Школьная энциклопедия. Аморфные вещества. Кристаллическое и аморфное состояние вещества. Применение аморфных веществ

Наряду с кристаллическими твердыми телами встречаются аморфные твердые тела. У аморфных тел в отличие от кристаллов нет строгого порядка в расположении атомов. Только ближайшие атомы - соседи - располагаются в некотором порядке. Но

строгой повторяемости во всех направлениях одною того же элемента структуры, которая характерна для кристаллов, в аморфных телах нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решетки из правильных шестиугольников (рис. 77, а). Аморфная структура кварца также имеет вид решетки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти- и семиугольники (рис. 77, б).

Свойства аморфных тел. Все аморфные тела изотропны: их физические свойства одинаковы по всем направлениям. К аморфным телам принадлежат стекло, многие пластмассы, смола, канифоль, сахарный леденец и др.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам, и текучесть, подобно жидкостям. При кратковременных воздействиях (ударах) они ведут себя как твердое тело и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Так, например, кусок смолы постепенно растекается по твердой поверхности. Атомы или молекулы аморфных тел, подобно молекулам жидкости, имеют определенное время «оседлой жизни» время колебаний около положения равновесия. Но в отличие от жидкостей это время у них весьма велико. В этом отношении аморфные тела близки к кристаллическим, так как перескоки атомов из одного положения равновесия в другое происходят редко.

При низких температурах аморфные тела по своим свойствам напоминают твердые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства все более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения

равновесия в другое. Никакой определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет.

Физика твердого тела. Все свойства твердых тел (кристаллических и аморфных) могут быть объяснены на основе знания их атомно-молекулярной структуры и законов движения молекул, атомов, ионов и электронов, слагающих твердые тела. Исследования свойств твердых тел объединены в большой области современной физики - физики твердого тела. Развитие физики твердого тела стимулируется в основном потребностями техники. Приблизительно половина физиков мира работает в области физики твердого тела. Разумеется, достижения в этой области немыслимы без глубоких знаний всех остальных разделов физики.

1. Чем отличаются кристаллические тела от аморфных? 2. Что такое анизотропия? 3. Приведите примеры монокристаллических, поликристал-лических и аморфных тел. 4. Чем отличаются краевые дислокации от винтовых?

Термин «аморфное» переводится с греческого буквально как «не вид», «не форма». Такие вещества не обладают кристаллической структурой, они не подвергаются расщеплению с формированием кристаллических граней. Как правило, аморфное тело изотропно, то есть его физические свойства не зависят от направления внешнего воздействия.

В течение определенного промежутка времени (месяцев, недель, дней) отдельные аморфные тела могут самопроизвольно переходить в кристаллическое состояние. Так, например, можно наблюдать, как мед или сахарный леденец спустя некоторое время теряют прозрачность. В таких случаях обычно говорят, что продукты «засахарились». При этом, зачерпнув засахарившийся мед ложкой или разломив леденец, можно действительно наблюдать сформировавшиеся кристаллики сахара, которые ранее существовали в аморфном виде.

Такая самопроизвольная кристаллизация веществ указывает на разную степень устойчивости состояний. Таким образом, аморфное тело менее устойчиво.

Твёрдое тело является одним из четырёх фундаментальных состояний материи, кроме жидкости, газа и плазмы. Оно характеризуется структурной жёсткостью и устойчивостью к изменению формы или объёма. В отличие от жидкости, твёрдый объект не течёт, не принимает форму контейнера, в который его помещают. Твёрдое тело не расширяется, чтобы заполнить весь доступный объём, как это делает газ.
Атомы в твёрдом теле тесно связаны друг с другом, находятся в упорядоченном состоянии в узлах кристаллической решётки (это металлы, обычный лёд, сахар, соль, алмаз), или располагаются нерегулярно, не имеют строгой повторяемости в структуре кристаллической решётки (это аморфные тела, такие как оконное стекло, канифоль, слюда или пластмасса).

Кристаллические тела

Кристаллические твёрдые тела или кристаллы имеют отличительную внутреннюю особенность - структуру в виде кристаллической решётки, в которой определённое положение занимают атомы, молекулы или ионы вещества.
Кристаллическая решётка приводит к существованию особенных плоских граней у кристаллов, которые отличают одно вещество от другого. При воздействии рентгеновских лучей, каждая кристаллическая решётка излучает характерный рисунок, который можно использовать для идентификации вещества. Грани кристаллов пересекаются под определёнными углами, отличающими одно вещество от другого. Если кристалл расщепить, то новые грани будут пересекаться под теми же углами, что у исходного.


Например, galena - галенит, pyrite - пирит, quartz - кварц. Грани кристалла пересекаются под прямым углом в галените (PbS) и пирите (FeS 2), под другими углами в кварце.

Свойства кристаллов

  • постоянный объём;
  • правильная геометрическая форма;
  • анизотропия - различие механических, световых, электрических и тепловых свойств от направления в кристалле;
  • чётко определённая температура плавления, так как она зависит от регулярности кристаллической решётки. Межмолекулярные силы, удерживающие твёрдое вещество вместе, однородны, и требуется одинаковое количество тепловой энергии, чтобы одновременно разорвать каждое взаимодействие.

Аморфные тела

Примерами аморфных тел, не имеющих строгой структуры и повторяемости ячеек кристаллической решётки, являются: стекло, смола, тефлон, полиуретан, нафталин, поливинилхлорид.



Они имеют два характерных свойства: изотропность и отсутствие определённой температуры плавления.
Изотропность аморфных тел понимают, как одинаковость физических свойств вещества по всем направлениям.
В аморфном твёрдом теле расстояние до соседних узлов кристаллической решётки и количество соседних узлов изменяется по всему материалу. Поэтому, чтобы разорвать межмолекулярные взаимодействия, требуется различное количество тепловой энергии. Следовательно, аморфные вещества медленно размягчаются в широком диапазоне температур и не имеют чёткой температуры плавления.
Особенностью аморфных твёрдых тел является то, что при низких температурах они имеют свойства твёрдых тел, а при повышении температуры - свойства жидкостей.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

ФИЗИКА 8 КЛАСС

Доклад на тему:

“Аморфные тела. Плавление аморфных тел.”

ученица 8 “б” класса:

2009

Аморфные тела.

Проделаем опыт. Нам понадобятся кусок пластилина, стеариновая свеча и электрокамин. Поставим пластилин и свечу на равных расстояниях от камина. По прошествии некоторого времени часть стеарина расплавится (станет жидкостью), а часть – останется в виде твердого кусочка. Пластилин за то же время лишь немного размягчится. Еще через некоторое время весь стеарин расплавится, а пластилин – постепенно "разъедется" по поверхности стола, все более и более размягчаясь.

Итак, существуют тела, которые при плавлении не размягчаются, а из твердого состояния превращаются сразу в жидкость. Во время плавления таких тел всегда можно отделить жидкость от еще не расплавившейся (твердой) части тела. Эти тела – кристаллические. Существуют также твердые тела, которые при нагревании постепенно размягчаются, становятся все более текучими. Для таких тел невозможно указать температуру, при которой они превращаются в жидкость (плавятся). Эти тела называют аморфными.

Проделаем следующий опыт. В стеклянную воронку бросим кусок смолы или воска и оставим в теплой комнате. По прошествии примерно месяца окажется, что воск принял форму воронки и даже начал вытекать из нее в виде "струи" (Рис.1). В противоположность кристаллам, которые почти вечно сохраняют собственную форму, аморфные тела даже при невысоких температурах обладают текучестью. Поэтому их можно рассматривать как очень густые и вязкие жидкости.

Строение аморфных тел. Исследования при помощи электронного микроскопа, а также при помощи рентгеновских лучей свидетельствуют, что в аморфных телах не наблюдается строгого порядка в расположении их частиц. Взгляните, на рисунке 2 изображено расположение частиц в кристаллическом кварце, а на правом – в аморфном кварце. Эти вещества состоят из одних и тех же частиц – молекул оксида кремния SiO 2 .

Кристаллическое состояние кварца получается, если расплавленный кварц охлаждать медленно. Если же охлаждение расплава будет быстрым, то молекулы не успеют "выстроиться" в стройные ряды, и получится аморфный кварц.

Частицы аморфных тел непрерывно и беспорядочно колеблются. Они чаще, чем частицы кристаллов могут перескакивать с места на место. Этому способствует и то, что частицы аморфных тел расположены неодинаково плотно: между ними имеются пустоты.

Кристаллизация аморфных тел. С течением времени (несколько месяцев, лет) аморфные вещества самопроизвольно переходят в кристаллическое состояние. Например, сахарные леденцы или свежий мед, оставленные в покое в теплом месте, через несколько месяцев становятся непрозрачными. Говорят, что мед и леденцы "засахарились". Разломив леденец или зачерпнув мед ложкой, мы действительно увидим образовавшиеся кристаллики сахара.

Самопроизвольная кристаллизация аморфных тел свидетельствует, что кристаллическое состояние вещества является более устойчивым, чем аморфное. Межмолекулярная теория объясняет это так. Межмолекулярные силы притяжения-отталкивания заставляют частицы аморфного тела перескакивать преимущественно туда, где имеются пустоты. В результате возникает более упорядоченное, чем прежде расположение частиц, то есть образуется поликристалл.

Плавление аморфных тел.

По мере возрастания температуры энергия колебательного движения атомов в твёрдом теле возрастает и, наконец, наступает такой момент, когда связи между атомами начинают разрываться. При этом твердое тело переходит в жидкое состояние. Такой переход называется плавлением. При фиксированном давлении плавление происходит при строго определённой температуре.

Количество тепла, необходимое для превращения единицы массы вещества в жидкость при температуре плавления, называют удельной теплотой плавления λ .

Для плавления вещества массой m необходимо затратить количество теплоты равное:

Q = λ · m .

Процесс плавления аморфных тел отличается от плавления кристаллических тел. При повышении температуры аморфные тела постепенно размягчаются, становятся вязкими, до тех пор, пока не превратятся в жидкость. Аморфные тела в противоположность кристаллам не имеют определенной температуры плавления. Температура аморфных тел при этом изменяется непрерывно. Это происходит потому, что в аморфных твердых телах, как и в жидкостях, молекулы могут перемещаться друг относительно друга. При нагревании их скорость увеличивается, увеличивается расстояние между ними. В результате тело становится все мягче и мягче, пока не превратится в жидкость. При отвердевании аморфных тел их температура также понижается непрерывно.

Не все твёрдые тела - кристаллы. Существует множество аморфных тел.

У аморфных тел нет строгого порядка в расположении атомов. Только ближайшие атомы - соседи располагаются в некотором порядке. Но строгой направленности по всем направлениям одного и того же элемента структуры, которая характерна для кристаллов в аморфных телах, нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц SiO2, может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решётки из правильных шестиугольников. Аморфная структура кварца также имеет вид решётки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти и семиугольники.

В 1959 г. английский физик Д. Бернал провёл интересные опыты: он взял много маленьких пластилиновых шариков одинакового размера, обвалял их в меловой пудре и спрессовал в большой ком. В результате шарики деформировались в многогранники. Оказалось, что при этом образовывались преимущественно пятиугольные грани, а многогранники в среднем имели 13,3 грани. Так что какой-то порядок в аморфных веществах определённо есть.

К аморфным телам относятся стекло, смола, канифоль, сахарный леденец и др. В отличие от кристаллических веществ аморфные вещества изотропны, то есть их механические, оптические, электрические и другие свойства не зависят от направления. У аморфных тел нет фиксированной температуры плавления: плавление происходит в некотором температурном интервале. Переход аморфного вещества из твердого состояния в жидкое не сопровождается скачкообразным изменением свойств. Физическая модель аморфного состояния до сих пор не создана.

Аморфные тела занимают промежуточное положение между кристаллическими твёрдыми телами и жидкостями. Их атомы или молекулы располагаются в относительном порядке. Понимание структуры твёрдых тел (кристаллических и аморфных) позволяет создавать материалы с заданными свойствами.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твёрдым телам, и текучесть, подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые тела и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Проследим за куском смолы, который лежит на гладкой поверхности. Постепенно смола по ней растекается, и, чем выше температура смолы, тем быстрее это происходит.

Аморфные тела при низких температурах по своим свойствам напоминают твёрдые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства всё более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения в другое. Определённой температуры тел у аморфных тел, в отличие от кристаллических, нет.

При охлаждении жидкого вещества не всегда происходит его кристаллизация. при определенных условиях может образоваться неравновесное твердое аморфное (стеклообразное) состояние. В стеклообразном состоянии могут находиться простые вещества (углерод, фосфор мышьяк, сера, селен), оксиды (например, бора, кремния, фосфора), галогениды, халькогениды, многие органические полимеры.В этом состоянии вещество может быть устойчиво в течение длительного промежутка времени, например, возраст некоторых вулканических стекол исчисляется миллионами лет. Физические и химические свойства вещества в стеклообразном аморфном состоянии могут существенно отличаться от свойств кристаллического вещества. Например, стеклообразный диоксид германия химически более активен, чем кристаллический. Различия в свойствах жидкого и твердого аморфного состояния определятся характером теплового движения частиц: в аморфном состоянии частицы способны лишь к колебательным и вращательным движениям, но не могут перемещаться в толще вещества.

Под действием механических нагрузок или при изменении температуры аморфные тела могут закристаллизоваться. Реакционная способность веществ в аморфном состоянии значительно выше, чем в кристаллическом. Главный признак аморфного (от греческого "аморфос" - бесформенный) состояние вещества - отсутствие атомной или молекулярной решетки, то есть трехмерной периодичности структуры, характерной для кристаллического состояния.

Существуют вещества, которые в твердом виде могут находиться только в аморфном состоянии. Это относится к полимерам с нерегулярной последовательностью звеньев.



Что еще почитать