникновение шума.

Во время мокрого измельчения и мытья поливинилхлорида от загрязнений вода подается на повторную очистку.

Переработанный поливинилхлорид используется в производстве новых профилей окна, полученных методом соэкструзии. Чтобы получить высокое качество поверхности, требуемое для оконных рам, профили которых получены методом соэкструзии, внутренняя поверхность рам выполнена из вторичного переработанного поливинилхлорида, а внешняя поверхность - из первичного поливинилхлорида. Новые рамы включают 80% веса переработанного поливинилхлорида и по механическим и эксплуатационным свойствам сопоставимые с рамами, изготовленными из 100% первичного поливинилхлорида.

К основным методам переработки отходов поливинилхлоридных пластиков относятся литье под давлением, экструзия, каландрование, прессование.

Объявления о покупке и продаже оборудования можно посмотреть на

Обсудить достоинства марок полимеров и их свойства можно на

Зарегистрировать свою компанию в Каталоге предприятий


Проникновение полимерных материалов в самые различные области применения, включая нашу повседневную жизнь, в настоящее время воспринимается во всем мире как нечто само собой разумеющееся. И это при том что их победное шествие началось сравнительно поздно – в 1950-х гг., когда объемы их производства составляли только около 1 млн т в год. Однако с ростом производства и потребления пластмасс постепенно обострялись и в настоящее время стали крайне актуальными проблемы утилизации использованных пластиковых изделий. В данном обзоре обсуждается опыт решения этих проблем в Европе, где ведущей в этом отношении является Германия.

Благодаря своим многочисленным преимуществам (в частности, высокой прочности, химической стойкости, возможности придания любой формы и любого цвета, низкой плотности), они быстро проникли во все области применения, включая строительную, автомобильную, авиакосмическую, упаковочную отрасли промышленности, производство бытовой продукции, игрушек, изделий медицинского и фармацевтического назначения.

Уже в 1989 г. полимерные материалы обогнали по объемам производства такой традиционный материал, как сталь (имеются в виду именно объемы, а не масса). В то время их ежегодный выпуск составлял около 100 млн т. В 2002 г. производство полимерных материалов преодолело планку в 200 млн т, а в настоящее время во всем мире ежегодно их производится уже почти 300 млн т. Если рассматривать вопрос в региональном плане, то за прошедшие десятилетия наблюдалось постепенное перемещение мощностей по производству полимерных материалов в направлении Востока.

В результате Азия превратилась в настоящее время в самый мощный регион, где сконцентрировано 44 % всех мировых мощностей. На полиолефины, являющиеся наиболее широко распространенной группой пластмасс, приходится 56 % от общего объема производства; второе место занимает поливинилхлорид, а за ним следуют другие традиционные полимеры – такие как полистирол и полиэтилентерефталат (ПЭТ). Только 15 % от всех производимых полимеров приходится на дорогостоящие материалы технического назначения, используемые в специальных областях. По прогнозам европейской ассоциации производителей полимеров PlasticsEurope (г. Брюссель), в дальнейшем будет продолжаться увеличение объемов выпуска полимерных материалов на душу населения с темпом около 4 % в год. Одновременно с таким успехом на рынке увеличивались и объемы использованных полимерных материалов и изделий. Если в период с 1960-х по 1980-е гг. промышленность полимерных материалов могла еще не уделять особого внимания вопросам целесообразной утилизации и повторного использования бывшей в употреблении продукции, то позднее (особенно после вступления в силу немецкого постановления об упаковках в 1991 г.) эти проблемы стали важной темой. В то время Германия взяла на себя роль первопроходца. Она стала первой страной, в которой были разработаны и реализованы на рынке нормы утилизации и вторичной переработки полимерных отходов. В настоящее время к решению этой проблемы подключились и многие другие европейские страны, разработавшие весьма успешные концепции сбора и вторичного использования полимеров.

Согласно данным ассоциации PlasticsEurope, в 2011 г. в 27 странах Евросоюза, а также в Швейцарии и Норвегии было использовано около 27 млн т полимерных материалов, из которых 40 % пришлось на продукцию краткосрочного применения и 60 % – на изделия долгосрочного применения. В том же году было собрано около 25 млн т бывших в употреблении полимерных материалов. Из них 40 % были подвергнуты захоронению, а 60 % – направлены на вторичную переработку. Более 60 % полимерных отходов поступило из систем сбора использованных упаковок. В меньших количествах бывшие в употреблении полимерные изделия были получены из секторов строительства, автомобилестроения и электроники.

Достойные подражания системы сбора отходов существуют в девяти европейских странах – Швейцарии, Германии, Австрии, Бельгии, Швеции, Дании, Норвегии, Голландии и Люксембурге (перечислены в нисходящем порядке). Доля собираемой использованной полимерной продукции в этих странах составляет от 92 до 99 %. Кроме того, в шести из перечисленных девяти стран обеспечивается самый высокий уровень вторичной переработки этих отходов в Европе: по этому показателю (от 26 % до 35 % от объема собираемых отходов) Норвегия, Швеция, Германия, Голландия, Бельгия и Австрия намного опережают другие страны. Оставшееся количество собираемых отходов подвергается энергетической утилизации.

Не может не радовать тот факт, что в течение последних пяти лет существенно увеличилось не только количество собираемых отходов, но доля отходов, одвергаемых вторичной переработке. Благодаря этому снизились объемы отходов, подвергаемых захоронению. Несмотря на это, сектор вторичной переработки полимерных материалов еще обладает огромными потенциальными возможностями для дальнейшего развития. В значительной степени это относится к странам с низким уровнем их утилизации.

Критически эксперты рассматривают возможности энергетического вторичного использования полимерных материалов, а именно их сжигания, которое многие считают целесообразным способом их вторичной переработки. В Германии 95 % всех мусоросжигательных установок относятся к предприятиям вторичной переработки отходов и, таким образом, имеют разрешение на энергетическое вторичное применение отходов. Оценивая эту ситуацию, Михаэль Скриба (Michael Scriba), коммерческий директор специализирующейся на переработке полимерных материалов компании mtm plastics (г. Нидергебра), отмечает, что с экологической точки зрения энергетическое вторичное применение отходов бесспорно хуже материального.

В рамках индустрии пластмасс вторичная переработка за последние годы превратилась в важный хозяйственный сектор. Еще одна важная проблема, препятствующая развитию сектора вторичной переработки в Европе, заключается в экспорте полимерных отходов, преимущественно на Дальний Восток. По этой причине в Европе остается относительно небольшое количество пригодных для целесообразной вторичной переработки отходов; это способствует существенному усилению конкурентной борьбы и повышению уровня затрат.

Мощная отрасль, поддерживаемая ассоциациями и компаниями

Начиная с 1990-х гг. в качестве инициаторов интенсификации вторичной переработки пластиковых отходов в Германии выступило несколько компаний и ассоциаций, которые посвятили свою деятельность именно этим проблемам и в настоящее время активно работают в европейском масштабе.

Прежде всего, речь идет о компании Der Gruene Punkt – Duales System Deutschland GmbH (DSD) (г. Кельн), которая была основана в 1990 г. как первая дуальная система и сегодня является лидером по предложениям систем обратного приема отходов. К ним относятся наряду с приближенным к домашнему хозяйству сбором и вторичным использованием торговых упаковок экологически безопасная и экономически эффективная вторичная переработка пластиковых элементов электрических приборов и электронной аппаратуры, а также транспортных упаковок, удаление отходов с предприятий и организаций, очистка использованной тары.

В 1992 г. в г. Висбадене была основана компания RIGK GmbH, которая как сертифицированное специализированное предприятие по обслуживанию компаний (разливочных, сбытовых, торговых и импортирующих), являющихся владельцами торговых марок, осуществляет обратный прием использованных и освобожденных от остатков продукции упаковок у своих немецких партнеров и направляет эти упаковки на вторичную переработку.

Важным игроком рынка является также компания BKV, которая была основана в 1993 г. с целью обеспечения гарантированной вторичной переработки полимерных упаковок, собираемых дуальными системами. В настоящее время компания BKV служит своеобразной базовой площадкой для вторичной переработки полимерных материалов, занимаясь наиболее существенными и актуальными проблемами в этой области.

В 1993 г. была основана и еще одна важная ассоциация – Bundesverband Sekundаеrrohstoffe und Entsorgung e. V. (bvse) (г. Бонн), происхождение которой связано с объединением Altpapierverband e. V. В секторе полимерных материалов она обеспечивает компаниям Германии профессиональную и определяемую своими внутриполитическими условиями помощь при заготовке и вторичном использовании полимерных отходов. Наряду с компанией BKV, которая входит в состав ассоциации GKV Gesamtverband Kunststoffverarbeitende Industrie e.V. (г. Бад Хомбург), существуют и другие объединения и организации, занимающиеся вопросами вторичной преработки полимерных материалов. К ним относятся, в частности, компания tecpol Technologieentwicklungs GmbH, специализирующаяся на экологически эффективном рециклинге пластиковых отходов, и специализированная группа по компаундированию и вторичной переработке в организации TecPart e. V., являющейся базовым объединением ассоциации GKV. В 2002 г. ведущие немецкие производители пластиковых профилей объединились в инициативную группу Rewindo Fenster-RecyclingService GmbH (г. Бонн). Основная цель при этом заключалась в увеличении доли подвергаемых вторичной переработке демонтированных полимерных окон, дверей и рольставней (см. фото у заголовка статьи), что способствовало бы повышению стабильности и степени ответственности при проведении хозяйственной деятельности.

Само собой разумеется, в решение проблем включились крупные, имеющие собственные рабочие группы по вторичной переработке пластмасс и в течение десятилетий успешно зарекомендовавшие себя на практике ассоциации полимер- ной промышленности – такие, как PlasticsEurope и IK Industrieverband Kunststoffverpackungen e. V. (г. Франкфурт).

Успешные проверенные технологии вторичной переработки

Точную информацию о вторичной переработке пластмасс в Германии предоставляют результаты анализа, которые с периодичностью один раз в два года публикуются по заданию входящих в состав VDMA компаний и ассоциаций – BKV, PlasticsEurope Deutschland e. V., bvse, Fachverband Kunststoff und Gummimaschinen, а также союза IK. Согласно этим данным, в Германии в 2011 г. образовалось около 5 млн т пластиковых отходов, наибольшая часть (82 %) которых – это отходы потребления. Из оставшихся 18 %, представляющих собой промышленные отходы, доля пригодных для вторичной переработки материалов может достигать 90 %. Как уже проверено на практике, рассортированные промышленные отходы могут быть успешно подвергнуты внутризаводской вторичной переработке непосредственно на тех предприятиях, где они образовались (фото 1).

В случае отходов потребления доля материального (то есть без сжигания и захоронения) вторичного использования составляет всего лишь 30–35 %. В этой области также уже существуют реализованные на практике способы вторичной переработки рассортированных по видам отходов. В качестве примеров можно привести опыт переработки поливинилхлорида (ПВХ) и ПЭТ. В результате своей 10-летней деятельности компания Rewindo, использующая собственную технологию вторичной переработки отслуживших свой срок поливинилхлоридных окон и дверей, завоевала прочное положение на рынке.

В последние годы объем вторичного ПВХ, производимого из собираемых бывших в употреблении изделий специализирующимися в этой области компаниями Tоеnsmeier Kunststoffe GmbH & Co. KG (г. Хектер) и Veka Umwelttechnik GmbH (г. Херзельберг-Хайних) поддерживался на уровне около 22 тыс. т с тенденцией к увеличению.

ПЭТ-бутылки также собираются и перерабатываются после надлежащей сортировки. Ассортимент новой продукции, изготавливаемой из получаемого при этом вторичного сырья, простирается от волокон и пленок до новых бутылок. Различные компании, такие как австрийские фирмы Erema GmbH (г. Ансфельден), Starlinger & Co. GmbH (Вена) и NGR GmbH (г. Фельдкирхен), создали специальные производственные линии для переработки ПЭТ. Недавно Европейское ведомство по безопасности пищевых продуктов EFSA опубликовало положительное заключение в отношении технологии recoSTAR PET iV+ производства вторичного ПЭТ, пригодного для изготовления пищевой упаковки (разработчик – компания Starlinger).

Мнение EFSA служит основным для сертификации подобных технологий Европейской комиссией и государствами – членами Евросоюза.

Чтобы добиться такого результата, заинтересованная компания должна доказать, что разработанные ею технология и оборудование для переработки полимерных отходов снижают степень загрязнения соответствующего ПМ до уровня, безопасного для здоровья человека.

Стандартный сценарий так называемых «провокационных» испытаний (challenge-test) на эффективность очистки вторичного ПЭТ, получаемого обычно из отходов в виде использованных бутылок, предусматривает использование пяти контрольных «загрязняющих» веществ – толуола, хлороформа, фенилциклогексана, бензофенона и линдана, отличающихся химическим составом, молекулярной массой и, следовательно, миграционной способностью. Сами испытания проводятся в несколько этапов.

Сначала промывают хлопья вторичного ПЭТ, после чего их «загрязняют» контрольным веществом с заданной концентрацией (3 промилле) и снова промывают. Затем производят переработку этих повторно вымытых ПЭТ- хлопьев по тестируемой технологии в регранулят ПЭТ и определяют остаточную концентрацию «загрязняющей» среды, по которой рассчитывают степень очистки вторичного ПЭТ. В заключение оба показателя сравнивают с предельно допустимыми для них значениями и делают выводы об эффективности очистки.

В дополнение к стандартным испытаниям компания Starlinger самостоятельно решила ужесточить их сценарий, проведя их в так называемых «худших» для материала условиях (Worst-Case-Szenario), при которых перерабатывались ПЭТ-хлопья, не вымытые после их загрязнения модельными средами. Предварительно перед каждым видом испытаний – для обеспечения чистоты эксперимента и стабильных условий его проведения – на установке recoSTAR PET 165 iV+ (фото 2) осуществляли переработку 80–100 кг прозрачного первичного ПЭТ, чтобы очистить рабочие органы установки от остатков предыдущей партии материала. Испытуемые же ПЭТ-хлопья окрашивались в синий цвет; поэтому выход из этой же установки регранулята ПЭТ только синего цвета свидетельствовал о том, что в процессе переработки не произошло его смешивания с чистым ПЭТ и выдерживался принцип FIFO (first-in, first-out: «первым вошел, первым вышел»). Результаты испытаний, проведенных по стандартному сценарию, показали, что процесс recoSTAR PET iV обеспечивает настолько эффективную очистку вторичного ПЭТ, что ее показатели находятся значительно выше порогового уровня EFSA (см. таблицу). Даже в случае линдана (нелетучее неполярное вещество) степень очистки была более 99,9 %, хотя пороговым значением является 89,67 %. Практически те же результаты показали испытания, проведенные по «ужесточенному» сценарию, за исключением бензофенона и линдана. Но и в этих случаях степень очистки ПЭТ удовлетворяла требованиям EFSA. Сокращенное название фирмы NGR расшифровывается достаточно амбициозно – как «Следующее поколение машин для рециклинга» (Next Generation Recyclingmaschinen). И став в мае этого года 100%-собственником фирмы BRITAS Recycling Anlagen GmbH (г. Ханау, Германия), NGR заметно усилила свои позиции на европейском и других региональных рынках мира. Дело в том, что фирма BRITAS известна как разработчик производитель фильтрующих систем для расплавов сильно загрязненных полимерных материалов, в том числе отходов потребительской упаковки (фото 3).

В свою очередь NGR разрабатывает и производит оборудование для вторичной переработки как промышленных так и потребительских полимерных отходов, имея разветвлен- ный рынок сбыта своей продукции.

Обе машиностроительные фирмы уверены в положительном синергетическом эффекте от состоявшегося объединения. Компания Gneuss Kunststofftechnik GmbH (г. Бад Эйнхаузен) достигла на рынке большого успеха благодаря своему экструдеру типа MRS (фото 4), на использование которого имеется даже допуск FDA (Food and Drug Administration) – управления министерства торговли США по контролю за качеством пищевых продуктов, медикаментов и косметических средств. Кроме того, машиностроители предлагают различные системы для сушки, такие как инфракрасная вращающаяся труба компании Kreyenborg Plant Technology GmbH (г. Зенден), а также специальные системы фильтрации для переработки ПЭТ или технологии кристаллизации, такие как способ Crystall-Cut компании Automatik Plastics Machinery (г. Гросостхайм). Системы замкнутого цикла, такие как система PETcycle успешно применяются для изготовления новых бутылок из бывших в употреблении бутылок.

Резюмируя все вышеизложенное, можно констатировать, что система вторичной переработки ПЭТ с ежегодным объемом на уровне около 1 млн т успешно ре- ализуется в Европе. Аналогичная ситуация наблюдается в области переработки рассортированных полиолефиновых отходов, сортировка которых без особых осложнений реализуется с помощью соответствующих технологий их разделения. Только в Германии существуют десять крупных и множество мелких приготовительных предприятий, специализирующихся на производстве пригодного для литья под давлением вторичного гранулята из бытовых и промышленных полиолефиновых отходов. Этот гранулят может быть в дальнейшем использован для производства поддонов, ванн, ведер, труб и других видов продукции (фото 5).

Трудности вторичной переработки

Дополнительные сложности для вторичной переработки создают полимерные изделия, изготовленные из нескольких разных материалов, которые не могут быть с разумными затратами отделены друг от друга, а также полимерные упаковки, не поддающиеся полному опорожнению. Проблематичными для вторичной переработки являются и отходы в виде использованной потребительской пленки по причине значительного загрязнения поверхности, требующего значительных расходов на обработку.

По словам Скриба, в этой области хотя и существуют опытные эксперты по вторичному использованию, но отсутствуют реальные рынки сбыта европейского значения. Дополнительные осложнения возникают также при обращении с производимыми в большом многообразии ПЭТ-бутылками, не предназначенными для напитков; это существенно ограничивает объемы их вторичной переработки. До настоящего времени плохо поддаются рециклингу отходы из автомобильной промышленности и сектора электроники.

В таких проблемных случаях от переработчиков и машиностроителей требуются особые технические решения (фото 6). В частности, одно из таких решений, касающееся переработки поставляемых компанией DSD потребительских пленочных отходов, в недавнем прошлом компания Herbold Meckesheim GmbH (г. Меккесхайм) предоставила специализирующейся на утилизации отходов компании WRZ-Hоеrger GmbH & Co. KG (г. Зонтхайм). Поставленная «под ключ» производственная установка, состоящая из системы отделения посторонних веществ, стадии мокрого измельчения и уплотнительного устройства, позволяет перерабатывать ежегодно 7 тыс. т отходов в сыпучий агломерат с высокой насыпной плотностью, пригодный для изготовления изделий по технологии литья под давлением (фото 7).

В целом в программу поставок компании Herbold Meckesheim, известной и на российском рынке, входит разнообразное оборудование для переработки как сильно загрязненных, так и смешанных отходов, как твердых так и трудно перерабатываемых мягких отходов пластмасс – моечные установки и сушилки, шредеры, агломераторы, мельницы для тонкого измельчения.

Основными заявленными приоритетами при разработке оборудования являются его компактность, повышенная производительность и энергоэффективность. На выставке «К- 2013» фирма продемонстрирует ряд новинок, среди которых:

Новая механическая сушилка модели HVT с вертикальным расположением ротора, экономящая производственную площадь, удобная в обслуживании и потребляющая существенно меньшую энергию при сушке ПЭТ-хлопьев (фото 8);
измельчитель модели SML SB с принудительной шнековой пода- чей отходов в резательный узел, что позволяет уплотнить подаваемый материал и повысить благодаря этому производительность переработки (рис. 1);
машина для размалывания крупногабаритных твердых отходов в виде, например, плит или труб, считающихся наиболее трудным объектом переработки. Специально для переработки смешанных фракций компания Erema вместе с компанией Coperion GmbH & Co. KG (г. Штуттгарт) разработала комбинированную установку Corema для вторичной переработки и компаундирования отходов (фото 9). Характерной особенностью этой установки является ее пригодность для переработки широкого спектра материалов. По словам коммерческого директора компании Erema Манфреда Хакля Manfred Hackl), речь идет в данном случае об оптимальном решении для переработки получаемых экономичным способом смешанных отходов, в частности, для изготовления из отходов полипропиленовых нетканых материалов компаунда, содержащего 20 % талька, или для переработки отходов в виде смеси ПЭ и ПЭТ с добавками. Другим удачным примером объединения усилий нескольких партнеров для решения задач в области вторичной переработки является поточная линия по вторичной переработке бывших в употреблении сельскохозяйственных пленок, рециклинг которых сложен и затратен из-за их малой толщины, мягкости и загрязненности. Задачу удалось решить, объединив в одной линии специально оптимизированный измельчителяь модели Power Universo 2800 (производитель – компания Lindner reSource) и экструзионную установку для вторичной переработки полимерных материалов модели 1716 TVEplus производитель – компания Erema), что позволило получать высококачественный регранулят.

Оборудование, универсальное с точки зрения формы перерабатываемых в регранулят отходов (пленки, волокна, хлопья ПЭТ-бутылок, отходы вспененных полимерных материалов), предлагает австрийская фирма ARTEC Machinery. Толчком к дальнейшему развитию и расширению производственных возможностей послужило ее 100%-е вхождение в 2010 г. в «семейную» группу GAW Technology, членом которой является также фирма ECON, дополняющая программу поставок соответствующими экструзионными линиями для переработки в регранулят измельченных отходов. За счет конструкторскотехнологической модернизации выпускаемого оборудования за эти годы удалось поднять в среднем на 25 % его производительность. Модульный принцип, который исповедует ARTEC при проектировании своих установок, позволяет, как из кубиков, собирать и монтировать оборудование для конкретного применения, которое в настоящее время выпускается с производительностью от 150 до 1600 кг в час (рис. 2).

Специфическая экструзионная установка с экструдером типа MRS (см. фото 4), предназначенная для переработки измельченных отходов из полиамида ПА11, была поставлена также компанией Gneuss британской фирме K2 Polymer.

Исходный материал получают в результате измельчения глубоководных нефтепроводов, которые становятся ненужными после того, как иссякнет источник нефти, и должны быть извлечены на сушу.

Экструдер MRS (Multi Rotation System) позволяет без применения химической очистки обеспечить одноступенчатую очистку и переработку этих высококачественных, но сильно загрязненных за время многолетнего контакта с нефтью полимерных отходов. Этот перечень можно было бы дополнить и многими другими примерами. В заключение следует отметить, что сектор вторичной переработки за последние годы превратился в важную сферу хозяйственной деятельности. Несмотря на то что многие технологии уже успешно прошли проверку практикой, в области вторичной переработки остаются большие потенциальные возможности для дальнейшего развития. Решение существующих проблем должно начинаться с разработки и изготовления в максимальной степени пригодных для вторичной переработки полимерных изделий.

Определенные возможности для продвижения вперед остаются также в области разработки оптимизированных технологических решений и создания соответствующего оборудования для переработки сложных отходов.

В известной степени прогрессу в этой области могут способствовать и политические меры, которые должны в каждой стране обеспечивать более широкое внедрение оптимальных концепций сбора и вторичной переработки отходов.

Новые и проверенные решения в области вторичной переработки полимерных материалов будут широко представлены с 16 по 23 октября 2013 г. на Международной выставке «К» в Дюссельдорфе.

Подготовил к. т. н. В. Н. Мымрин
с использованием пресс-материалов выставочной компании Messe Duesseldorf
Recycling of Plastics in Europe:
New and Proven Solutions The penetration of plastics in a v ariety of
applications, including our d aily liv es, ar e now seen worldwide as a matter of course. And this
despite the fact that their winning streak started relatively late – 60 years ago, when their output
accounted for only about 1 million tons per year.

However, with the gr owth of pr oduction and consumption of plastics gradually sharpened
and has now become a critical problem disposing of used plastic pr oducts. Although many
processes hav e alr eady become established, recycling still has plenty of potential for
improvement. A first step could be the recyclable design of plastics items that should be examined
closely with a view to later r ecovery. Suitable recycling processes and machine solutions for the
processing of problematical wastes offer a good deal of scope for further dev elopment. This
review discusses the experience of solving these problems in Eur ope, wher e the leading in this
respect is Germany.

Изделия из полимеров сегодня являются неотъемлемой частью нашей повседневной жизни, однако, одновременно с ростом объемов производства таких изделий, вполне естественно, что и количество твердых отходов также увеличивается.

Сегодня полимерные отходы составляют примерно двенадцать процентов от всего бытового мусора, и их количество постоянно растет. И естественно, что вторичная переработка полимеров сегодня является одной из самых остро стоящих проблем, ведь без нее человечество может буквально утонуть в горах мусора.

Утилизация полимеров сегодня является не только проблемой, но и весьма перспективным направлением бизнеса, поскольку из казалось бы бросового сырья – бытового мусора, можно получить множество полезных веществ. К тому же данная технология переработки мусора (ТБО) является куда более безопасным методом утилизации полимерных отходов, чем традиционное сжигание, которое наносит ощутимый вред экологии.

Технология переработки полимеров

Итак, что собой представляет переработка полимеров?

Для превращения полимерных отходов в сырье, пригодное для дальнейшей переработки в изделия, необходимо его предварительно обработать. Выбор способа предварительной обработки в первую очередь зависит от степени загрязненности отходов и источника их образования. Так, однородные отходы производства обычно перерабатывают прямо на месте их образования, поскольку в данном случае требуется незначительная предварительная обработка – всего лишь измельчение и грануляция.

Однако отходы в виде изделий, вышедших из употребления, требуют куда более основательной подготовки. Итак, предварительная обработка полимерных отходов обычно включает в себя следующие этапы:

  1. Грубая сортировка и идентификация для отходов смешанного типа.
  2. Измельчение отходов.
  3. Разделение смешанных от­ходов.
  4. Мойка отходов.
  5. Сушка.
  6. Грануляция.

Предварительная сортировка предусматривает собой грубое разделение полимерных отходов по различным признакам: виду пластмассы, цвету, форме и габаритам. Предварительная сортировка производится, как правило, вручную на ленточных конвейерах или столах. Также технология переработки полимеров подразумевает, что при сортировке из отходов удаляются различные посторонние включения.

Вышедшие из употребления и попавшие на завод по переработке мусора полимерные ПО отходы, в которых содержание посторонних примесей не превышает 5 %, поступают на сортировочный узел, где из них удаляют случайные инородные включения. Отходы, прошедшие сортировку, измельчаются в ножевых дробилках до получения рыхлой массы, размер частиц которой составляет 2…9 мм.

Измельчение – один из важнейших этапов подготовки отходов к переработке, поскольку степень измельчения определяет сыпучесть, размеры частиц и объемную плотность получаемого продукта. А регулирование степени измельчения позволяет повысить качество материала благодаря усреднению его технологических характеристик. Таким образом упрощается и переработка полимеров.

Весьма перспективным методом измельчения отходов полимеров является криогенный, благодаря которому можно получать порошки из полимерных отходов со степенью дисперсности от 0,5 до 2 мм. Использование данной технологии имеет ряд преимуществ перед традиционным механическим измельчением, поскольку благодаря нему можно добиться снижения продолжительности смешения и лучшего распределение компонентов в смеси.

Разделение смешанных отходов пластмасс по видам проводят следующими способами:

  1. Флотационный.
  2. Разделение в тяжелых средах.
  3. Аэросепарация.
  4. Электросепарация.
  5. Химические методы.
  6. Методы глубокого охлаждения.

Наиболее распространенный из них сегодня метод флотации, при котором разделение пластмасс производится благодаря добавлению в воду различных поверхностно-активных веществ, благодаря которым избирательно изменяются гидрофильные свойства полимеров.

В некоторых случаях довольно эффективным способом разделения полимеров является оказаться их растворение и в общем растворителе. Обрабатывая полученный раствор паром, выделяют ПВХ, смесь полиолефинов и ПС, причем чистота продуктов выходит не менее чем 96 %.

Именно две этих методики являются экономически более целесообразными из всех перечисленных нами выше.

Далее измельченные отходы полимеров подают в моечную машину на отмывку. Отмывку производят в несколько приемов с использованием специальных моющих смесей. Отжатую в центрифуге полимерную массу с влажностью от 10 до 15 %, подают для окончательного обезвоживания в сушильную установку, где она высушивается до содержания влаги в 0,2 %.

После этого масса попадает в гранулятор, где происходит уплотнение материала, благодаря чему облегчается его дальнейшая переработка и усредняются характеристики вторичного сырья. Конечным результатом гранулировки является получение материала, который может переработать стандартное оборудование для переработки полимеров.


Итак, понятно, что переработка отходов полимеров это дело достаточно непростое, и требует наличия определенного оборудования. Какое же именно оборудование для вторичной переработки полимеров используется сегодня?

  • Линии мойки полимерных отходов.
  • Дробилки полимеров.
  • Экструдеры для рециклинга.
  • Ленточные транспортеры.
  • Шредеры.
  • Агломераторы.
  • Линии гранулирования, грануляторы.
  • Ситозаменители.
  • Смесители и дозаторы.

Если у вас имеется все необходимое для переработки полимеров оборудование, то вы можете приступать к делу и на своем опыте убедиться, что сегодня переработка мусора (ТБО) это не только забота об экологии планеты, но и отличное капиталовложение, поскольку рентабельность данного бизнеса весьма высока.



Что еще почитать