Понятие о квантовой механике. Квантовая механика. иной взгляд

Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк (см. Постоянная Планка) для описания взаимодействия света с атомами.

Квантовая механика часто противоречит нашим понятиям о здравом смысле. А всё потому, что здравый смысл подсказывает нам вещи, которые берутся из повседневного опыта, а в своем повседневном опыте нам приходится иметь дело только с крупными объектами и явлениями макромира, а на атомарном и субатомном уровне материальные частицы ведут себя совсем иначе. Принцип неопределенности Гейзенберга как раз и очерчивает смысл этих различий. В макромире мы можем достоверно и однозначно определить местонахождение (пространственные координаты) любого объекта (например, этой книги). Не важно, используем ли мы линейку, радар, сонар, фотометрию или любой другой метод измерения, результаты замеров будут объективными и не зависящими от положения книги (конечно, при условии вашей аккуратности в процессе замера). То есть некоторая неопределенность и неточность возможны — но лишь в силу ограниченных возможностей измерительных приборов и погрешностей наблюдения. Чтобы получить более точные и достоверные результаты, нам достаточно взять более точный измерительный прибор и постараться воспользоваться им без ошибок.

Теперь если вместо координат книги нам нужно измерить координаты микрочастицы, например электрона, то мы уже не можем пренебречь взаимодействиями между измерительным прибором и объектом измерения. Сила воздействия линейки или другого измерительного прибора на книгу пренебрежимо мала и не сказывается на результатах измерений, но чтобы измерить пространственные координаты электрона, нам нужно запустить в его направлении фотон, другой электрон или другую элементарную частицу сопоставимых с измеряемым электроном энергий и замерить ее отклонение. Но при этом сам электрон, являющийся объектом измерения, в результате взаимодействия с этой частицей изменит свое положение в пространстве. Таким образом, сам акт замера приводит к изменению положения измеряемого объекта, и неточность измерения обусловливается самим фактом проведения измерения, а не степенью точности используемого измерительного прибора. Вот с какой ситуацией мы вынуждены мириться в микромире. Измерение невозможно без взаимодействия, а взаимодействие — без воздействия на измеряемый объект и, как следствие, искажения результатов измерения.

О результатах этого взаимодействия можно утверждать лишь одно:

неопределенность пространственных координат × неопределенность скорости частицы > h /m ,

или, говоря математическим языком:

Δx × Δv > h /m

где Δx и Δv — неопределенность пространственного положения и скорости частицы соответственно, h — постоянная Планка , а m — масса частицы.

Соответственно, неопределенность возникает при определении пространственных координат не только электрона, но и любой субатомной частицы, да и не только координат, но и других свойств частиц — таких как скорость. Аналогичным образом определяется и погрешность измерения любой такой пары взаимно увязанных характеристик частиц (пример другой пары — энергия, излучаемая электроном, и отрезок времени, за который она испускается). То есть если нам, например, удалось с высокой точностью измерили пространственное положение электрона, значит мы в этот же момент времени имеем лишь самое смутное представление о его скорости, и наоборот. Естественно, при реальных измерениях до этих двух крайностей не доходит, и ситуация всегда находится где-то посередине. То есть если нам удалось, например, измерить положение электрона с точностью до 10 -6 м, значит мы одновременно можем измерить его скорость, в лучшем случае, с точностью до 650 м/с.

Из-за принципа неопределенности описание объектов квантового микромира носит иной характер, нежели привычное описание объектов ньютоновского макромира. Вместо пространственных координат и скорости, которыми мы привыкли описывать механическое движение, например шара по бильярдному столу, в квантовой механике объекты описываются так называемой волновой функцией. Гребень «волны» соответствует максимальной вероятности нахождения частицы в пространстве в момент измерения. Движение такой волны описывается уравнением Шрёдингера , которое и говорит нам о том, как изменяется со временем состояние квантовой системы.

Картина квантовых событий в микромире, рисуемая уравнением Шрёдингера, такова, что частицы уподобляются отдельным приливным волнам, распространяющимся по поверхности океана-пространства. Со временем гребень волны (соответствующий пику вероятности нахождения частицы, например электрона, в пространстве) перемещается в пространстве в соответствии с волновой функцией, являющейся решением этого дифференциального уравнения. Соответственно, то, что нам традиционно представляется частицей, на квантовом уровне проявляет ряд характеристик, свойственных волнам.

Согласование волновых и корпускулярных свойств объектов микромира (см. Соотношение де Бройля) стало возможным после того, как физики условились считать объекты квантового мира не частицами и не волнами, а чем-то промежуточным и обладающим как волновыми, так и корпускулярными свойствами; в ньютоновской механике аналогов таким объектам нет. Хотя и при таком решении парадоксов в квантовой механике всё равно хватает (см. Теорема Белла), лучшей модели для описания процессов, происходящих в микромире, никто до сих пор не предложил.

Представления в физике атомного ядра

Появление квантовой механики.

Квантовая механика – физическая теория, изучающая движение на микроуровне.

Еще в конце XIX века большинство ученых склонялись к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой. Предстоит уточнять лишь детали. Но впервые десятилетия XX века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы XIX столетия и первые десятилетия XX века.

В 1896 году французский физик Антуан Анри Беккерель (1852-1908) открыл явление самопроизвольного излучения урановой соли.

В его исследование включились французские физики, супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). В 1898 году были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», - полоний и радий. Это свойство супруги Кюри назвали радиоактивностью.

А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу - электрон.

В 1911 году знаменитый английский физик Эрнест Резерфорд (1871-1937) предложил свою модель атома, которая получила название планетарной.

Н. Бор, зная о модели Резерфорда и приняв ее в качестве исходной, разработал в 1913 году квантовую теорию строения атома.

Принципы квантовой механики

Принцип неопределенности Гейзенберга: «Невозможно одновременно с точностью определить координаты и скорость квантовой частицы»

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях.

Принцип Гейзенберга играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира.

Чтобы отыскать, например, книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат - зафиксировали ее пространственные координаты (определили местоположение книги в комнате).



В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Им был сформулирован принцип неопределенности , названный теперь его именем:

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему GPS, чтобы определить местоположение книги, система вычислит их с точностью до 2-3 метров. И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью). Допустим, что нужно зафиксировать пространственное местонахождение электрона. Нам по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит детекторам сигнал с информацией о его местопребывании.

Если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится.

Принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно.

Ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты.

Принцип дополнительности Н. Бора: «Объекты микромира описываются и как частицы, и как волны, и одно описание дополняет другое».

В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. Чтобы, скажем, скинуть со стола костяшку домино, балансирующую на его краю, можно придать ей необходимую энергию двумя способами. Во-первых, можно бросить в нее другую костяшку домино (то есть передать точечный импульс с помощью частицы). Во-вторых, можно построить в ряд стоящие костяшки домино, по цепочке ведущие к той, что стоит на краю стола, и уронить первую на вторую: в этом случае импульс передастся по цепочке - вторая костяшка завалит третью, третья четвертую и так далее. Это - волновой принцип передачи энергии. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно.

Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов ), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны. Если «выстреливать» электроны по одному, каждый из них будет оставлять четкий след на экране - то есть вести себя как частица. Самое интересное, что, то же самое будет, если вместо пучка электронов вы возьмете пучок фотонов: в пучке они будут вести себя как волны, а по отдельности - как частицы

Иными словами, в микромире объекты, которые ведут себя как частицы, при этом как бы «помнят» о своей волновой природе, и наоборот. Это странное свойство объектов микромира получило название квантово-волнового дуализма .

Принцип дополнительности - простая констатация этого факта. Согласно этому принципу, если мы измеряем свойства квантового объекта как частицы, мы видим, что он ведет себя как частица. Если же мы измеряем его волновые свойства, для нас он ведет себя как волна. Оба представления отнюдь не противоречат друг другу - они именно дополняют одно другое, что и отражено в названии принципа.

Строение атома.

Планетарная модель строения атома была предложена в результате открытия ядра атома Резерфордом:
1.В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.
2.Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а. е. м.).
3.Вокруг ядра по замкнутым орбитам вращаются электроны. Их число равно заряду ядра.
Ядро атома

Ядро атома состоит из протонов и нейтронов (общее название - нуклоны). Оно характеризуется тремя параметрами: А - массовое число, Z - заряд ядра, равный числу протонов, и N - число нейтронов в ядре. Эти параметры связаны между собой соотношением:
А = Z + N.
Число протонов в ядре равно порядковому номеру элемента.
Заряд ядра обычно пишут внизу слева от символа элемента, а массовое число - вверху слева (заряд ядра часто опускают).
Пример 40 18 Ar: ядро этого атома содержит 18 протонов и 22 нейтрона.
Атомы, ядра которых содержат одинаковое число протонов и разное число нейтронов, называются изотопами, например: 12/6С и 13/6С. Изотопы водорда имеют специальные символы и названия: 1 Н - протий, 2 D - дейтерий, 3 Т - тритий. Химические свойства изотопов идентичны, некоторые физические свойства очень незначительно различаются..

Радиоактивность

Радиоактивность - это самопроизвольное, спонтанное превращение неустойчивых атомных ядер в ядра др. элементов, сопровождающееся испусканием частиц. Соответствующие элементы назвали радиоактивными или радионуклеидами.

В 1899 году Э. Резерфорд в результате экспериментов обнаружил, что радиоактивное излучение неоднородно и под действием сильного магнитного поля распадается на две составляющие, a - и b -лучи. Третью составляющую, g -лучи, обнаружил французский физик П. Вилард в 1900 году.

Гамма-лучи вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:

Фотоэффект - энергия гамма-луча поглощается электроном оболочки атома, и электрон, совершая работу выхода, покидает атом (который становится ионизированным, т.е. превращается в ион).

Выбивание светом электронов с поверхности токопроводящих материалов - явление, широко используемое сегодня в повседневной жизни. Например, некоторые системы сигнализации работают за счет передачи видимых или инфракрасных световых лучей на фотоэлектрический элемент , из которого выбиваются электроны, обеспечивающие электропроводность цепи, в которую он включен. Если на пути светового луча появляется препятствие, свет на датчик поступать перестает, поток электронов прекращается, цепь разрывается - и срабатывает электронная сигнализация.

Облучение γ-лучами.в зависимости от дозы и продолжительности может вызвать хроническую и острую лучевые болезни. Эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и фактором.

Применение гамма- излучения:

Гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами.

Консервирование пищевых продуктов.

Стерилизация медицинских материалов и оборудования.

Лучевая терапия.

Уровнемеры

Гамма-высотометры, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов.

Гамма-стерилизация специй, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Виды радиоактивности

Деление атомного ядра бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер -экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения. Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии. Установлено, что радиоактивны все химические элементы СС порядковым номером, большим 82 (то есть начиная с висмута), и некоторые более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, например индия, калия или кальция, одни природные изотопы стабильны, другие же радиоактивны).

Весной 1913 года Содди сформулировал правило:

Испускание α-частиц уменьшает атомную массу на 4 и смещает его на 2 места влево по ПС.

Испускание β-частиц смещает элемент вправо на 1 место, почти не меняя его массы

ПЛАН

ВВЕДЕНИЕ 2

1. ИСТОРИЯ СОЗДАНИЯ КВАНТОВОЙ МЕХАНИКИ 5

2. МЕСТО КВАНТОВОЙ МЕХАНИКИ СРЕДИ ДРУГИХ НАУК О ДВИЖЕНИИ. 14

ЗАКЛЮЧЕНИЕ 17

ЛИТЕРАТУРА 18

Введение

Квантовая механика - теория устанавливающая способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов), а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах. Законы квантовой механики (в дальнейшем К.м.) составляют фундамент изучения строения вещества. Они позволили выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, понять строение ядер атомных, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы К. м. лежат в основе понимания большинства макроскопических явлений. К. м. позволила, например, объяснить температурную зависимость и вычислить величину теплоёмкости газов и твёрдых тел, определить строение и понять многие свойства твёрдых тел (металлов, диэлектриков, полупроводников). Только на основе К. м. удалось последовательно объяснить такие явления, как ферромагнетизм, сверхтекучесть, сверхпроводимость, понять природу таких астрофизических объектов, как белые карлики, нейтронные звёзды, выяснить механизм протекания термоядерных реакций в Солнце и звёздах. Существуют также явления (например, Джозефсона эффект), в которых законы К. м. непосредственно проявляются в поведении макроскопических объектов.

Так, квантово-механические законы лежат в основе работы ядерных реакторов, обусловливают возможность осуществления в земных условиях термоядерных реакций, проявляются в ряде явлений в металлах и полупроводниках, используемых в новейшей технике, и т.д. Фундамент такой бурно развивающейся области физики, как квантовая электроника, составляет квантовомеханическая теория излучения. Законы К. м. используются при целенаправленном поиске и создании новых материалов (особенно магнитных, полупроводниковых и сверхпроводящих). Квантовая механика становится в значительной мере «инженерной» наукой, знание которой необходимо не только физикам-исследователям, но и инженерам.

1. История создания квантовой механики

В начале 20 в. были обнаружены две (казалось, не связанные между собой) группы явлений, свидетельствующих о неприменимости обычной классической теории электромагнитного поля (классической электродинамики) к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Первая группа явлений была связана с установлением на опыте двойственной природы света (дуализм света); вторая - с невозможностью объяснить на основе классических представлений устойчивое существование атома, а также спектральные закономерности, открытые при изучении испускания света атомами. Установление связи между этими группами явлений и попытки объяснить их на основе новой теории и привели, в конечном счете, к открытию законов К. м.

Впервые квантовые представления (в т. ч. квантовая постоянная h ) были введены в физику в работе М. Планка (1900), посвященной теории теплового излучения.

Существовавшая к тому времени теория теплового излучения, построенная на основе классической электродинамики и статистической физики, приводила к бессмысленному результату, состоявшему в том, что тепловое (термодинамическое) равновесие между излучением и веществом не может быть достигнуто, т.к. вся энергия рано или поздно должна перейти в излучение. Планк разрешил это противоречие и получил результаты, прекрасно согласующиеся с опытом, на основе чрезвычайно смелой гипотезы. В противоположность классической теории излучения, рассматривающей испускание электромагнитных волн как непрерывный процесс, Планк предположил, что свет испускается определенными порциями энергии - квантами. Величина такого кванта энергии зависит от частоты света n и равна E = h n. От этой работы Планка можно проследить две взаимосвязанные линии развития, завершившиеся окончательной формулировкой К. м. в двух ее формах (1927).

Первая начинается с работы Эйнштейна (1905), в которой была дана теория фотоэффекта - явления вырывания светом электронов из вещества.

В развитие идеи Планка Эйнштейн предположил, что свет не только испускается и поглощается дискретными порциями - квантами излучения, но и распространение света происходит такими квантами, т. е. что дискретность присуща самому свету - что сам свет состоит из отдельных порций - световых квантов (которые позднее были названы фотонами). Энергия фотона E связана с частотой колебаний n волны соотношением Планка E = h n.

Дальнейшее доказательство корпускулярного характера света было получено в 1922 А. Комптоном, показавшим экспериментально, что рассеяние света свободными электронами происходит по законам упругого столкновения двух частиц - фотона и электрона. Кинематика такого столкновения определяется законами сохранения энергии и импульса, причем фотону наряду с энергией E = h n следует приписать импульс р = h / l = h n / c , где l - длина световой волны.

Энергия и импульс фотона связаны соотношением E = cp, справедливым в релятивистской механике для частицы с нулевой массой. Т. о., было доказано экспериментально, что наряду с известными волновыми свойствами (проявляющимися, например, в дифракции света) свет обладает и корпускулярными свойствами: он состоит как бы из частиц - фотонов. В этом проявляется дуализм света, его сложная корпускулярно-волновая природа.

Дуализм содержится уже в формуле E = h n , не позволяющей выбрать какую-либо одну из двух концепций: в левой части равенства энергия E относится к частице, а в правой - частота n является характеристикой волны. Возникло формальное логическое противоречие: для объяснения одних явлений необходимо было считать, что свет имеет волновую природу, а для объяснения других - корпускулярную. По существу разрешение этого противоречия и привело к созданию физических основ квантовой механики.

В 1924 Л. де Бройль, пытаясь найти объяснение постулированным в 1913 Н. Бором условиям квантования атомных орбит, выдвинул гипотезу о всеобщности корпускулярно-волнового дуализма. Согласно де Бройлю, каждой частице, независимо от ее природы, следует поставить в соответствие волну, длина которой L связана с импульсом частицы р соотношением. По этой гипотезе не только фотоны, но и все «обыкновенные частицы» (электроны, протоны и др.) обладают волновыми свойствами, которые, в частности, должны проявляться в явлении дифракции.

В 1927 К. Дэвиссон и Л. Джермер впервые наблюдали дифракцию электронов. Позднее волновые свойства были обнаружены и у других частиц, и справедливость формулы де Бройля была подтверждена экспериментально

В 1926 Э. Шрёдингер предложил уравнение, описывающее поведение таких «волн» во внешних силовых полях. Так возникла волновая механика. Волновое уравнение Шрёдингера является основным уравнением нерялитивистской К. м.

В 1928 П. Дирак сформулировал релятивистское уравнение, описывающее движение электрона во внешнем силовом поле; Дирака уравнение стало одним из основных уравнений релятивистской квантовой механики.

Вторая линия развития начинается с работы Эйнштейна (1907), посвященной теории теплоемкости твердых тел (она также является обобщением гипотезы Планка). Электромагнитное излучение, представляющее собой набор электромагнитных волн различных частот, динамически эквивалентно некоторому набору осцилляторов (колебательных систем). Излучение или поглощение волн эквивалентно возбуждению или затуханию соответствующих осцилляторов. Тот факт, что излучение и поглощение электромагнитного излучения веществом происходят квантами энергии h n. Эйнштейн обобщил эту идею квантования энергии осциллятора электромагнитного поля на осциллятор произвольной природы. Поскольку тепловое движение твердых тел сводится к колебаниям атомов, то и твердое тело динамически эквивалентно набору осцилляторов. Энергия таких осцилляторов тоже квантована, т. е. разность соседних уровней энергии (энергий, которыми может обладать осциллятор) должна равняться h n, где n - частота колебаний атомов.

Теория Эйнштейна, уточнённая П. Дебаем, М. Борном и Т. Карманом, сыграла выдающуюся роль в развитии теории твёрдых тел.

В 1913 Н. Бор применил идею квантования энергии к теории строения атома, планетарная модель которого следовала из результатов опытов Э. Резерфорда (1911). Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена почти вся масса атома; вокруг ядра вращаются по орбитам отрицательно заряженные электроны.

Рассмотрение такого движения на основе классических представлений приводило к парадоксальному результату - невозможности стабильного существования атомов: согласно классической электродинамике, электрон не может устойчиво двигаться по орбите, поскольку вращающийся электрический заряд должен излучать электромагнитные волны и, следовательно, терять энергию. Радиус его орбиты должен уменьшится и за время порядка 10 –8 сек электрон должен упасть на ядро. Это означало, что законы классической физики неприменимы к движению электронов в атоме, т.к. атомы существуют и чрезвычайно устойчивы.

Для объяснения устойчивости атомов Бор предположил, что из всех орбит, допускаемых Ньютоновой механикой для движения электрона в электрическом поле атомного ядра, реально осуществляются лишь те, которые удовлетворяют определённым условиям квантования. Т. е. в атоме существуют (как в осцилляторе) дискретные уровни энергии.

Эти уровни подчиняются определённой закономерности, выведенной Бором на основе комбинации законов Ньютоновой механики с условиями квантования, требующими, чтобы величина действия для классической орбиты была целым кратным постоянной Планка.

Бор постулировал, что, находясь на определённом уровне энергии (т. е. совершая допускаемое условиями квантования орбитальное движение), электрон не излучает световых волн.

Излучение происходит лишь при переходе электрона с одной орбиты на другую, т. е. с одного уровня энергии E i , на другой с меньшей энергией E k , при этом рождается квант света с энергией, равной разности энергий уровней, между которыми осуществляется переход:

h n = E i - E k . (1)

Так возникает линейчатый спектр - основная особенность атомных спектров, Бор получил правильную формулу для частот спектральных линий атома водорода (и водородоподобных атомов), охватывающую совокупность открытых ранее эмпирических формул.

Существование уровней энергии в атомах было непосредственно подтверждено Франка - Герца опытами (1913-14). Было установлено, что электроны, бомбардирующие газ, теряют при столкновении с атомами только определённые порции энергии, равные разности энергетических уровней атома.

Н. Бор, используя квантовую постоянную h , отражающую дуализм света, показал, что эта величина определяет также и движение электронов в атоме (и что законы этого движения существенно отличаются от законов классической механики). Этот факт позднее был объяснён на основе универсальности корпускулярно-волнового дуализма, содержащегося в гипотезе де Бройля. Успех теории Бора, как и предыдущие успехи квантовой теории, был достигнут за счёт нарушения логической цельности теории: с одной стороны, использовалась Ньютонова механика, с другой - привлекались чуждые ей искусственные правила квантования, к тому же противоречащие классической электродинамике. Кроме того, теория Бора оказалась не в состоянии объяснить движение электронов в сложных атомах возникновение молекулярной связи.

«Полуклассическая» теория Бора не могла также ответить на вопрос, как движется электрон при переходе с одногоуровня энергии на другой.

Дальнейшая напряжённая разработка вопросов теории атома привела к убеждению, что, сохраняя классическую картину движения электрона по орбите, логически стройную теорию построить невозможно.

Осознание того факта, что движение электронов в атоме не описывается в терминах (понятиях) классической механики (как движение по определённой траектории), привело к мысли, что вопрос о движении электрона между уровнями несовместим с характером законов, определяющих поведение электронов в атоме, и что необходима новая теория, в которую входили бы только величины, относящиеся к начальному и конечному стационарным состояниям атома.

В 1925 В. Гейзенбергу удалось построить такую формальную схему, в которой вместо координат и скоростей электрона фигурировали некие абстрактные алгебраические величины - матрицы; связь матриц с наблюдаемыми величинами (энергетическими уровнями и интенсивностями квантовых переходов) давалась простыми непротиворечивыми правилами. Работа Гейзенберга была развита М. Борном и П. Иорданом. Так возникла матричная механика. Вскоре после появления уравнения Шрёдингера была показана математическая эквивалентность волновой (основанной на уравнении Шрёдингера) и матричной механики. В 1926 М. Борн дал вероятностную интерпретацию волн де Бройля (см. ниже).

Большую роль в создании квантовой механики сыграли работы Дирака, относящиеся к этому же времени. Окончательное формирование квантовой механики как последовательной физической теории с ясными основами и стройным математическим аппаратом произошло после работы Гейзенберга (1927), в которой было сформулировано неопределённостей соотношение - важнейшее соотношение, освещающее физический смысл уравнений квантовой механики., её связь с классической механикой и другие как принципиальные вопросы, так и качественные результаты квантовой механики. Эта работа была продолжена и обобщена в трудах Бора и Гейзенберга.

Детальный анализ спектров атомов привёл к представлению (введённому впервые Дж. Ю. Уленбеком и С. Гаудсмитом и развитому В. Паули) о том, что электрону, кроме заряда и массы, должна быть приписана ещё одна внутренняя характеристика (квантовое число) - спин.

Важную роль сыграл открытый В. Паули (1925) так называемый принцип запрета имеющий фундаментальное значение в теории атома, молекулы, ядра, твёрдого тела.

В течение короткого времени квантовой механика была с успехом применена к широкому кругу явлений. Были созданы теории атомных спектров, строения молекул, химической связи, периодической системы Д. И. Менделеева, металлической проводимости и ферромагнетизма. Эти и многие др. явления стали (по крайней мере качественно) понятными.

А. ШИШЛОВА. по материалам журналов "Успехи физических наук" и "Scientific american".

Квантово-механическое описание физических явлений микромира считается единственно верным и наиболее полно отвечающим реальности. Объекты макромира подчиняются законам другой, классической механики. Граница между макро- и микромиром размыта, а это вызывает целый ряд парадоксов и противоречий. Попытки их ликвидировать приводят к появлению других взглядов на квантовую механику и физику микромира. Видимо, наилучшим образом выразить их удалось американскому теоретику Дэвиду Джозефу Бому (1917-1992).

1. Мысленный эксперимент по измерению компонент спина (собственного количества движения) электрона с помощью некоего устройства - "черного ящика".

2. Последовательное измерение двух компонент спина. Измеряется "горизонтальный" спин электрона (слева), потом "вертикальный" спин (справа), потом снова "горизонтальный" (внизу).

3А. Электроны с "правым" спином после прохождения через "вертикальный" ящик движутся в двух направлениях: вверх и вниз.

3Б. В том же эксперименте на пути одного из двух пучков поставим некую поглощающую поверхность. Далее в измерениях участвует лишь половина электронов, и на выходе половина их имеет "левый" спин, а половина - "правый".

4. Состояние любого объекта микромира описывает так называемая волновая функция.

5. Мысленный эксперимент Эрвина Шредингера.

6. Эксперимент, предложенный Д. Бомом и Я. Аароновым в 1959 году, должен был показать, что магнитное поле, недоступное для частицы, влияет на ее состояние.

Чтобы понять, какие трудности испытывает современная квантовая механика, нужно вспомнить, чем она отличается от классической, ньютоновской механики. Ньютон создал общую картину мира, в которой механика выступала как универсальный закон движения материальных точек или частиц - маленьких комочков материи. Из этих частиц можно было построить любые объекты. Казалось, что механика Ньютона способна теоретически объяснить все природные явления. Однако в конце прошлого века выяснилось, что классическая механика неспособна объяснить законы теплового излучения нагретых тел. Этот, казалось бы, частный вопрос привел к необходимости пересмотреть физические теории и потребовал новых идей.

В 1900 году появилась работа немецкого физика Макса Планка, в которой эти новые идеи и появились. Планк предположил, что излучение происходит порциями, квантами. Такое представление противоречило классическим воззрениям, но прекрасно объясняло результаты экспериментов (в 1918 году эта работа была удостоена Нобелевской премии по физике). Спустя пять лет Альберт Эйнштейн показал, что не только излучение, но и поглощение энергии должно происходить дискретно, порциями, и сумел объяснить особенности фотоэффекта (Нобелевская премия 1921 года). Световой квант - фотон, по Эйнштейну, имея волновые свойства, одновременно во многом напоминает частицу (корпускулу). В отличие от волны, например, он либо поглощается целиком, либо не поглощается вовсе. Так возник принцип корпускулярно-волнового дуализма электромагнитного излучения.

В 1924 году французский физик Луи де Бройль выдвинул достаточно "безумную" идею, предположив, что все без исключения частицы - электроны, протоны и целые атомы обладают волновыми свойствами. Год спустя Эйнштейн отозвался об этой работе: "Хотя кажется, что ее писал сумасшедший, написана она солидно", а в 1929 году де Бройль получил за нее Нобелевскую премию...

На первый взгляд, повседневный опыт гипотезу де Бройля отвергает: в окружающих нас предметах ничего "волнового" как будто нет. Расчеты, однако, показывают, что длина дебройлевской волны электрона, ускоренно го до энергии 100 электрон-вольт, равна 10 -8 сантиметра. Эту волну нетрудно обнаружить экспериментально, пропустив поток электронов сквозь кристалл. На кристаллической решетке произойдет дифракция их волн и возникнет характерная полосатая картинка. А у пылинки массой 0,001 грамма при той же скорости длина волны де Бройля будет в 10 24 раз меньше, и обнаружить ее никакими средствами нельзя.

Волны де Бройля непохожи на механические волны - распространяющиеся в пространстве колебания материи. Они характеризуют вероятность обнаружить частицу в данной точке пространства. Любая частица оказывается как бы "размазанной" в пространстве, и существует отличная от нуля вероятность обнаружить ее где угодно. Классическим примером вероятностного описания объектов микромира служит опыт по дифракции электронов на двух щелях. Прошедший через щель электрон регистрируется на фотопластинке или на экране в виде пятнышка. Каждый электрон может пройти либо через правую щель, либо через левую совершенно случайным образом. Когда пятнышек становится очень много, на экране возникает дифракционная картина. Почернение экрана оказывается пропорциональным вероятности появления электрона в данном месте.

Идеи де Бройля углубил и развил австрийский физик Эрвин Шредингер. В 1926 году он вывел систему уравнений - волновых функций, описывающих поведение квантовых объектов во времени в зависимости от их энергии (Нобелевская премия 1933 года). Из уравнений следует, что любое воздействие на частицу меняет ее состояние. А поскольку процесс измерения параметров частицы неизбежно связан с воздействием, возникает вопрос: что же регистрирует измерительный прибор, вносящий непредсказуемые возмущения в состояние измеряемого объекта?

Таким образом, исследование элементарных частиц позволило установить, по крайней мере, три чрезвычайно удивительных факта, касающихся общей физической картины мира.

Во-первых, оказалось, что процессами, происходящими в природе, управляет чистый случай. Во-вторых, далеко не всегда существует принципиальная возможность указать точное положение материального объекта в пространстве. И, в-третьих, что, пожалуй, наиболее странно, поведение таких физических объектов, как "измерительный прибор", или "наблюдатель", не описывается фундаментальными законами, справедливыми для прочих физических систем.

Впервые к таким выводам пришли сами основоположники квантовой теории - Нильс Бор, Вернер Гейзенберг, Вольфганг Паули. Позднее данная точка зрения, получившая название Копенгагенской интерпретации квантовой механики, была принята в теоретической физике в качестве официальной, что и нашло свое отражение во всех стандартных учебниках.

Вполне возможно, однако, что подобные заключения были сделаны слишком поспешно. В 1952 году американский физик-теоретик Дэвид Д. Бом создал глубоко проработанную квантовую теорию, отличную от общепринятой, которая так же хорошо объясняет все известные ныне особенности поведения субатомных частиц. Она представляет собой единый набор физических законов, позволяющий избежать какой-либо случайности в описании поведения физических объектов, а также неопределенности их положения в пространстве. Несмотря на это, бомовская теория до самого последнего времени почти полностью игнорировалась.

Чтобы лучше представить себе всю сложность описания квантовых явлений, проведем несколько мысленных экспериментов по измерению спина (собственного момента количества движения) электрона. Мысленных потому, что создать измерительный прибор, позволяющий точно измерять обе компоненты спина, пока что не удалось никому. Столь же безуспешными оказываются попытки предсказать, какие именно электроны поменяют свой спин в ходе описанного эксперимента, а какие нет.

Эти эксперименты включают в себя измерение двух компонент спина, которые условно будем называть "вертикальным" и "горизонтальным" спинами. Каждая из компонент в свою очередь может принимать одно из значений, которые мы также условно назовем "верхним" и "нижним", "правым" и "левым" спинами соответственно. Измерение основано на пространственном разделении частиц с разными спинами. Приборы, осуществляющие разделение, можно представить себе как некие "черные ящики" двух типов - "горизонтальный" и "вертикальный" (рис. 1). Известно, что разные компоненты спина свободной частицы совершенно независимы (физики говорят - не коррелируют между собой). Однако в ходе измерения одной компоненты значение другой может измениться, причем совершенно неконтролируемым образом (2).

Пытаясь объяснить полученные результаты, традиционная квантовая теория пришла к выводу, что необходимо полностью отказаться от детерминистского, то есть полностью определяющего состояние

объекта, описания явлений микромира. Поведение электронов подчиняется принципу неопределенности, согласно которому компоненты спина не могут быть точно измерены одновременно.

Продолжим наши мысленные эксперименты. Будем теперь не только расщеплять пучки электронов, но и заставим их отражаться от неких поверхностей, пересекаться и снова соединяться в один пучок в специальном "черном ящике" (3).

Результаты этих экспериментов противоречат обычной логике. Действительно, рассмотрим поведение какого-либо электрона в случае, когда поглощающая стенка отсутствует (3 А). Куда он будет двигаться? Допустим, что вниз. Тогда, если первоначально электрон имел "правый" спин, он так и останется правым до конца эксперимента. Однако, применив к этому электрону результаты другого эксперимента (3 Б), мы увидим, что его "горизонтальный" спин на выходе должен быть в половине случаев "правым", а в половине - "левым". Явное противоречие. Мог ли электрон пойти вверх? Нет, по той же самой причине. Быть может, он двигался не вниз, не вверх, а как-то по-другому? Но, перекрыв верхний и нижний маршруты поглощающими стенками, мы на выходе не получим вообще ничего. Остается предположить, что электрон может двигаться сразу по двум направлениям. Тогда, имея возможность фиксировать его положение в разные моменты времени, в половине случаев мы находили бы его на пути вверх, а в половине - на пути вниз. Ситуация достаточно парадоксальная: материальная частица не может ни раздваиваться, ни "прыгать" с одной траектории на другую.

Что говорит в данном случае традиционная квантовая теория? Она просто объявляет все рассмотренные ситуации невозможными, а саму постановку вопроса об определенном направлении движения электрона (и соответственно о направлении его спина) - некорректной. Проявление квантовой природы электрона в том и заключается, что ответа на данный вопрос в принципе не существует. Состояние электрона представляет собой суперпозицию, то есть сумму двух состояний, каждое из которых имеет определенное значение "вертикального" спина. Понятие о суперпозиции - один из основополагающих принципов квантовой механики, с помощью которого вот уже более семидесяти лет удается успешно объяснять и предсказывать поведение всех известных квантовых систем.

Для математического описания состояний квантовых объектов используется волновая функция, которая в случае одной частицы просто определяет ее координаты. Квадрат волновой функции равен вероятности обнаружить частицу в данной точке пространства. Таким образом, если частица находится в некой области А, ее волновая функция равна нулю всюду, за исключением этой области. Аналогично частица, локализованная в области Б, имеет волновую функцию, отличную от нуля только в Б. Если же состояние частицы оказывается суперпозицией пребывания ее в А и Б, то волновая функция, описывающая такое состояние, отлична от нуля в обеих областях пространства и равна нулю всюду вне их. Однако, если мы поставим эксперимент по определению положения такой частицы, каждое измерение будет давать нам только одно значение: в половине случаев мы обнаружим частицу в области А, а в половине - в Б (4). Это означает, что при взаимодействии частицы с окружением, когда фиксируется только одно из состояний частицы, ее волновая функция как бы коллапсирует, "схлопывается" в точку.

Одно из основных утверждений квантовой механики заключается в том, что физические объекты полностью описываются их волновыми функциями. Таким образом, весь смысл законов физики сводится к предсказанию изменений волновых функций во времени. Эти законы делятся на две категории в зависимости от того, предоставлена ли система самой себе или же она находится под непосредственным наблюдением и в ней производятся измерения.

В первом случае мы имеем дело с линейными дифференциальными "уравнениями движения", уравнениями детерминистскими, которые полностью описывают состояние микрочастиц. Следовательно, зная волновую функцию частицы в какой-то момент времени, можно точно предсказать поведение частицы в любой последующий момент. Однако при попытке предсказать результаты измерений каких-либо свойств той же частицы нам придется иметь дело уже с совершенно другими законами - чисто вероятностными.

Возникает естественный вопрос: как отличить условия применимости той или другой группы законов? Создатели квантовой механики указывают на необходимость четкого разделения всех физических процессов на "измерения" и "собственно физические процессы", то есть на "наблюдателей" и "наблюдаемых", или, по философской терминологии, на субъект и объект. Однако отличие между этими категориями носит не принципиальный, а чисто относительный характер. Тем самым, по мнению многих физиков и философов, квантовая теория в такой интерпретации становится неоднозначной, теряет свою объективность и фундаментальность. "Проблема измерения" стала основным камнем преткновения в квантовой механике. Ситуация несколько напоминает знаменитую апорию Зенона "Куча". Одно зерно - явно не куча, а тысяча (или, если угодно, миллион) - куча. Два зерна - тоже не куча, а 999 (или 999999) - куча. Эта цепочка рассуждений приводит к некоему количеству зерен, при котором понятия "куча - не куча" станут неопределенными. Они будут зависеть от субъективной оценки наблюдателя, то есть от способа измерений, хотя бы и на глаз.

Все окружающие нас макроскопические тела предполагаются точечными (или протяженными) объектами с фиксированными координатами, которые подчиняются законам классической механики. Но это означает, что классическое описание можно продолжить вплоть до самых малых частиц. С другой стороны, идя со стороны микромира, следует включать в волновое описание объекты все большего размера вплоть до Вселенной в целом. Граница между макро- и микромиром не определена, и попытки ее обозначить приводят к парадоксу. Наиболее четко указывает на него так называемая "задача о кошке Шредингера" - мысленный эксперимент, предложенный Эрвином Шредингером в 1935 году (5).

В закрытом ящике сидит кошка. Там же находятся флакон с ядом, источник излучения и счетчик заряженных частиц, подсоединенный к устройству, разбивающему флакон в момент регистрации частицы. Если яд разольется, кошка погибнет. Зарегистрировал счетчик частицу или нет, мы не можем знать в принципе: законы квантовой механики подчиняются законам вероятности. И с этой точки зрения, пока счетчик не произвел измерения, он находится в суперпозиции двух состояний - "регистрация - нерегистрация". Но тогда в этот момент и кошка оказывается в суперпозиции состояний жизни и смерти.

В действительности, конечно, реального парадокса здесь быть не может. Регистрация частицы - процесс необратимый. Он сопровождается коллапсом волновой функции, вслед за чем срабатывает механизм, разбивающий флакон. Однако ортодоксальная квантовая механика не рассматривает необратимых явлений. Парадокс, возникающий в полном согласии с ее законами, наглядно показывает, что между квантовым микромиром и классическим макромиром имеется некая промежуточная область, в которой квантовая механика не работает.

Итак, несмотря на несомненные успехи квантовой механики в объяснении экспериментальных фактов, в настоящий момент она едва ли может претендовать на полноту и универсальность описания физических явлений. Одной из наиболее смелых альтернатив квантовой механики и стала теория, предложенная Дэвидом Бомом.

Задавшись целью построить теорию, свободную от принципа неопределенности, Бом предложил считать микрочастицу материальной точкой, способной занимать точное положение в пространстве. Ее волновая функция получает статус не характеристики вероятности, а вполне реального физического объекта, некоего квантовомеханического поля, оказывающего мгновенное силовое воздействие. В свете этой интерпретации, например, "парадокс Эйнштейна-Подольского-Розена" (см. "Наука и жизнь" № 5, 1998 г.) перестает быть парадоксом. Все законы, управляющие физическими процессами, становятся строго детерминистскими и имеют вид линейных дифференциальных уравнений. Одна группа уравнений описывает изменение волновых функций во времени, другая - их воздействие на соответствующие частицы. Законы применимы ко всем физическим объектам без исключения - и к "наблюдателям", и к "наблюдаемым".

Таким образом, если в какой-то момент известны положение всех частиц во Вселенной и полная волновая функция каждой, то в принципе можно точно рассчитать положение частиц и их волновые функции в любой последующий момент времени. Следовательно, ни о какой случайности в физических процессах не может быть и речи. Другое дело, что мы никогда не сможем обладать всей информацией, необходимой для точных вычислений, да и сами расчеты оказываются непреодолимо сложными. Принципиальное незнание многих параметров системы приводит к тому, что на практике мы всегда оперируем некими усредненными величинами. Именно это "незнание", по мнению Бома, заставляет нас прибегать к вероятностным законам при описании явлений в микромире (подобная ситуация возникает и в классической статистической механике, например в термодинамике, которая имеет дело с огромным количеством молекул). Теория Бома предусматривает определенные правила усреднения неизвестных параметров и вычисления вероятностей.

Вернемся к экспериментам с электронами, изображенным на рис. 3 А и Б. Теория Бома дает им следующее объяснение. Направление движения электрона на выходе из "вертикального ящика" полностью определяется исходными условиями - начальным положением электрона и его волновой функцией. В то время как электрон движется либо вверх, либо вниз, его волновая функция, как это следует из дифференциальных уравнений движения, расщепится и станет распространяться сразу в двух направлениях. Таким образом, одна часть волновой функции окажется "пустой", то есть будет распространяться отдельно от электрона. Отразившись от стенок, обе части волновой функции воссоединятся в "черном ящике", и при этом электрон получит информацию о том участке пути, где его не было. Содержание этой информации, например о препятствии на пути "пустой" волновой функции, может оказать существенное воздействие на свойства электрона. Это и снимает логическое противоречие между результатами экспериментов, изображенных на рисунке. Необходимо отметить одно любопытное свойство "пустых" волновых функций: будучи реальными, они тем не менее никак не влияют на посторонние объекты и не могут быть зарегистрированы измерительными приборами. А на "свой" электрон "пустая" волновая функция оказывает силовое воздействие независимо от расстояния, причем воздействие это передается мгновенно.

Попытки "исправить" квантовую механику или объяснить возникающие в ней противоречия предпринимали многие исследователи. Построить детерминистскую теорию микромира, например, пытался де Бройль, который был согласен с Эйнштейном, что "Бог не играет в кости". А видный отечественный теоретик Д. И. Блохинцев считал, что особенности квантовой механики проистекают из-за невозможности изолировать частицу от окружающего мира. При любой температуре выше абсолютного нуля тела излучают и поглощают электромаг нитные волны. С позиций квантовой механики это означает, что их положение непрерывно "измеряется", вызывая коллапс волновых функций. "С этой точки зрения никаких изолированных, предоставленных самим себе "свободных" частиц не существует, - писал Блохинцев. - Возможно, что в этой связи частиц и cреды и скрывается природа той невозможности изолировать частицу, которая проявляется в аппарате квантовой механики".

И все-таки - почему же интепретация квантовой механики, предложенная Бомом, до сих пор не получила должного признания в научном мире? И как объяснить почти повсеместное господство традиционной теории, несмотря на все ее парадоксы и "темные места"?

Долгое время новую теорию не хотели рассматривать всерьез на основании того, что в предсказании исхода конкретных экспериментов она полностью совпадает с квантовой механикой, не приводя к существен но новым результатам. Вернер Гейзенберг, например, считал, что "для любого опыта его (Бома) результаты совпадают с копенгагенской интерпретацией. Отсюда первое следствие: интерпретацию Бома нельзя опровергнуть экспериментом..." Некоторые считают теорию ошибочной, так как в ней преимущественная роль отводится положению частицы в пространстве. По их мнению, это противоречит физической реальности, ибо явления в квантовом мире принципиально не могут быть описаны детерминистскими законами. Существует немало и других, не менее спорных аргументов против теории Бома, которые сами требуют серьезных доказательств. Во всяком случае, ее пока что действительно никому не удалось полностью опровергнуть. Более того - работу над ее совершенствованием продолжают многие, в том числе отечественные, исследователи.

Отправить

Квантовая механика

Что такое квантовая механика?

Квантовая механика (КМ (QM); также известная как квантовая физика или квантовая теория), включая квантовую теорию поля, является областью физики, которая изучает законы природы, проявляющиеся на малых расстояниях и при малых энергиях атомов и субатомных частиц. Классическая физика - физика, существовавшая до квантовой механики, вытекает из квантовой механики как её предельный переход, справедливый только при больших (макроскопических) масштабах. Квантовая механика отличается от классической физики тем, что энергия, импульс и другие величины, часто ограничиваются дискретными значениями (квантование), объекты имеют характеристики и частиц, и волн (корпускулярно-волновой дуализм), и существуют ограничения на точность, с которой величины могут быть определены (принцип неопределенности).

Квантовая механика последовательно вытекает из решения Максом Планком в 1900 году задачи излучения черного тела (опубликовано в 1859 году) и работы Альберта Эйнштейна 1905 года, в которой была предложена квантовая теория для объяснения фотоэлектрического эффекта (опубликована в 1887 году). Ранняя квантовая теория, была глубоко переосмыслена в середине 1920-х годов.

Переосмысленная теория формулируется на языке специально разработанных математических формализмов. В одном из них, математическая функция (волновая функция) предоставляет информацию об амплитуде вероятности положения, импульса и других физических характеристиках частицы.

Важными областями применения квантовой теории являются: квантовая химия, сверхпроводящие магниты, светоизлучающие диоды, а также лазер, транзистор и полупроводниковые устройства, такие как микропроцессор, медицинские и исследовательские изображения, такие как магнитно-резонансная томография и электронная микроскопия, и объяснения многих биологических и физических явлений.

История квантовой механики

Научное исследование волновой природы света началось в XVII и XVIII веках, когда ученые Роберт Хук, Кристиан Гюйгенс и Леонард Эйлер предложили волновую теорию света, основанную на экспериментальных наблюдениях. В 1803 году Томас Янг, английский учёный широкого профиля, провел знаменитый эксперимент с двойной щелью, который он позже описал в работе, озаглавленной "Природа света и цветов". Этот эксперимент сыграл важную роль во всеобщем признании волновой теории света.

В 1838 году Майкл Фарадей открыл катодные лучи. За этими исследованиями последовала формулировка Густавом Кирхгофом проблемы излучения абсолютно черного тела в 1859 году, предположение Людвига Больцмана в 1877 году того, что энергетические состояния физической системы могут быть дискретными, и квантовая гипотеза Макса Планка в 1900 году. Гипотеза Планка о том, что энергия излучается и поглощается дискретным "квантом" (или энергетическими пакетами), точно соответствует наблюдаемым моделям излучения абсолютно черного тела.

В 1896 году Вильгельм Вин эмпирически определил закон распределения излучения абсолютно черного тела, названный в его честь, законом Вина. Людвиг Больцман самостоятельно пришел к этому результату, анализируя уравнения Максвелла. Однако закон действовал только на высоких частотах и занижал излучение на низких частотах. Позже Планк исправил эту модель с помощью статистической интерпретации термодинамики Больцмана и предложил то, что в настоящее время называется законом Планка, что привело к развитию квантовой механики.

После решения Максом Планком в 1900 году проблемы излучения черного тела (опубликовано 1859), Альберт Эйнштейн предложил квантовую теорию, чтобы объяснить фотоэлектрический эффект (1905, опубликовано 1887). В 1900-1910 годы атомная теория и корпускулярная теория света впервые стали широко признаваться в качестве научного факта. Соответственно, эти последние теории можно рассматривать как квантовые теории материи и электромагнитного излучения.

Среди первых изучавших квантовые явления в природе были Артур Комптон, Ч. В. Раман и Питер Зееман, в честь каждого из которых названы некоторые квантовые эффекты. Роберт Эндрюс Милликен исследовал фотоэффект экспериментально, а Альберт Эйнштейн разработал теорию для него. В то же время, Эрнест Резерфорд экспериментально обнаружил ядерную модель атома, по которой Нильс Бор разработал свою теорию строения атома, которая впоследствии была подтверждена опытами Генри Мозли. В 1913 году Петер Дебай расширил теорию Нильса Бора о строении атома, введя эллиптические орбиты, эту же концепцию также предложил и Арнольд Зоммерфельд. Этот этап развития физики известен под названием старая квантовая теория.

Согласно Планку, энергия (Е) кванта излучения пропорциональна частоте излучения (v):

где h - постоянная Планка.

Планк осторожно настаивал на том, что это просто математическое выражение процессов поглощения и испускания излучения и не имеет ничего общего с физической реальностью самого излучения. Фактически, он считал свою квантовую гипотезу математическим трюком, совершенным для того, чтобы получить правильный ответ, а не крупным фундаментальным открытием. Однако в 1905 году Альберт Эйнштейн дал квантовой гипотезе Планка физическую интерпретацию и использовал ее для объяснения фотоэлектрического эффекта, при котором освещение светом определенных веществ может вызывать испускание электронов из вещества. За эту работу Эйнштейн получил Нобелевскую премию по физике 1921 года.

Эйнштейн затем доработал эту идею, чтобы показать, что электромагнитная волна, какой и является свет, также может быть описана как частица (позже названная фотоном), с дискретной квантовой энергией, которая зависит от частоты волны.

На протяжении первой половины 20-го века Максом Планком, Нильсом Бором, Вернером Гейзенбергом, Луи де Бройлем, Артуром Комптоном, Альбертом Эйнштейном, Эрвином Шредингером, Максом Борном, Джоном фон Нейманом, Полем Дираком, Энрико Ферми, Вольфгангом Паули, Максом фон Лауэ, Фрименом Дайсоном, Давидом Гильбертом, Вильгельмом Вином, Шать­енд­ра­натом Бозе, Арнольдом Зоммерфельдом и другими закладывались основы квантовой механики. Копенгагенская интерпретация Нильса Бора получила всеобщее признание.

В середине 1920-х годов развитие квантовой механики привело к тому, что она стала стандартной формулировкой для атомной физики. Летом 1925 года Бор и Гейзенберг опубликовали результаты, которые закрыли старую квантовую теорию. Из уважения к их частицеподобному поведению в определенных процессах и измерениях, кванты света стали называть фотонами (1926). Из простого постулата Эйнштейна зародился шквал обсуждений, теоретических построений и экспериментов. Таким образом, появились целые области квантовой физики, что привело к её широкому признанию на пятом Сольвеевском конгрессе в 1927 году.

Было установлено, что субатомные частицы и электромагнитные волны не являются ни просто частицами, ни волнами, а имеют определенные свойства каждой из них. Так возникло понятие корпускулярно–волнового дуализма.

К 1930 году квантовая механика была дополнительно унифицирована и сформулирована в работах Дэвида Гильберта, Поля Дирака и Джона фон Неймана, в которых уделялось большое внимание измерению, статистическому характеру наших знаний о реальности и философским размышлениям о "наблюдателе". Впоследствии она проникла во многие дисциплины, включая квантовую химию, квантовую электронику, квантовую оптику и квантовую информационную науку. Её теоретические современные разработки включают теорию струн и теории квантовой гравитации. Она также предоставляет удовлетворяющее объяснение многих особенностей современной периодической таблицы элементов и описывает поведение атомов при химических реакциях и движение электронов в компьютерных полупроводниках, и поэтому играет решающую роль во многих современных технологиях.

Хотя квантовая механика была построена для описания микромира, она также необходима для объяснения некоторых макроскопических явлений, таких как сверхпроводимость и сверхтекучесть.

Что означает слово квант?

Слово квант происходит от латинского "quantum", что означает "насколько много" или "сколько". В квантовой механике квант означает дискретную единицу, закрепленную за определенными физическими величинами, такими как энергия атома в состоянии покоя. Открытие того, что частицы представляют собой дискретные пакеты энергии с волноподобными свойствами привело к созданию занимающегося атомными и субатомными системами раздела физики, который сегодня называют квантовой механикой. Она закладывает фундамент математической основы для многих областей физики и химии, в том числе физики конденсированных сред, физики твердого тела, атомной физики, молекулярной физики, вычислительной физики, вычислительной химии, квантовой химии, физики элементарных частиц, ядерной химии и ядерной физики. Некоторые фундаментальные аспекты теории до сих пор активно изучаются.

Значение квантовой механики

Квантовая механика имеет важное значение для понимания поведения систем в атомных и меньших масштабах расстояний. Если бы физическая природа атома описывалась исключительно классической механикой, то электроны не должны были вращаться вокруг ядра, так как орбитальные электроны должны испускать излучение (вследствие кругового движения) и в конечном итоге сталкиваться с ядром из-за потери энергии на излучение. Такая система не могла объяснить устойчивость атомов. Вместо этого электроны находятся в неопределенных, недетерминистических, размазанных, вероятностных корпускулярно-волновых орбиталях около ядра, вопреки традиционным представлениям классической механики и электромагнетизма.

Первоначально квантовая механика была разработана для лучшего объяснения и описания атома, особенно различий в спектрах света, излучаемых различными изотопами одного и того же химического элемента, а также описания субатомных частиц. Короче говоря, квантово-механическая модель атома оказалась поразительно успешной в той области, где классическая механика и электромагнетизм оказались беспомощны.

Квантовая механика включает в себя четыре класса явлений, которые классическая физика не может объяснить:

  • квантование отдельных физических свойств
  • квантовая запутанность
  • принцип неопределенности
  • корпускулярно-волновой дуализм

Математические основы квантовой механики

В математически строгой формулировке квантовой механики, разработанной Полем Дираком, Давидом Гильбертом, Джоном фон Нейманом и Германом Вейлем, возможные состояния квантово-механической системы символизируются единичными векторами (называемые векторы состояния). Формально они принадлежат комплексному сепарабельному гильбертову пространству - иначе, пространству состояний или связанному с ним гильбертову пространству системы, и определены с точностью до произведения на комплексное число с единичным модулем (фазовый множитель). Другими словами, возможные состояния являются точками в проективном пространстве гильбертова пространства, как правило, называемом комплексным проективным пространством. Точный характер этого гильбертова пространства зависит от системы - например, пространство состояний положения и импульса является пространством квадратно-интегрируемых функций, в то время как пространство состояний для спина одного протона является всего лишь прямым произведением двух комплексных плоскостей. Каждая физическая величина представлена ​​гипермаксимально эрмитовым (точнее: самосопряженным) линейным оператором, действующим на пространстве состояний. Каждое собственное состояние физической величины соответствует собственному вектору оператора, и связанное с ним собственное значение соответствует значению физической величины в этом собственном состоянии. Если спектр оператора является дискретным, физическая величина может принимать только дискретные собственные значения.

В формализме квантовой механики состояние системы в данный момент описывается сложной волновой функцией, также называемой вектором состояния в комплексном векторном пространстве. Данный абстрактный математический объект позволяет рассчитать вероятности исходов конкретных экспериментов. Например, позволяет вычислить вероятность нахождения электрона в определенной области вокруг ядра в определенное время. В отличие от классической механики, здесь никогда нельзя сделать одновременного предсказания с произвольной точностью для сопряженных переменных, таких как положение и импульс. Например, можно считать, что электроны (с некоторой вероятностью) находятся где-то в пределах заданной области пространства, но их точное местоположение неизвестно. Можно нарисовать вокруг ядра атома области постоянной вероятности, часто называемые «облаками», чтобы представлять, где электрон может находиться с наибольшей вероятностью. Принцип неопределенности Гейзенберга количественно оценивает неспособность точной локализации частицы с заданным импульсом, являющимся сопряженной к положению величиной.

Согласно одной из интерпретаций, в результате измерения волновая функция, содержащая информацию о вероятности состояния системы, распадается из заданного начального состояния до определенного собственного состояния. Возможными результатами измерения являются собственные значения оператора, представляющего физическую величину - что объясняет выбор эрмитового оператора, у которого все собственные значения являются действительными числами. Распределение вероятностей физической величины в данном состоянии, можно найти путем вычисления спектрального разложения соответствующего оператора. Принцип неопределенности Гейзенберга представляется формулой, в которой операторы, соответствующие определенным величинам не коммутируют.

Измерение в квантовой механике

Вероятностный характер квантовой механики, таким образом, вытекает из акта измерения. Это один из самых сложных для понимания аспектов квантовых систем, и он был центральной темой в знаменитых дебатах Бора с Эйнштейном, в ходе которых оба ученых попытались прояснить эти фундаментальные принципы посредством мысленных экспериментов. В течение десятилетий после формулирования квантовой механики широко изучался вопрос о том, что представляет собой "измерение". Новые интерпретации квантовой механики были сформулированы, чтобы покончить с понятием "коллапс волновой функции". Основная идея заключается в том, что когда квантовая система взаимодействует с измерительным аппаратом, их соответствующие волновые функции становятся запутанными, так что исходная квантовая система перестает существовать как самостоятельная сущность.

Вероятностный характер предсказаний квантовой механики

Как правило, квантовая механика не ставит в соответствие определенные значения. Вместо этого она делает предсказание, используя распределение вероятностей; то есть, она описывает вероятность получения возможных результатов от измерения физической величины. Часто эти результаты деформированы, как облака плотности вероятности, многими процессами. Облака плотности вероятности являются приближением (но лучшим, чем модель Бора), в котором расположение электрона задается функцией вероятности, волновыми функциями, соответствующими собственным значениям, таким образом, что вероятность является квадратом модуля комплексной амплитуды, или квантового состояния ядерного притяжения. Естественно, что эти вероятности будут зависеть от квантового состояния в "момент" измерения. Следовательно, неопределенность вносится в измеренное значение. Есть, однако, некоторые состояния, которые связаны с определенными значениями конкретной физической величины. Они называются собственными состояниями (eigenstates) физической величины ("eigen" можно перевести с немецкого как "присущий" или "свойственный").

Естественно и интуитивно понятно, что все в повседневной жизни (все физические величины) имеют собственные значения. Кажется, что всё имеет определенное положение, определенный момент, определенную энергию, и определенное время события. Однако квантовая механика не указывает точных значений положения и импульса частицы (поскольку это сопряженные пары) или ее энергии и времени (поскольку они тоже сопряженные пары); точнее, она предоставляет только диапазон вероятностей, с которыми эта частица может иметь заданный импульс и вероятность импульса. Поэтому целесообразно различать состояния, имеющие неопределенные значения, и состояния, имеющие определенные значения (собственные состояния). Как правило, мы не интересуемся системой, в которой частица не имеет собственного значения физической величины. Однако, при измерении физической величины, волновая функция мгновенно принимает собственное значение (или "обобщенное" собственное значение) этой величины. Этот процесс называют коллапсом волновой функции, спорный и много обсуждаемый процесс, в котором происходит расширение изучаемой системы добавлением в неё измерительного устройства. Если знать соответствующую волновую функцию непосредственно перед измерением, то можно вычислить вероятность того, что волновая функция перейдёт в каждое из возможных собственных состояний. Например, свободная частица в предыдущем примере, как правило, имеют волновую функцию, которая представляет собой волновой пакет, сосредоточенный вокруг некоторого среднего положения x0 (не имеющий собственных состояний положения и импульса). Когда происходит измерение положения частицы, то невозможно с уверенностью предсказать результат. Вполне вероятно, но не точно, что оно будет вблизи х0, где амплитуда волновой функции велика. После выполнения измерения, получив какой-то результат х, волновая функция коллапсирует в собственную функцию оператора положения с центром в х.

Уравнение Шредингера в квантовой механике

Временная эволюция квантового состояния описывается уравнением Шредингера, в котором гамильтониан (оператор, соответствующий полной энергии системы) порождает временную эволюцию. Временная эволюция волновых функций является детерминированной в том смысле, что - с учетом того, какой волновая функция была в начальный момент времени - можно сделать четкое предсказание того, какой будет волновая функция в любое время в дальнейшем.

С другой стороны, во время измерения, изменение исходной волновой функции в другую, более позднюю волновую функцию не будет являться детерминированным, а будет непредсказуемым (т. е. случайным). Эмуляцию временной эволюции можно увидеть здесь.

Волновые функции изменяются с течением времени. Уравнение Шредингера описывает изменение волновых функций во времени, и играет роль, аналогичную роли второго закона Ньютона в классической механике. Уравнение Шредингера, применяемое к вышеупомянутому примеру свободной частицы, предсказывает, что центр волнового пакета будет перемещаться по пространству с постоянной скоростью (как классическая частица в отсутствие сил, действующих на него). Тем не менее, волновой пакет также будет расплываться с течением времени, что означает, что позиция становится более неопределенной со временем. Это также имеет эффект превращения собственной функции положения (которую можно рассматривать как бесконечно острый пик волнового пакета) в расширенный волновой пакет, который больше не представляет (определенного) собственного значения положения.

Некоторые волновые функции порождают распределения вероятностей, которые являются постоянными или независимыми от времени - например, когда в стационарном состоянии с постоянной энергией время исчезает из модуля квадрата волновой функции. Многие системы, которые рассматриваются как динамические в классической механике, описываются в квантовой механике такими "статическими" волновыми функциями. Например, один электрон в невозбужденном атоме представляется классически как частица, движущаяся по круговой траектории вокруг атомного ядра, в то время как в квантовой механике он описывается статической, сферически симметричной волновой функцией, окружающей ядро ​​(рис. 1) (отметим, однако, что только самые низкие состояния орбитального момента импульса, обозначенные как s, являются сферически симметричными).

Уравнение Шредингера действует на всю амплитуду вероятности, а не только на ее абсолютное значение. В то время как в абсолютное значение амплитуды вероятности заложена информация о вероятностях, в ее фазу заложена информация о взаимовлиянии между квантовыми состояниями. Это порождает "волнообразное" поведение квантовых состояний. Как выясняется, аналитические решения уравнения Шредингера возможны только для очень небольшого числа гамильтонианов относительно простых моделей, таких как квантовый гармонический осциллятор, частица в ящике, ион молекулы водорода и атом водорода - это важнейшие представители таких моделей. Даже атом гелия, который содержит всего на один электрон больше, чем в атом водород, не поддался ни одной попытке чисто аналитического решения.

Однако существует несколько методов получения приближенных решений. В важном методе, известном как теория возмущений, используется аналитический результат, полученный для простой квантово-механической модели, и на его основе генерируется результат для более сложной модели, которая отличается от более простой модели (например) добавлением энергии слабого потенциального поля. Другим подходом является метод "квазиклассического приближения", который применяется к системам, для которых квантовая механика применяется только к слабым (малым) отклонениям от классического поведения. Затем эти отклонения можно вычислить на основе классического движения. Этот подход особенно важен при изучении квантового хаоса.

Математически эквивалентные формулировки квантовой механики

Существуют многочисленные математически эквивалентные формулировки квантовой механики. Одной из старейших и наиболее часто используемых формулировок является "теория преобразований", предложенная Полем Дираком, которая объединяет и обобщает две самые ранние формулировки квантовой механики - матричную механику (созданную Вернером Гейзенбергом) и волновую механику (созданную Эрвином Шредингером).

С учетом того, что Вернер Гейзенберг был удостоен Нобелевской премии по физике в 1932 году за создание квантовой механики, роль Макса Борна в развитии КМ была упущена из виду до вручения ему Нобелевской премии в 1954 году. Эта роль упоминается в биографии Борна 2005 года, в которой рассказывается о его роли в матричной формулировке квантовой механики, а также использовании амплитуд вероятности. В 1940 году сам Гейзенберг признает в юбилейном сборнике в честь Макса Планка, что узнал о матрицах от Борна. В матричной формулировке, мгновенное состояние квантовой системы определяет вероятности её измеримых свойств или физических величин. Примеры величин включают в себя энергию, положение, импульс и орбитальный момент. Физические величины могут быть либо непрерывными (например, положение частицы) или дискретными (например, энергия электрона, связанного с атомом водорода). Фейнмановские интегралы по траекториям - альтернативная формулировка квантовой механики, в которой квантовомеханическая амплитуда рассматривается как сумма по всем возможным классическим и неклассическим траекториям между начальным и конечным состояниями. Это квантово-механический аналог принципа наименьшего действия в классической механике.

Законы квантовой механики

Законы квантовой механики имеют основополагающее значение. Утверждается, что пространство состояний системы является гильбертовым, и физические величины этой системы являются эрмитовыми операторами, действующими в этом пространстве, хотя не говорится, какие именно эти гильбертовы пространства или какие именно эти операторы. Они могут быть выбраны соответствующим образом, чтобы получить количественную характеристику квантовой системы. Важным ориентиром для принятия этих решений является принцип соответствия, который гласит, что предсказания квантовой механики сводятся к классической механике, когда система переходит в область высоких энергий или, что то же самое, в область больших квантовых чисел, то есть в то время как отдельная частица обладает определенной степенью случайности, в системах, содержащих миллионы частиц, преобладают усредненные значения и, при устремлении к высокоэнергетическому пределу, статистическая вероятность случайного поведения стремится к нулю. Другими словами, классическая механика является просто квантовой механикой больших систем. Этот "высокоэнергетический" предел известен как классический или предел соответствия. Таким образом, решение можно даже начать с устоявшейся классической модели той или иной системы, и затем попытаться угадать базовую квантовую модель, которая породила бы такую классическую модель при переходу к пределу соответствия.

Когда квантовая механика была изначально сформулирована, она применялась к моделям, пределом соответствия которых была нерелятивистская классическая механика. Например, известная модель квантового гармонического осциллятора использует явно нерелятивистское выражение для кинетической энергии осциллятора и, таким образом, является квантовой версией классического гармонического осциллятора.

Взаимодействие с другими научными теориями

Ранние попытки объединить квантовую механику со специальной теорией относительности предусматривали замену уравнения Шредингера ковариантными уравнениеми, такими как уравнение Клейна-Гордона или уравнение Дирака. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели определенные неудовлетворительные качества, вытекающие из того, что в них не учитывалось релятивистское рождение и уничтожением частиц. Полностью релятивистская квантовая теория требовала развития квантовой теории поля, в которой применяется квантование поля (а не фиксированного набора частиц). Первая полноценная квантовая теория поля - квантовая электродинамика, обеспечивает полное квантовое описание электромагнитного взаимодействия. Полный аппарат квантовой теории поля часто не требуется для описания электродинамических систем. Более простой подход, применяемый с момента создания квантовой механики, заключается в том, чтобы рассматривать заряженные частицы как квантово-механические объекты, на которые действует классическое электромагнитное поле. Например, элементарная квантовая модель атома водорода описывает электрическое поле атома водорода, используя классическое выражение для кулоновского потенциала:

E2/(4πε0r)

Такой "квазиклассический" подход не работает, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении фотонов заряженными частицами.

Также были разработаны квантовые теории поля для сильных и слабых ядерных сил. Квантовая теория поля для сильных ядерных взаимодействий называется квантовой хромодинамикой и описывает взаимодействие субядерных частиц, таких как кварки и глюоны. Слабые ядерные и электромагнитные силы были объединены в их квантованных формах в единую квантовую теорию поля (известная как теория электрослабого взаимодействия), физиками Абдусом Саламом, Шелдоном Глэшоу и Стивеном Вайнбергом. За эту работу все трое получили Нобелевскую премию по физике в 1979 году.

Трудно оказалось построить квантовые модели для четвертой оставшейся фундаментальной силы - гравитации. Выполнены полуклассические приближения, которые привели к предсказаниям, таким как излучение Хокинга. Тем не менее, формулировке полной теории квантовой гравитации мешают очевидные несовместимости между общей теорией относительности (которая является наиболее точной теорией гравитации, известной в настоящее время) и некоторыми из основных положений квантовой теории. Разрешение этих несовместимостей является направлением активных исследований и теорий, таких как теория струн - одна из возможных кандидатур на будущую теорию квантовой гравитации.

Классическая механика была также расширена в комплексную область, при этом комплексная классическая механика стала проявлять себя подобно квантовой механике.

Cвязь квантовой механики с классической механикой

Предсказания квантовой механики были подтверждены экспериментально с очень высокой степенью точности. Согласно принципу соответствия между классической и квантовой механиками, все объекты подчиняются законам квантовой механики, а классическая механика является лишь приближением для больших систем объектов (или статистической квантовой механикой для большого набора частиц). Таким образом, законы классической механики вытекают из законов квантовой механики как статистическое среднее при устремлении к очень большому предельному значению числа элементов системы или значений квантовых чисел. Однако в хаотических системах отсутствуют хорошие квантовые числа, и квантовый хаос изучает связь между классическим и квантовым описаниями этих систем.

Квантовая когерентность является существенным различием между классической и квантовой теориями, иллюстрируемая парадоксом Эйнштейна–Подольского–Розена (EPR) , она стала выпадом против известной философской интерпретации квантовой механики посредством обращения к локальному реализму. Квантовая интерференция предполагает сложение амплитуд вероятности, в то время как классические"волны" подразумевают сложение интенсивностей. Для микроскопических тел, протяженность системы значительно меньше, чем длина когерентности, что приводит к запутанности на далеких расстояниях и другим нелокальным явлениям, характерным для квантовых систем. Квантовая когерентность обычно не проявляется в макроскопических масштабах, хотя исключение из этого правила может возникать при крайне низких температурах (т. е. при приближении к абсолютному нулю), при которых квантовое поведение может проявляться в макроскопическом масштабе. Это находится в соответствии со следующими наблюдениями:

Многие макроскопические свойства классической системы являются прямым следствием квантового поведения его частей. Например, устойчивость основной части материи (состоящей из атомов и молекул, которые под действием одних лишь электрических сил быстро бы разрушались), жесткость твердых тел, а также механические, термические, химические, оптические и магнитные свойства материи являются результатом взаимодействия электрических зарядов в соответствии с правилами квантовой механики.

В то время как кажущееся "экзотическим" поведение материи, постулируемое квантовой механикой и теорией относительности, становится более очевидным при работе с частицами очень малого размера или при перемещении со скоростями, приближающимися к скорости света, законы классической, часто называемой "ньютоновской", физики остаются точными при прогнозировании поведения подавляющего числа "больших" объектов (порядка размера крупных молекул или ещё больших) и при скоростях гораздо меньших, чем скорость света.

В чем заключается отличие квантовой механики от классической?

Классическая и квантовая механика сильно отличаются тем, что они используют очень разные кинематические описания.

По устоявшемуся мнению Нильса Бора, для изучения квантово-механических явлений требуются эксперименты, с полным описанием всех устройств системы, подготовительного, промежуточного и конечного измерений. Описания представляются в макроскопических терминах, выраженных на обычном языке, дополненных понятиями классической механики. Начальные условия и конечное состояние системы соответственно описывается положением в конфигурационном пространстве, например, в пространстве кординат, или некотором эквивалентном пространстве, таком как импульсное пространстве. Квантовая механика не допускает полностью точного описания, как с точки зрения положения, так и импульса, точного детерминированного и причинно-следственного предсказания конечного состояния исходя из начальных условий или "состояния" (в классическом смысле этого слова). В этом смысле, пропагандируемом Бором в его зрелых трудах, квантовое явление - это процесс перехода от начального к конечному состоянию, а не мгновенное "состояние" в классическом смысле этого слова. Таким образом, существуют два вида процессов в квантовой механике: стационарные и переходные. Для стационарных процессов, начальное и конечное положение одинаковы. Для переходных - они различны. Очевидно по определению, что, если задано только начальное условие, то процесс не определен. Учитывая начальные условия, предсказание конечного состояния возможно, но только на вероятностном уровне, поскольку уравнение Шредингера детерминировано для эволюции волновой функции, а волновая функция описывает систему только в вероятностном смысле.

Во многих экспериментах можно принимать начальное и конечное состояние системы за частицу. В некоторых случаях оказывается, что существует потенциально несколько пространственно различимых путей или траекторий, по которым частица может переходить от начального к конечному состоянию. Важной особенностью квантового кинематического описания является то, что оно не позволяет однозначно определить, каким из этих путей производится переход между состояниями. Определены только начальные и конечные условия, и, как указано в предыдущем абзаце, они определены только с такой точностью, насколько это разрешает описание пространственной конфигурацией или её эквивалентом. В каждом случае, для которого необходимо квантовое кинематическое описание, всегда есть веская причина такого ограничения кинематической точности. Причина заключается в том, что для экспериментального нахождения частицы в определенном положении она должна быть неподвижной; для экспериментального нахождения частицы с определенным импульсом она должна находиться в свободном движении; эти два требования логически несовместимы.

Изначально классическая кинематика не требуют экспериментального описания её явлений. Это позволяет полностью точно описать мгновенное состояние системы положением (точкой) в фазовом пространстве - декартовом произведении конфигурационного и импульсного пространств. Это описание просто предполагает, или представляет себе состояние как физическую сущность, не беспокоясь о ее экспериментальной измеримости. Такое описание начального состояния вместе с законами движения Ньютона позволяет точно сделать детерминированное и причинно-следственное предсказание конечного состояния вместе с определенной траекторией эволюции системы. Для этого может быть использована гамильтоновская динамика. Классическая кинематика также позволяет описать процесс, аналогично описанию начального и конечного состояния, используемому квантовой механикой. Лагранжева механика позволяет это сделать. Для процессов, в которых необходимо учитывать величину действия порядка нескольких планковских констант, классическая кинематика не годится; здесь требуется использовать квантовую механику.

Общая теория относительности

Даже при том, что определяющие постулаты теории общей относительности и квантовой теории Эйнштейна безоговорочно подкрепляются строгими и повторяющимися эмпирическими доказательствами, и хотя они не противоречат друг другу теоретически (по крайней мере, в отношении своих первичных утверждений), их оказалось крайне трудно интегрировать в одну последовательную, единую модель.

Гравитацией можно пренебречь во многих областях физики элементарных частиц, так что объединение между общей теорией относительности и квантовой механикой не является насущным вопросом в этих частных приложениях. Однако, отсутствие правильной теории квантовой гравитации является важным вопросом в физической космологии и поиске физиками элегантной "Теории всего" (TВ). Следовательно, решение всех несоответствий между обеими теориями является одной из основных целей для физики 20 и 21 века. Многие видные физики, в том числе Стивен Хокинг, трудился на протяжении многих лет в попытке открыть теорию, лежащую в основе всего. Эта ТВ будет объединять не только разные модели субатомной физики, но и выводить четыре фундаментальные силы природы - сильное взаимодействие, электромагнетизм, слабое взаимодействие и гравитацию - из одной силы или явления. В то время как Стивен Хокинг изначально верил в ТВ, но после рассмотрения теорема Геделя о неполноте, он пришел к выводу, что создание такой теории неосуществимо, и заявил об этом публично в своей лекции "Гёдель и конец физики" (2002).

Основные теории квантовой механики

Стремление объединить фундаментальные силы с помощью квантовой механики все еще продолжается. Квантовая электродинамика (или "квантовый электромагнетизм"), которая в настоящее время (по крайней мере, в пертурбативном режиме) является наиболее точной проверенной физической теорией в соперничестве с общей теорией относительности, успешно объединяет слабые ядерные взаимодействия в электрослабое взаимодействие и в настоящее время ведется работа по объединению электрослабого и сильного взаимодействия в электросильное взаимодействие. Текущие прогнозы утверждают, что в районе 1014 ГэВ три вышеупомянутых силы сливаются в единое унифицированное поле. Помимо этой "грандиозной унификации", предполагается, что гравитацию можно объединить с другими тремя калибровочными симметриями, что, как ожидается, произойдёт на уровне примерно 1019 ГэВ. Однако - и в то время как специальная теория относительности бережно включена в квантовую электродинамику - расширенная общая теория относительности, в настоящее время лучшая теория, описывающая силы гравитации, не в полной мере включена в квантовую теорию. Один из тех, кто разрабатывает согласованную теорию всего, - Эдвард Виттен, - физик-теоретик, сформулировал М-теорию, которая представляет собой попытку изложить суперсимметрию на основе теории суперструн. М-теория предполагает, что наше видимое 4-мерное пространство - это на самом деле 11 - мерный пространственно-временной континуум, содержащий десять пространственных измерений и одно временное измерение, хотя 7 пространственных измерений при низких энергиях полностью "уплотнены" (или бесконечно изогнуты) и не легко поддаются измерению или исследованию.

Другая популярная теория петлевой квантовой гравитации (Loop quantum gravity (LQG)) - теория, впервые предложенная Карло Ровелли, которая описывает квантовые свойства гравитации. Она также является теорией квантового пространства и квантового времени, так как в общей теории относительности геометрические свойства пространства-времени являются проявлением гравитации. LQG - это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Основным результатом теории является физическая картина, в которой пространство является зернистым. Зернистость является прямым следствием квантования. Она имеет тот же характер зернистости фотонов в квантовой теории электромагнетизме или дискретных уровней энергии атомов. Но здесь само пространство является дискретным. Точнее, пространство можно рассматривать как чрезвычайно тонкую ткань или сеть, "сотканную" из конечных петель. Эти петлевые сети называются спиновые сети. Эволюция спиновой сети во времени называется спиновой пеной. Прогнозируемый размер данной структуры является длиной Планка, что составляет приблизительно 1,616 × 10-35 м. Согласно теории, нет никакого смысла в более короткой длине, чем эта. Следовательно, LQG предсказывает, что не только материя, но и само пространство, имеет атомарную структуру.

Философские аспекты квантовой механики

С момента своего создания, многие парадоксальные аспекты и результаты квантовой механики вызвали бурные философские диспуты и множество интерпретаций. Даже фундаментальным вопросам, таким как основные правила Макса Борна относительно амплитуды вероятности и распределения вероятности, потребовались десятилетия, чтобы они могли быть оценены обществом и многими ведущими учеными. Ричард Фейнман однажды сказал: "Думаю, я могу смело утверждать, что никто не понимает квантовую механику. По словам Стивена Вайнберга, "сейчас, на мой взгляд, не существует абсолютно удовлетворительной интерпретации квантовой механики.

Копенгагенская интерпретация - во многом благодаря Нильсу Бору и Вернеру Гейзенбергу - на протяжении 75 лет после её провозглашения остается наиболее приемлемой среди физиков. Согласно этой интерпретации вероятностный характер квантовой механики не является временной особенностью, которая в конечном итоге будет заменена детерминированной теорией, а должна рассматриваться как окончательный отказ от классической идеи "причинно-следственной связи". Кроме того считается, что в ней любые четко определенные применения квантово-механического формализма всегда должны делать ссылку на схему эксперимента из-за сопряженного характера доказательств, полученных в различных экспериментальных ситуациях.

Альберт Эйнштейн, будучи одним из основателей квантовой теории, сам не принял некоторые из более философских или метафизических интерпретаций квантовой механики, таких как отказ от детерминизма и причинно-следственной связи. Его самый цитируемый знаменитый ответ на такой подход звучит так: "Бог не играет в кости". Он отверг концепцию о том, что состояние физической системы зависит от экспериментальной измерительной установки. Он считал, что явления природы происходят по своим законам, независимо от того, происходит ли за ними наблюдение и каким образом. В этой связи его поддерживает принятое в настоящее время определение квантового состояния, которое остается инвариантным при произвольном выборе конфигурационного пространства для его представления, то есть способа наблюдения. Он также счел, что в основе квантовой механики должна лежать теория, которая тщательно и непосредственно выражает правило, отвергающее принцип дальнодействия; другими словами, он настаивал на принципе локальности. Он рассматривал, но теоретически обоснованно отклонил частное представление о скрытых переменных, чтобы избежать неопределенности или отсутствия причинно-следственных связей в квантово-механических измерениях. Он считал, что квантовая механика была в то время действующей, но не окончательной и не незыблемой теорией квантовых явлений. Он считал, что её будущая замена потребует глубоких концептуальных достижений, и что это произойдет не так быстро и легко. Дискуссии Бора-Эйнштейна дают яркую критику копенгагенской интерпретации с гносеологической точки зрения.

Джон Белл показал, что этот парадокс "EPR" приводил к экспериментально проверяемым различиям между квантовой механикой и теориями, которые опираются на добавление скрытых переменных. Проведены эксперименты, подтверждающие точность квантовой механики, тем самым демонстрируя, что квантовая механика не может быть улучшена путем добавления скрытых переменных. Первоначальные эксперименты Алена Аспекта в 1982 году и многие последующие эксперименты с тех пор окончательно подтвердили квантовую запутанность.

Запутанность, как показали белловские эксперименты, не нарушает причинно-следственных связей, поскольку никакой передачи информации не происходит. Квантовая запутанность формирует основу квантовой криптографии, которая предлагается для использования в высокобезопасных коммерческих приложениях в банковской и государственной сферах.

Многомировая интерпретация Эверетта, сформулированная в 1956 году, полагает, что все возможности, описываемые квантовой теорией, одновременно возникают в мультиверсе, состоящем, главным образом, из независимых параллельных вселенных. Это не достигается введением некоторой "новой аксиомы" в квантовую механику, а наоборот, достигается удалением аксиомы распада волнового пакета. Все возможные последовательные состояния измеряемой системы и измерительного устройства (включая наблюдателя) присутствуют в реальной физической - а не только в формальной математической, как в других интерпретациях - квантовой суперпозиции. Такая суперпозиция последовательных комбинаций состояний различных систем называется запутанным состоянием. В то время как мультиверс является детерминированным, мы воспринимаем недетерминированное поведение, случайного характера, поскольку можем наблюдать только ту вселенную (т. е. вклад совместимого состояния в вышеупомянутую суперпозицию), в которой мы, как наблюдатели, обитаем. Интерпретация Эверетта идеально согласуется с экспериментами Джона Белла и делает их интуитивно понятными. Однако, согласно теории квантовой декогеренции, эти "параллельные вселенные" никогда не будут доступны нам. Недоступность можно понимать следующим образом: как только измерение будет сделано, измеряемая система запутывается как с физиком, измерявшим её, так и с огромным количеством других частиц, некоторые из которых являются фотонами, улетающими со скоростью света к другому концу вселенной. Чтобы доказать, что волновая функция не распалась, необходимо вернуть все эти частицы обратно и измерить их снова вместе с системой, которая изначально была измерена. Это не только совершенно непрактично, но даже если теоретически можно было бы это сделать, то пришлось бы уничтожить любые доказательства того, что первоначальное измерение имело место (в том числе и память физика). В свете этих белловских экспериментов Крамер в 1986 году сформулировал свою транзакционную интерпретацию. В конце 1990-х годов появилась реляционная квантовая механика как современная производная копенгагенской интерпретации.

Квантовая механика имела огромный успех в объяснении многих особенностей нашей Вселенной. Квантовая механика часто является единственным доступным инструментом, способным выявить индивидуальное поведение субатомных частиц, составляющих все формы материи (электроны, протоны, нейтроны, фотоны и др.). Квантовая механика сильно повлияла на теорию струн - претендента на теорию всего (а Theory of Everything).

Квантовая механика также критически важна для понимания того, как индивидуальные атомы создают ковалентные связи для формирования молекул. Применение квантовой механики в химии называется квантовой химией. Релятивистская квантовая механика может, в принципе, математически описать большую часть химии. Квантовая механика также может дать количественное представление о процессах ионного и ковалентного связывания, явным образом показывая, какие молекулы к другим молекулам энергетически подходят и при каких величинах энергии. Кроме того, большинство расчетов в современной вычислительной химии опираются на квантовую механику.

Во многих отраслях современные технологии работают в масштабах, где квантовые эффекты значительно проявляются.

Квантовая физика в электронике

Многие современные электронные устройства разработаны с использованием квантовой механики. Например, лазер, транзистор (и таким образом микрочип), электронный микроскоп и магнитно-резонансная томография (МРТ). Изучение полупроводников привело к изобретению диода и транзистора, которые являются незаменимыми компонентами современных электронных систем, компьютерных и телекоммуникационных устройств. Ещё одно приложение - это светоизлучающий диод, который представляет собой высокоэффективный источник света.

Многие электронные устройства работают под действием квантового туннелирования. Оно даже присутствует в простом выключателе. Переключатель не сработал бы, если бы электроны не могли квантово тунеллировать через слой окисла на металлических контактных поверхностях. Чипы флэш-памяти, основной детали USB-накопителей, используют квантовое туннелирование, чтобы стирать информацию в своих ячейках. Некоторые устройства с отрицательным дифференциальным сопротивлением, такие как резонансный туннельный диод, также используют квантовый туннельный эффект. В отличие от классических диодов, ток в нём протекает под действием резонансного туннелирования через два потенциальных барьера. Его режим работы с отрицательным сопротивлением может быть объяснён только квантовой механикой: при приближении энергии состояния связанных носителей к уровню Ферми, туннельный ток возрастает. При отдалении от уровня Ферми, ток уменьшается. Квантовая механика имеет жизненно важное значение для понимания и разработки таких типов электронных устройств.

Квантовая криптография

Исследователи в настоящее время ищут надежные методы непосредственного манипулирования квантовыми состояниями. Предпринимаются усилия по полноценному развитию квантовой криптографии, которая теоретически позволит гарантировать безопасную передачу информации.

Квантовые вычисления

Более отдаленной целью является разработка квантовых компьютеров, которые, как ожидается, будут выполнять определенные вычислительные задачи экспоненциально быстрее классических компьютеров. Вместо классических битов, квантовые компьютеры используют кубиты, которые могут находиться в суперпозиции состояний. Другой активной темой исследования является квантовая телепортация, которая имеет дело с методами передачи квантовой информации на произвольные расстояния.

Квантовые эффекты

В то время как квантовая механика в первую очередь применяется к атомным системам с меньшим количеством вещества и энергии, некоторые системы демонстрируют квантово-механические эффекты в больших масштабах. Сверхтекучесть - способность движения потока жидкости без трения при температуре вблизи абсолютного нуля, является одним известным примером таких эффектов. Тесным образом связанно с этим явлением и явление сверхпроводимости - поток электронного газа (электрический ток), движущийся без сопротивления в проводящем материале при достаточно низких температурах. Дробный квантовый эффект Холла является топологическим упорядоченным состоянием, которое соответствует моделям квантового запутывания, действующего на большие расстояния. Состояния с различным топологическим порядком (или различной конфигурацией дальнедиапазонного запутывания) не могут вносить изменения в состояния друг в друга без фазовых превращений.

Квантовая теория

Квантовая теория также содержит точные описания многих ранее необъяснимых явлений, таких как излучение абсолютно черного тела и стабильность орбитальных электронов в атомах. Она также дала представление о работе многих различных биологических систем, в том числе обонятельных рецепторов и белковых структур. Недавнее исследование фотосинтеза показало, что квантовые корреляции играют важную роль в этом фундаментальном процессе, протекающем в растениях и многих других организмах. Тем не менее, классическая физика часто может обеспечить хорошие приближения к результатам, полученным квантовой физикой, как правило, в условиях большого количества частиц или больших квантовых чисел. Поскольку классические формулы гораздо проще и легче вычислять, чем квантовые формулы, использование классических аппроксимаций предпочтительнее, когда система достаточно велика, чтобы сделать эффекты квантовой механики незначительными.

Движение свободной частицы

Для примера, рассмотрим свободную частицу. В квантовой механике наблюдается корпускулярно–волновой дуализм, так что свойства частицы могут быть описаны как свойства волны. Таким образом, квантовое состояние может быть представлено в виде волны произвольной формы и простирающейся в пространстве в виде волновой функции. Положение и импульс частицы являются физическими величинами. Принцип неопределенности утверждает, что положение и импульс не могут одновременно быть точно измерены. Тем не менее, можно измерить положение (без измерения импульса) движущейся свободной частицы, создав собственное состояние положения с волновой функцией (дельта-функция Дирака), которая имеет очень большое значение в определенном положении х, и ноль в остальных положениях. Если выполнить измерение положения при такой волновой функции, то в результате х будет получен с вероятностью 100% (то есть, с полной уверенностью, или с полной точностью). Это называется собственное значение (состояние) положения или, указанного в математических терминах, собственное значение обобщенной координаты (eigendistribution). Если частица находится в собственном состоянии положения, то ее импульс абсолютно не определяем. С другой стороны, если частица находится в собственном состоянии импульса, то её положение совершенно неизвестно. В собственном состоянии импульса, собственная функция которого имеет форму плоской волны, можно показать, что длина волны равна h/p, где h - постоянная Планка, а р - импульс собственного состояния.

Прямоугольный потенциальный барьер

Это модель квантового туннельного эффекта, который играет важную роль в производстве современных технологических устройств, таких как флэш-память и сканирующий туннельный микроскоп. Квантовое туннелирование является центральным физическим процессом, протекающим в сверхрешетках.

Частица в одномерном потенциальном ящике

Частица в одномерном потенциальном ящике является самым простым математическим примером, в котором пространственные ограничения приводят к квантованию уровней энергии. Ящик определяется как наличие нулевой потенциальной энергии везде внутри определенной области и бесконечной потенциальной энергии всюду за пределами этой области.

Конечная потенциальная яма

Конечная потенциальная яма является обобщением задачи бесконечной потенциальной ямы, имеющей конечную глубину.

Задача конечной потенциальной ямы является математически более сложной, чем задача частицы в бесконечном потенциальном ящике, так как волновая функция не обращается в нуль на стенках ямы. Вместо этого, волновая функция должна удовлетворять более сложным математическим граничным условиям, так как она отлична от нуля в области за пределами потенциальной ямы.



Что еще почитать