Виды треугольника по сторонам и их свойства. Треугольник. Полные уроки — Гипермаркет знаний

Треугольник - это многоугольник с 3-мя сторонами (либо 3-мя углами). Стороны треугольника нередко обозначаются малеханькими буквами, которые соответствуют большим буквам, обозначающим обратные вершины.

Остроугольным треугольником именуется треугольник, у которого все три угла острые.

Тупоугольным треугольником именуется треугольник, у которого один из углов тупой.

Прямоугольным треугольником именуется треугольник, у которого один из углов прямой, другими словами равен 90°; стороны a, b, образующие прямой угол, именуются катетами ; сторона c, обратная прямому углу, именуется гипотенузой .

Равнобедренным треугольником именуется треугольник, у которого две его стороны равны (a = c); эти равные стороны именуются боковыми , 3-я сторона именуется основанием треугольника .

Равносторонним треугольником именуется треугольник, у которого все его стороны равны (a = b = c). В том случае в треугольнике не равна ни одна из его сторон (abc), то это неравносторонний треугольник .

Главные характеристики треугольников

В любом треугольнике:

  • Против большей стороны лежит больший угол, и напротив.
  • Против равных сторон лежат равные углы, и напротив. А именно, все углы в равностороннем треугольнике равны.
  • Сумма углов треугольника равна 180°.
  • Продолжая одну из сторон треугольника, получаем наружный угол. Наружный угол треугольника равен сумме внутренних углов, не смежных с ним.
  • Неважно какая сторона треугольника меньше суммы 2-ух других сторон и больше их разности (a b - c; b a - c; c a - b).
  • Признаки равенства треугольников

    Треугольники равны, в том случае у их соответственно равны:

  • две стороны и угол меж ними;
  • два угла и прилегающая к ним сторона;
  • три стороны.
  • Признаки равенства прямоугольных треугольников

    Два прямоугольных треугольника равны, в том случае производится одно из последующих критерий:

  • равны их катеты;
  • катет и гипотенуза 1-го треугольника равны катету и гипотенузе другого;
  • гипотенуза и острый угол 1-го треугольника равны гипотенузе и острому углу другого;
  • катет и прилежащий острый угол 1-го треугольника равны катету и прилежащему острому углу другого;
  • катет и противолежащий острый угол 1-го треугольника равны катету и противолежащему острому углу другого.
  • Высота треугольника - это перпендикуляр, опущенный из хоть какой вершины на обратную сторону (либо её продолжение). Эта сторона именуется основанием треугольника . Три высоты треугольника всегда пересекаются в одной точке, именуемой ортоцентром треугольника .

    Ортоцентр остроугольного треугольника размещен снутри треугольника, а ортоцентр тупоугольного треугольника - снаружи; ортоцентр прямоугольного треугольника совпадает с верхушкой прямого угла.

    Медиана - это отрезок, соединяющий всякую верхушку треугольника с серединой обратной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся его центром масс. Эта точка разделяет каждую медиану в отношении 2:1, считая от вершины.

    Биссектриса - это отрезок биссектрисы угла от вершины до точки скрещения с обратной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей снутри треугольника и являющейся центром вписанного круга. Биссектриса разделяет обратную сторону на части, пропорциональные прилегающим сторонам.

    Срединный перпендикуляр - это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

    В остроугольном треугольнике эта точка лежит снутри треугольника, в тупоугольном - снаружи, в прямоугольном - посреди гипотенузы. Ортоцентр, центр масс, центр описанного и центр вписанного круга совпадают исключительно в равностороннем треугольнике.

    Аксиома Пифагора

    В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    Подтверждение аксиомы Пифагора

    Построим квадрат AKMB, используя гипотенузу AB как сторону. Потом продолжим стороны прямоугольного треугольника ABC так, чтоб получить квадрат CDEF, сторона которого равна a + b. Сейчас ясно, что площадь квадрата CDEF равна (a + b) 2. С иной стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, другими словами,

    c 2 + 4 (ab / 2) = c 2 + 2 ab,

    c 2 + 2 ab = (a + b) 2,

    и совсем имеем:

    c 2 = a 2 + b 2 .

    Соотношение сторон в случайном треугольнике

    В общем случае (для случайного треугольника) имеем:

    c 2 = a 2 + b 2 - 2 ab * cos C,

    где С - угол меж сторонами а и b.

  • school-club.ru - какие бывают треугольники?
  • math.ru - виды треугольников;
  • raduga.rkc-74.ru - все о треугольниках для самых малеханьких.
  • Дополнительно на сайт:

  • Как классифицируются треугольники?
  • Как отыскать площадь треугольника?
  • Как отыскать площадь прямоугольного треугольника?
  • Как отыскать радиус вписанной в треугольник окружности?
  • Как отыскать радиус описанной вокруг треугольника окружности?
  • Как доказать аксиому косинусов?
  • О том, что такое треугольник, квадрат, куб, нам рассказывает наука геометрия. В современном мире ее изучают в школах все без исключения. Также наукой, которая изучает непосредственно то, что такое треугольник и какие у него свойства, является тригонометрия. Она исследует подробно все явления, связанные с данными О том, что такое треугольник, мы и поговорим сегодня в нашей статье. Ниже будут описаны их виды, а также некоторые теоремы, связанные с ними.

    Что такое треугольник? Определение

    Это плоский многоугольник. Углов он имеет три, что понятно из его названия. Также он имеет три стороны и три вершины, первые из них — это отрезки, вторые — точки. Зная, чему равны два угла, можно найти третий, отняв сумму первых двух от числа 180.

    Какими бывают треугольники?

    Их можно классифицировать по различным критериям.

    В первую очередь они делятся на остроугольные, тупоугольные и прямоугольные. Первые обладают острыми углами, то есть такими, которые равны менее чем 90 градусам. У тупоугольных один из углов — тупой, то есть такой, который равен более 90 градусам, остальные два — острые. К остроугольным треугольникам относятся также и равносторонние. У таких треугольников все стороны и углы равны. Все они равны 60 градусам, это можно легко вычислить, разделив сумму всех углов (180) на три.

    Прямоугольный треугольник

    Невозможно не поговорить о том, что такое прямоугольный треугольник.

    У такой фигуры один угол равен 90 градусам (прямой), то есть две из его сторон расположены перпендикулярно. Остальные два угла являются острыми. Они могут быть равными, тогда он будет равнобедренным. С прямоугольным треугольником связана теорема Пифагора. При помощи ее можно найти третью сторону, зная две первые. Согласно данной теореме, если прибавить квадрат одного катета к квадрату другого, можно получить квадрат гипотенузы. Квадрат же катета можно подсчитать, отняв от квадрата гипотенузы квадрат известного катета. Говоря о том, что такое треугольник, можно вспомнить и о равнобедренном. Это такой, у которого две из сторон равны, также равны и два угла.

    Что такое катет и гипотенуза?

    Катет — это одна из сторон треугольника, которые образуют угол в 90 градусов. Гипотенуза — это оставшаяся сторона, которая расположена напротив прямого угла. Из него на катет можно опустить перпендикуляр. Отношение прилежащего катета к гипотенузе называется не иначе как косинус, а противоположного — синус.

    - в чем его особенности?

    Он прямоугольный. Его катеты равны трем и четырем, а гипотенуза — пяти. Если вы увидели, что катеты данного треугольника равны трем и четырем, можете не сомневаться, что гипотенуза будет равна пяти. Также по такому принципу можно легко определить, что катет будет равен трем, если второй равен четырем, а гипотенуза - пяти. Чтобы доказать данное утверждение, можно применить теорему Пифагора. Если два катета равны 3 и 4, то 9 + 16 = 25, корень из 25 - это 5, то есть гипотенуза равна 5. Также египетским треугольником называется прямоугольный, стороны которого равны 6, 8 и 10; 9, 12 и 15 и другим числам с соотношением 3:4:5.

    Каким еще может быть треугольник?

    Также треугольники могут быть вписанными и описанными. Фигура, вокруг которой описана окружность, называется вписанной, все ее вершины являются точками, лежащими на окружности. Описанный треугольник — тот, в который вписана окружность. Все его стороны соприкасаются с ней в определенных точках.

    Как находится

    Площадь любой фигуры измеряется в квадратных единицах (кв. метрах, кв. миллиметрах, кв. сантиметрах, кв. дециметрах и т. д.) Данную величину можно рассчитать разнообразными способами, в зависимости от вида треугольника. Площадь какой угодно фигуры с углами можно найти, если умножить ее сторону на перпендикуляр, опущенный на нее из противоположного угла, и разделив данную цифру на два. Также можно найти эту величину, если умножить две стороны. Потом умножить это число на синус угла, расположенного между данными сторонами, и разделить это получившееся на два. Зная все стороны треугольника, но не зная его углов, можно найти площадь еще и другим способом. Для этого нужно найти половину периметра. Затем поочередно отнять от данного числа разные стороны и перемножить полученные четыре значения. Далее найти из числа, которое вышло. Площадь вписанного треугольника можно отыскать, перемножив все стороны и разделив полученное число на которая описана вокруг него, умноженный на четыре.

    Площадь описанного треугольника находится таким образом: половину периметра умножаем на радиус окружности, которая в него вписана. Если то его площадь можно найти следующим образом: сторону возводим в квадрат, умножаем полученную цифру на корень из трех, далее делим это число на четыре. Похожим образом можно вычислить высоту треугольника, у которого все стороны равны, для этого одну из них нужно умножить на корень из трех, а потом разделить данное число на два.

    Теоремы, связанные с треугольником

    Основными теоремами, которые связаны с данной фигурой, являются теорема Пифагора, описанная выше, и косинусов. Вторая (синусов) заключается в том, что, если разделить любую сторону на синус противоположного ей угла, то можно получить радиус окружности, которая описана вокруг него, умноженный на два. Третья (косинусов) заключается в том, что, если от суммы квадратов двух сторон отнять их же произведение, умноженное на два и на косинус угла, расположенного между ними, то получится квадрат третьей стороны.

    Треугольник Дали — что это?

    Многие, столкнувшись с этим понятием, сначала думают, что это какое-то определение в геометрии, но это совсем не так. Треугольник Дали — это общее название трех мест, которые тесно связаны с жизнью знаменитого художника. «Вершинами» его являются дом, в котором Сальвадор Дали жил, замок, который он подарил своей жене, а также музей сюрреалистических картин. Во время экскурсии по этим местам можно узнать много интереснейших фактов об этом своеобразном креативном художнике, известном во всем мире.

    Самый простой многоугольник, который изучается в школе — это треугольник. Он более понятен для учащихся и встречает меньше трудностей. Несмотря на то что существуют различные виды треугольников, у которых имеются особенные свойства.

    Какая фигура называется треугольником?

    Образованная тремя точками и отрезками. Первые называются вершинами, вторые — сторонами. Причем все три отрезка должны быть соединены, чтобы между ними образовывались углы. Отсюда и название фигуры «треугольник».

    Различия в названиях по углам

    Поскольку они могут быть острыми, тупыми и прямыми, то и виды треугольников определяются по этим названиям. Соответственно, групп таких фигур три.

    • Первая. Если все углы треугольника острые, то он будет иметь название остроугольного. Все логично.
    • Вторая. Один из углов тупой, значит треугольник тупоугольный. Проще некуда.
    • Третья. Имеется угол, равный 90 градусам, который называется прямым. Треугольник становится прямоугольным.

    Различия в названиях по сторонам

    В зависимости от особенностей сторон выделяют такие виды треугольников:

      общий случай — разносторонний, в котором все стороны имеют произвольную длину;

      равнобедренный, у двух сторон которого имеются одинаковые числовые значения;

      равносторонний, длины всех его сторон одинаковые.

    Если в задаче не указан конкретный вид треугольника, то нужно чертить произвольный. У которого все углы острые, а стороны имеют разную длину.

    Свойства, общие для всех треугольников

    1. Если сложить все углы треугольника, то получится число, равное 180º. И неважно, какого он вида. Это правило действует всегда.
    2. Числовое значение любой стороны треугольника меньше, чем сложенные вместе две другие. При этом она же больше, чем их разность.
    3. Каждый внешний угол имеет значение, которое получается при сложении двух внутренних, не смежных с ним. Причем он всегда больше, чем смежный с ним внутренний.
    4. Напротив меньшей стороны треугольника всегда лежит самый маленький угол. И наоборот, если сторона большая, то и угол будет самым большим.

    Эти свойства справедливы всегда, какие бы виды треугольников ни рассматривались в задачах. Все остальные вытекают из конкретных особенностей.

    Свойства равнобедренного треугольника

    • Углы, которые прилегают к основанию, равны.
    • Высота, которая проведена к основанию, является также медианой и биссектрисой.
    • Высоты, медианы и биссектрисы, которые построены к боковым сторонам треугольника, соответственно равны друг другу.

    Свойства равностороннего треугольника

    Если имеется такая фигура, то будут верны все свойства, описанные немного выше. Потому что равносторонний всегда будет равнобедренным. Но не наоборот, равнобедренный треугольник не обязательно будет равносторонним.

    • Все его углы равны друг другу и имеют значение 60º.
    • Любая медиана равностороннего треугольника является его высотой и биссектрисой. Причем они все равны друг другу. Для определения их значений существует формула, которая состоит из произведения стороны на квадратный корень из 3, деленного на 2.

    Свойства прямоугольного треугольника

    • Два острых угла дают в сумме значение в 90º.
    • Длина гипотенузы всегда больше, чем у любого из катетов.
    • Числовое значение медианы, проведенной к гипотенузе, равно ее половине.
    • Этому же значению равен катет, если он лежит напротив угла в 30º.
    • Высота, которая проведена из вершины со значением 90º, имеет определенную математическую зависимость от катетов: 1/н 2 = 1/а 2 + 1/в 2 . Здесь: а, в — катеты, н — высота.

    Задачи с разными видами треугольников

    №1. Дан равнобедренный треугольник. Его периметр известен и равен 90 см. Требуется узнать его стороны. В качестве дополнительного условия: боковая сторона меньше основания в 1,2 раза.

    Значение периметра напрямую зависит от тех величин, которые нужно найти. Сумма всех трех сторон и даст 90 см. Теперь нужно вспомнить признак треугольника, по которому он является равнобедренным. То есть две стороны равны. Можно составить уравнение с двумя неизвестными: 2а + в = 90. Здесь а — боковая сторона, в — основание.

    Настала очередь дополнительного условия. Следуя ему, получается второе уравнение: в = 1,2а. Можно выполнить подстановку этого выражения в первое. Получится: 2а + 1,2а = 90. После преобразований: 3,2а = 90. Отсюда а = 28,125 (см). Теперь несложно узнать основание. Лучше всего это сделать из второго условия: в = 1,2 * 28,125 = 33,75 (см).

    Для проверки можно сложить три значения: 28,125 * 2 + 33,75 = 90 (см). Все верно.

    Ответ: стороны треугольника равны 28,125 см, 28,125 см, 33,75 см.

    №2. Сторона равностороннего треугольника равна 12 см. Нужно вычислить его высоту.

    Решение. Для поиска ответа достаточно вернуться к тому моменту, где были описаны свойства треугольника. Так указана формула для нахождения высоты, медианы и биссектрисы равностороннего треугольника.

    н = а * √3 / 2, где н — высота, а — сторона.

    Подстановка и вычисление дают такой результат: н = 6 √3 (см).

    Эту формулу необязательно запоминать. Достаточно вспомнить, что высота делит треугольник на два прямоугольных. Причем она оказывается катетом, а гипотенуза в нем — это сторона исходного, второй катет — половина известной стороны. Теперь нужно записать теорему Пифагора и вывести формулу для высоты.

    Ответ: высота равна 6 √3 см.

    №3. Дан МКР — треугольник, 90 градусов в котором составляет угол К. Известны стороны МР и КР, они равны соответственно 30 и 15 см. Нужно узнать значение угла Р.

    Решение. Если сделать чертеж, то становится ясно, что МР — гипотенуза. Причем она в два раза больше катета КР. Снова нужно обратиться к свойствам. Одно из них как раз связано с углами. Из него понятно, что угол КМР равен 30º. Значит искомый угол Р будет равен 60º. Это следует из другого свойства, которое утверждает, что сумма двух острых углов должна равняться 90º.

    Ответ: угол Р равен 60º.

    №4. Нужно найти все углы равнобедренного треугольника. Про него известно, что внешний угол от угла при основании равен 110º.

    Решение. Поскольку дан только внешний угол, то этим и нужно воспользоваться. Он образует с внутренним углом развернутый. Значит в сумме они дадут 180º. То есть угол при основании треугольника будет равен 70º. Так как он равнобедренный, то второй угол имеет такое же значение. Осталось вычислить третий угол. По свойству, общему для всех треугольников, сумма углов равна 180º. Значит, третий определится как 180º - 70º - 70º = 40º.

    Ответ: углы равны 70º, 70º, 40º.

    №5. Известно, что в равнобедренном треугольнике угол, лежащий напротив основания, равен 90º. На основании отмечена точка. Отрезок, соединяющий ее с прямым углом, делит его в отношении 1 к 4. Нужно узнать все углы меньшего треугольника.

    Решение. Один из углов можно определить сразу. Поскольку треугольник прямоугольный и равнобедренный, то те, что лежат у его основания, будут по 45º, то есть по 90º/2.

    Второй из них поможет найти известное в условии отношение. Поскольку оно равно 1 к 4, то частей, на которые он делится получается всего 5. Значит, чтобы узнать меньший угол треугольника нужно 90º/5 = 18º. Осталось узнать третий. Для этого из 180º (суммы всех углов треугольника) нужно вычесть 45º и 18º. Вычисления несложные, и получится: 117º.

    Треугольник - определение и общие понятия

    Треугольник – это такой простой многоугольник, состоящий из трех сторон и имеющий столько же углов. Его плоскости ограничиваются 3 точками и 3 отрезками, попарно соединяющими даные точки.

    Все вершины любого треугольника, независимо от его разновидности, обозначаются заглавными латинскими буквами, а его стороны изображаются соответствующими обозначениями противоположных вершин, только не большими буквами, а малыми. Так, например, треугольник с вершинами обозначенными буквами А, В и С имеет стороны a, b, c.

    Если рассматривать треугольник в евклидовом пространстве, то это такая геометрическая фигура, которая образовалась с помощью трех отрезков, соединяющих три точки, которые не лежат на одной прямой.

    Посмотрите внимательно на рисунок, который изображен вверху. На нем точки А, В и С являются вершинами этого треугольника, а его отрезки носят названия сторон треугольника. Каждая вершина этого многоугольника образует внутри его углы.

    Виды треугольников



    Согласно величины, углов треугольников, они делятся на такие разновидности, как: Прямоугольные;
    Остроугольные;
    Тупоугольные.



    К прямоугольным принадлежат такие треугольники, у которых в наличии есть один прямой угол, а остальные два имеют острые углы.

    Остроугольные треугольники – это те, у которых все его углы острые.

    А если у треугольника имеется один тупой угол, а два остальных угла острые, то такой треугольник относится к тупоугольным.

    Каждый из вас прекрасно понимает, что не все треугольники имеют равные стороны. И соответственно тому, какую длину имеют его стороны, треугольники можно поделить на:

    Равнобедренные;
    Равносторонние;
    Разносторонние.



    Задание: Нарисуйте разные виды треугольников. Дайте им определение. Какое между ними отличие вы видите?

    Основные свойства треугольников

    Хотя эти простые многоугольники могут отличаться друг от друга величиной углов или сторон, но в каждом треугольнике есть основные свойства, характерны для этой фигуры.

    В любом треугольнике:

    Общая сумма всех его углов равняется 180º.
    Если он принадлежит к равносторонним, то каждый его угол равен 60º.
    Равносторонний треугольник имеет одинаковые и ровные между собой углы.
    Чем меньше сторона многоугольника, тем меньший угол расположен напротив него и наоборот напротив большей стороны находиться больший угол.
    Если стороны равные, то напротив них расположены равные углы, и наоборот.
    Если взять треугольник и продлить его сторону, то в итоге мы образуется внешний угол. Он равен сумме внутренних углов.
    В любом треугольнике его сторона, независимо от того, какую бы вы не выбрали, все равно будет меньше, чем сумма 2-х других сторон, но больше чем их разность:

    1. a < b + c, a > b – c;
    2. b < a + c, b > a – c;
    3. c < a + b, c > a – b.

    Задание

    В таблице приведены уже известные два угла треугольника. Зная общую сумму всех углов найдите, чему равен третий угол треугольника и занесите в таблицу:

    1. Сколько градусов имеет третий угол?
    2. К какому виду треугольников он относится?



    Признаки равности треугольников

    I признак



    II признак



    III признак



    Высота, биссектриса и медиана треугольника

    Высота треугольника - перпендикуляр, проведенный из вершины фигуры к его противоположной стороне, называется высотой треугольника. Все высоты треугольника пересекаются в одной точке. Точка пересечения всех 3-х высот треугольника является его ортоцентром.

    Отрезок, проведенный из данной вершины и соединяющий ее на средине противоположной стороны, является медианой. Медианы, также как и высоты треугольника, имеют одну общую точку пересечения, так называемый центр тяжести треугольника или центроид.

    Биссектриса треугольника - отрезок, соединяющий вершину угла и точку противоположной стороны, а также делящий этот угол пополам. Все биссектрисы треугольника пересекаются в одной точке, которую называют центром окружности, вписанной в треугольник.

    Отрезок, который соединяет середины 2-х сторон треугольника, называется средней линией.

    Историческая справка

    Такая фигура, как треугольник, была известна еще в Древние времена. Об этой фигуре и ее свойствах упоминалось на египетских папирусах четырех тысячелетней давности. Немного позже, благодаря теореме Пифагора и формуле Герона, изучение свойства треугольника, перешло на более высокий уровень, но все же, это происходило более двух тысяч лет назад.

    В XV – XVI веках стали проводить много исследований о свойствах треугольника и в итоге возникла такая наука, как планиметрия, которая получила название «Новая геометрия треугольника».

    Ученый из России Н. И.Лобачевский внес огромный вклад в познание свойств треугольников. Его труды в дальнейшем нашли применение как в математике, так и физике и кибернетике.

    Благодаря знаниям свойств треугольников возникла и такая наука, как тригонометрия. Она оказалась необходимой для человека в его практических потребностях, так как ее применение просто необходимо при составлении карт, измерении участков, да и при конструировании различных механизмов.

    А какой самый известный треугольник вы знаете? Это конечно же Бермудский треугольник! Он получил такое название в 50-х годах из-за географического расположения точек (вершин треугольника), внутри которых, согласно существующей теории, возникали связанные с ним аномалии. Вершинами Бермудского треугольника выступают Бермудские острова, Флорида и Пуэрто-Рико.

    Задание: А какие теории о Бермудском треугольнике слышали вы?



    А известно ли вам, что в теории Лобачевского при сложении углов треугольника их сумма всегда имеет результат меньший, чем 180º. В геометрии Римана, сумма всех углов треугольника больше 180º, а в трудах Эвклида она равна 180 градусам.

    Домашнее задание

    Решите кроссворд на заданную тему



    Вопросы к кроссворду:

    1. Как называется перпендикуляр, который провели из вершины треугольника к прямой, расположенной на противоположной стороне?
    2. Как, одним словом можно назвать сумму длин сторон треугольника?
    3. Назовите треугольник, у которого две стороны равны?
    4. Назовите треугольник, у которого есть угол, равный 90°?
    5. Какое название носит большая, из сторон треугольника?
    6. Название стороны равнобедренного треугольника?
    7. Их всегда три в любом треугольнике.
    8. Какое название носит треугольник, у которого один из углов превышает 90°?
    9. Название отрезка, соединяющего вершину нашей фигуры со срединой противоположной стороны?
    10. В простом многоугольнике АВС, заглавная буква А является …?
    11. Какое название носит отрезок, делящий угол треугольника пополам.

    Вопросы к теме треугольников:

    1. Дайте определение.
    2. Сколько высот он имеет?
    3. Сколько биссектрис у треугольника?
    4. Чему равна его сумма углов?
    5. Какие виды этого простого многоугольника вам известны?
    6. Назовите точки треугольников, которые носят название замечательных.
    7. Каким прибором можно измерить величину угла?
    8. Если стрелки часов показывают 21 час. Какой угол образуют часовые стрелки?
    9. На какой угол поворачивается человек, если ему дана команда «налево», «кругом»?
    10. Какие еще определения вам известны, которые связанные с фигурой, имеющей три угла и три стороны?

    Предмети > Математика > Математика 7 класс

    Пожалуй, самой основной, простой и интересной фигурой в геометрии является треугольник. В курсе средней школы изучаются его основные свойства, однако иногда знания по этой теме формируются неполными. Виды треугольников изначально определяют их свойства. Но подобное представление остается смешанным. Поэтому сейчас разберем немного подробнее эту тему.

    Виды треугольников зависят от градусной меры углов. Эти фигуры бывают остро-, прямо- и тупоугольными. Если все углы не превышают значения в 90 градусов, то фигуру смело можно назвать остроугольной. Если хотя бы один угол треугольника равен 90 градусам, то вы имеете дело с прямоугольным подвидом. Соответственно, во всех остальных случаях рассматриваемую называют тупоугольной.

    Существует множество задач для остроугольных подвидов. Отличительной чертой является внутреннее местонахождение точек пересечения биссектрис, медиан и высот. В других случаях это условие может не выполняться. Определить тип фигуры “треугольник” нетрудно. Достаточно знать, например, косинус каждого угла. Если какие-нибудь значения меньше нуля, значит, треугольник в любом случае является тупоугольным. В случае нулевого показателя фигура обладает прямым углом. Все положительные значения гарантированно подскажут вам о том, что перед вами остроугольный вид.

    Нельзя не сказать о правильном треугольнике. Это самый идеальный вид, где совпадают все точки пересечения медиан, биссектрис и высот. Центр вписанной и описанной окружности лежит также в одном месте. Для решения задач необходимо знать только одну сторону, так как вам углы изначально заданы, а две другие стороны известной. То есть фигура задается только одним параметром. Существуют Их главная особенность - равенство двух сторон и углов при основании.

    Иногда встречается вопрос о том, существует ли треугольник с заданными сторонами. На самом деле вас спрашивают, подходит ли данное описание под основные виды. Например, если сумма двух сторон меньше третьей, то в реальности такой фигуры не существует вообще. Если в задании просят найти косинусы углов треугольника со сторонами 3,5,9, то здесь очевидный можно объяснить без сложных математических приемов. Предположим, вы хотите из пункта A попасть в пункт B. Расстояние по прямой равно 9 километрам. Однако вы вспомнили, что необходимо зайти в пункт C в магазин. Расстояние от А до С равно 3 километрам, а от С до В - 5. Таким образом получается, что, двигаясь через магазин, вы пройдете на один километр меньше. Но так как пункт C не расположен на прямой AB, то вам придется пройти лишнее расстояние. Здесь возникает противоречие. Это, конечно, условное объяснение. Математика знает не один способ доказательства того, что все виды треугольников подчиняются основному тождеству. Оно гласит о том, что сумма двух сторон больше длины третьей.

    Любой вид обладает следующими свойствами:

    1) Сумма всех углов равняется 180 градусам.

    2) Всегда существует ортоцентр - точка пересечения всех трех высот.

    3) Все три медианы, проведенные из вершин внутренних углов, пересекаются в одном месте.

    4) Вокруг любого треугольника можно описать окружность. Также можно вписать круг так, чтобы он имел только три точки соприкосновения и не выходил за внешние стороны.

    Теперь вы познакомились с основными свойствами, которыми обладают различные виды треугольников. В будущем важно понимать, с чем вы имеете дело при решении задачи.



    Что еще почитать