Технологии поиска месторождений нефти. Стремясь увеличить количество потребляемой нефти, люди стали рыть колодцы в местах поверхностных нефтепроявлений, а затем бурить скважины. Разведка нефтяных и газовых месторождений. Цели и задачи

Поиски и разведка нефтяных и газовых месторождений

Поисково-разведочные работы на нефть и газ включаютвсе виды человеческой деятельности - от прогнозирования нефтегазоносности неизученных территорий и до подсчета запасов УВ в выявленных залежах и месторождениях и подготовкаих к разработке. Поисками и разведкой занимаются специалисты разногопрофиля, включая геологов, геофизиков, геохимиков, гидрогеологов, гидродинамиков, буровиков, химиков, экономистови т.д.

На разных стадиях поисково-разведочного процесса выпол­няется комплекс определенных видов деятельности и исследова­ний с применением современной аппаратуры и оборудования, включая использование ЭВМ и программирования, дешифрирование аэро и космических снимков, бурение скважин различного назначения, испытание пластов на нефть и газ и т.д.

Высокая эффективность поисков и разведки скоплений нефти и газа возможна лишь при условии проведения достаточно научно обоснованных исследований в конкретных перспективных в нефтегазосном отношении районах и областях с учетом общих закономерностей образования и размещения нефти и газа в земной коре. При поисках и разведке нефти и газа важно учитывать экономические знания, а также экологию окружающей среды, состояние промышленности и транспорта в районах предполагаемого проведения поисково-разведочных работ.

В проектах поисков и разведки скоплений нефти и газа вперспективных районах и областях, которые представляют различные геологические организации, дается обоснование экономической целесообразности проведения работ, учитывающее применение наиболее эффективных методов, позволяющих получить максимальный прирост разведанных запасов нефти и газа при минимальных затратах.

Поиски нефти и газа в России и сопредельных странах прово­дятся на суше и в море (на континентальном шельфе), при этом технология поисково-разведочных работ в том и другом случаях существенно различается. Однако, притом, что бурение и разведка в море представляют большие трудности по сравнению с аналогичными работами на суше, в ряде случаев даже в континен­тальных условиях бывают большие проблемы. Так, технические сложности и большие издержки производства возникают при освоении скоплений УВ на большой глубине (более 5 км), а также - под мощной толщей каменной соли, как в Прикаспийском регионе (и то, и другое вместе).

В проектах поисков и разведки скоплений нефти и газа, поми­мо технологической части, где изложены задачи, виды, объем и методика проведения всех работ, имеются экологическая и экономическая части, предусматривающие проведение мероприятий по охране недр и окружающей среды, а также оценивающие геолого-экономическую значимость проектируемых работ. После обсуждения и утверждения проектов выделяются материально-технические, трудовые и другие ресурсы на проведение геологоразведочных работ на нефть и газ.

По окончании поисково-разведочного процесса проводится на­учная обработка всей полученной информации, выполняется подсчет запасов УВ, составляется геологический отчет. В результате определяется степень выполнения проекта и дается оценка гео­логической эффективности проведенных поисково-разведочных работ, а затем рассчитываются экономические показатели.

Поиски и разведку нефти и газа, а также разработку их скоп­лений проводят различные организации, большинство из которых в последние годы преобразовались в акционерные общества(АО), например, в Тюменской области Западной Сибири: ОАО «Роснефть-Пурнефтегаз», ОАО «Сургутнефтегаз», ОАО «ЛУКОЙЛ-Когалымнефтегаз» и др.

Таким образом, геологоразведочный процесс, связанный с поисками и разведкой скоплений нефти и газа, состоит из комплекса работ, которые должны обеспечить открытие месторождения УВ, его геолого-экономическую оценку и подготовку к разработке.

При этом обязательно проводится геологическое изучение недр, которое предусматривает рациональное использование средств, отпущенных государством, АО или другими заказчиками работ. К сожалению, при производстве геологоразведочных работ на нефть и газ в ряде случаев наносится существенный урон окружающей среде, при этом, страдают не только природа, животный и растительный мир, но и сельскохозяйственные угодья, а также люди, непосредственно участвующие в поисково-разведочных работах, проживающие в районах открытых месторождений нефти и газа. Так, освоение богатств Западной Сибири и направление поисковых работ все дальше на север в районы тундры принесли осложнения в жизнь северных народов, занимающихся оленеводством, из-за поиска новых пастбищ и т.д. Или другой пример - Астраханский газоконденсатный объект в Прикаспийском регионе, где газ имеет высокое содержание сернистых соединений, что, конечно, отрицательно влияет на проживающих и работающих там людей.

Поэтому, успешное выполнение поисково-разведочных работ на нефть и газ должно предусматривать комплекс необходимых попредупреждению заражения земли, воздуха и водных источников, а также леса, сельхозугодий и других элементов окружающей среды. Соблюдение экологических норм необходимо при проведении всех видов человеческой деятельности, включая поиски, разведку и разработку углеводородного сырья.

Поисково-разведочный процесс на нефть и газ включает в себя три последовательных этапа: региональный, поисковый и разведочный, каждый из которых подразделяется на две стадии

. Региональный этап проводится в неизученных и слабоизученных регионах или их частях, а также при поисках скоплений УВ в глубокозалегающих малоизученных частях разреза, например, под каменной солью на глубинах более 4 км, как в Прикаспийском регионе.

На стадии прогноза иефтегазоносностипроводится изучение литолого-стратиграфических комплексов разреза отложений, выделение структурных этажей, проводится изучение основных этапов тектонического развития исследуемой территории и текто­ническое районирование. Следовательно, на этой стадии устанавливаются основные черты геологического строения и геологической истории. Затем проводится выделение нефтегазо-перспективных горизонтов и зон возможного нефтегазонакопления. Далее проводятся качественная и количественная оценки перспектив нефтегазоносности, а также выбор основных направлений и первоочередных объектов дальнейших исследований.

На следующей стадии оценки зон нефтегазонакопления уточняется нефтегазогеологическое районирование, выделяются наиболее крупные ловушки, например, валообразные поднятия, с которыми могут быть связаны зоны нефтегазонакопления. Проводится количественная оценка перспектив нефтегазоносноети, и выбираются районы и первоочередные объекты (региональные ловушки) для проведения поисковых работ.



Поисковый этап наступает, когда полностью закончен региональный этап и проведено геологическое обоснование к выполнению поисковых работ на нефть и газ на выявленной перспективной региональной ловушке. В ней можно открыть зону нефте-газонакопления, включающую ряд месторождений нефти и газа в пределах отдельных площадей - локальных поднятий или других локальных ловушек, осложняющих региональную ловушку. Поисковый этап подразделяется на две стадии, причем первая из них делится в свою очередь на две подстадии.

Стадия выявления и подготовки объектов к поисковому бурению делится на подстадии: 1 - выявление объектов и подстадию 2 - подготовка объектов. На первой подстадии выявляются условия залегания и параметры перспективных пластов, а также наиболее перспективные локальные ловушки (объекты, площади), выбираются первоочередные объекты и проводится их подготовка к поисковому бурению. К примеру, если региональный ловушкой является вал, то выбираются наиболее крупные и хорошо подготовленные к бурению локальные структуры (антиклинали, купола), среди которых намечается очередность их подготовки к поисковому бурению. Наиболее подготовленными к бурению структурами считаются такие, которые по данным полевых геофизических исследований достаточно четко определены в размерах (длина, ширина, амплитуда), конфигурация и сводовая часть структуры, а также положение структурных осложнений (разломов и др.), если выявлена сложная структура.

К крупным ловушкам относятся поднятия площадью 50-100 км 2 и более, к средним - 10-50 км 2 , к мелким - до 10 км 2 . При этом в качестве первоочередных выбирают структуры, ресурсы которых превышают запасы среднего в районе месторождения. Кроме этого, на очередность ввода структур в поисковое бурение влияют и экономические показатели (близость к месторождениям, трубопроводам, отдаленность от баз глубокого бурения, глубина залегания продуктивных пластов, качество УВ и др.). На второй подстадии проводятся: детализация выявленных перспективных ловушек; выбор объектов и определение очередности их ввода в поисковое бурение; количественная оценка ресурсов УВ на объектах, подготовленных к поисковому бурению; выбор мест заложения поисковых скважин на подготовленных объектах.

На стадии поиска месторождений (залежей) основной целью является открытие скоплений УВ: открытие месторождения или выявление новых залежей в неизученной части разреза в пределах месторождений, находящихся в разведке. В комплекс задач, решаемых на данной стадии, входят: выявление продуктивных пластов-коллекторов, перекрытых непроницаемыми слоями (покрышками); определение параметров пластов; опробование и испытание продуктивных горизонтов и скважин; получение промышленных притоков нефти и газа; определение коллекторских свойств пластов и физико-химических свойств флюидов (нефти, газа, конденсата, воды); оценка запасов УВ открытых залежей; выбор объектов для проведения детализационных и оценочных работ.

Разведочный этап является завершающим в геологоразведочных работах на нефть и газ. Разведка проводится на площадях, где получены промышленные притоки нефти и газа. Целью разведочных работ является оценка открытых скоплений нефти и газа и подготовка их к разработке.

На первой стадии разведки (оценка месторождений или залежей) проводится следующее: определение параметров залежей и месторождений для установления их промышленной значимости; подсчет запасов УВ залежей и месторождений; выбор объектов и этажей разведки; определение очередности опытно-промышленной эксплуатации и подготовки объектов к разработке.

На следующей стадии разведки (подготовка местоскоплений или залежей к разработке) основными задачами являются: геометризация залежей УВ; оценка достоверности значений коллекторских свойств продуктивных пластов и подсчетных параметров для расчета запасов и составления технологической схемы разработки для нефтяного объекта или схемы опытно-промышленной эксплуатации газового объекта; подсчет запасов УВ и определение коэффициента извлечения (нефтеотдачи); доизучение залежейи месторождений в процессе разработки.

При поисках и разведке нефти и газа используются в комплек­се различные методы исследований, включая: геологические, геофизические (полевые и скважинные), геохимические, гидрогеологические, геотермические, гидродинамические, дистанционные, геоморфологические, математические методы, применение ЭВМ и программирования. Поэтому, в поисково-разведочном процессе участвуют различные специалисты: геологи, буровики, геофизики, геохимики, гидрогеологи, гидродинамики, математики и другие.

Основными видами исследований считаются геофизические исследования

В настоящее время используется четыре основных геофизических метода

исследований: сейсмический, гравиметрический, магнитный и электрический.

Сейсморазведка основана на изучении особенностей распространения упругих колебаний в земной коре. Упругие колебания (или, как их еще называют, сейсмические волны) чаще всего вызываются искусственным путем.Сейсмические волны распространяются в горных породах со скоростью от 2 до 8 км/с - в зависимости от плотности породы: чем она выше, тем больше скорость распространения волны.На границе раздела двух сред с различной плотностью часть упругих колебаний отражается и возвращается к поверхности Земли. Другая же часть преломляется, одолевает границу раздела и уходит в недра глубже – до новой поверхности раздела. И так до тех пор, пока окончательно не затухнут.

Отраженные сейсмические волны, достигнув земной поверхности, улавливаются специальными приемниками и записываются на самописцы. Расшифровав графики, сейсморазведчики устанавливают потом границы залегания пород. По этим данным строят карты подземного рельефа.

Рис.28 Схема проведения сейсморазведки

Такой метод отраженных волн был предложен советским геологом В.С.Воюцким в 1923 году и получил широкое распространение во всем мире. В настоящее время, наряду с этим методом, используют также и корреляционный метод преломленных волн. Он основан на регистрации преломленных волн, образующихся при падении упругой волны на границу раздела под некоторым, заранее рассчитанным критическим углом. Используются в практике сейсморазведочных работ и другие способы. Раньше в качестве источника упругих колебаний чаще всего использовали взрывы. Теперь их стали заменять вибраторами. Вибратор можно установить на грузовик и за рабочий день обследовать достаточно большой район. Кроме того, вибратор позволяет работать в густонаселенных районах. Взрывы наверняка потревожили бы жителей близлежащих домов, а вибрации можно подобрать такой частоты, что они не воспринимаются человеческим ухом.Единственный недостаток этого способа – малая глубина исследований, не более 2-3 километров. Поэтому для более глубинных исследований применяют преобразователь взрывной энергии. Источником волн здесь по существу остается тот же взрыв. Но происходит он уже не в почве, как раньше, а в специальной взрывной камере. Взрывной импульс передается на грунт через стальную плиту, а вместо взрывчатки часто используют смесь пропана с кислородом. Все это, конечно, позволяет намного ускорить процесс зондирования недр.

Гравиметрический метод основан на изучении изменения силы тяжести в том или ином районе. Оказывается, если под поверхностью почвы находится горная порода малой плотности, например каменная соль, то и земное тяготение здесь несколько уменьшается. А вот плотные горные породы, такие, как, например, базальт или гранит, напротив, увеличивают силу тяжести.

Эти изменения устанавливает специальный прибор – гравиметр. Один из его простейших вариантов – грузик, подвешенный на пружине. Тяготение увеличивается – пружина растягивается; это фиксируется указателем на шкале. Тяготение уменьшается, пружина соответственно сокращается. А каким образом на земное тяготение влияют залежи нефти и газа? Нефть легче воды, и породы, насыщенные нефтью или ее непременным спутником - газом, имеют меньшую плотность, чем если бы в них помещалась вода. Это фиксируется гравиметром. Однако, подобные гравитационные аномалии могут быть вызваны и другими причинами, например залеганием пластов каменной соли, как мы уже говорили. Поэтому гравиразведку обычно дополняют магниторазведкой.

Наша планета, как известно, представляет собой огромный магнит, вокруг которого расположено магнитное поле. И на это поле могут эффективно влиять среди всего прочего и горные породы, залегающие в данном районе. Например, месторождения железной руды бывали открыты вследствие того, что пилоты пролетавших здесь самолетов удивлялись странному поведению магнитной стрелки? Ныне этот принцип используется и для поисков других видов полезных ископаемых, в том числе нефти и газа.

Дело в том, что в нефти очень часто содержатся примеси металлов. И, конечно, присутствие металла ощущается, правда не «магнитной стрелкой», а современными высокочувствительными приборами - магнитомерами. Они позволяют прощупать земные недра на глубину до 7 километров

Еще один геофизический метод поиска полезных ископаемых-электроразведка разработан в 1923 году во Франции и находит применение и по сей день. Собственно, это разновидность магнитной разведки с той лишь разницей, что фиксируется изменения не магнитного, а электрического поля.
Поскольку естественное электрическое поле на Земле практически отсутствует, то его создают искусственно, при помощи специальных генераторов и зондируют с их помощью нужный район. Обычно горные породы представляют собой диэлектрики, то есть их электрическое сопротивление велико. А вот нефть, как мы уже говорили, может содержать металлы, которые являются хорошими проводниками. Снижение электрического сопротивления недр и служит косвенным признаком присутствия нефти.

В последние годы все шире стал применяться еще один способ – электромагнитная разведка при помощи магнитогидродинамических (МГД) генераторов. Электромагнитным волнам стали доступны глубины от нескольких километров, когда ведутся поиски полезных ископаемых; до сотен километров, если речь заходит об общих исследованиях земной коры.
Сердцем современного МГД-генератора является ракетный двигатель, работающий на порохе. Но порох этот не совсем обычный: электропроводимость создаваемой им плазмы по сравнению с обычным ракетным топливом в 16000 раз выше. Плазма проходит через МГД-канал, расположенный между обмотками магнита. По законам магнитодинамики в движущейся плазме возникает электрический ток, который, в свою очередь, возбуждает электромагнитное поле в специальном излучателе - диполе. С помощью диполя и происходит зондирование Земли.
Всего за несколько секунд МГД-установка развивает мощность в десятки миллионов Вт. И при этом обходится без громоздких систем охлаждения, которые были бы неизбежны при использовании традиционных источников излучения. Да и сама установка в несколько раз легче других видов электрогенераторов.
Впервые эффективность МГД-установки была проверена в конце 70-х годов в Таджикистане. Тогда в районе хребта Петра I ученые провели первые опыты по МГД-зондированию, стараясь уловить признаки приближающегося землетрясения. Сигналы мощной 20-мегаваттной установки «Памир-1» регистрировались на расстоянии до 30 километров от нее. Немного позднее МГД-установки были использованы для поиска нефтяных и газовых месторождений. Для начала был выбран достаточно известный нефтяной район - Прикаспийская низменность. Благодаря МГД-зондированию появилась еще одна возможность не только определить наличие нефтегазоносных слоев, но и четко оконтуривать месторождения. А ведь обычно для этого приходится бурить несколько дорогостоящих скважин.
Получив первые достоверные сведения о надежности МГД-способа, ученые не стали ограничиваться только разведкой в Прикаспийской низменности. Новый способ геофизической разведки недр был использован на Кольском полуострове, на шельфе Баренцева моря - в районах, имеющих мощные пласты осадочных пород, в которых обычно и прячется нефть. Анализ полученных данных показал, что залегание нефти здесь вполне вероятно.

Геофизических методов имеют на вооружении нефтеразведчики много. Однако, ни один из методов не дает стопроцентного указания на присутствие нефти. Вот и приходится использовать их в комплексе. Для начала обычно проводят магнитную разведку. Потом дополняют ее данными гравиметрии. Затем в ход идут методы электро- и сейсморазведки. Но даже этого зачастую бывает недостаточно для точного ответа. Тогда геофизические методы дополняют геохимическими и гидрогеологическими исследованиями.
Среди геохимических методов в первую очередь надо отметить газовую, люминисцентно-битуминологическую и радиоактивную съемки.

Газовая съемка была разработана в 1930 году. Было замечено, что вокруг любой залежи образуется как бы легчайший туман – так называемый ореол рассеяния. Углеводородные газы по порам и трещинам пород проникают из глубины Земли к поверхности, при этом растет их концентрация в почвенных водах и верхних слоях породы. Взяв пробу грунта и почвенных вод, нефтеразведчик с помощью чувствительного газоанализатора устанавливает повышенное содержание углеводородных газов, что и является прямым указателем близкого местоположения залежи.
Правда, чтобы такой способ работал достаточно надежно, необходимы приборы высочайшей чувствительности – они должны надежно обнаруживать один атом примеси среди десяти или даже ста миллионов других! Кроме того, как показывает практика, газовые аномалии могут быть смещены по отношению к залежи или же просто указывать на мелкие месторождения, не имеющей промышленной ценности.
Поэтому данный метод стараются дополнять, например, люминисцентно-битуминологической съемкой. Ее принцип основан вот на каком природном явлении. Над залежами нефти увеличено содержание битумов в породе. И если пробу породы подставить под источник ультрафиолетового света, то битумы тотчас начинают светиться. По характеру свечения, его интенсивности определяют тип битума и его возможную связь с залежью.

Радиационная съемка основана на другом природном феномене. Известно, что в любом районе имеется так называемый радиоактивный фон - небольшое количество радиации, обусловленное воздействием на нашу планету космического излучения, наличием в ее недрах радиоактивных трансурановых элементов и т.д. Так вот, специалистам удалось обнаружить интересную закономерность: над нефтяными и газовыми залежами радиоактивный фон понижается. Например, для месторождений Южного Мангышлака такое понижение равно 1,5 – 3,5 мкКи/час. Такие изменения достаточно уверенно регистрируются существующими приборами. Однако этот метод находит пока ограниченное применение.

Классические методы разведки очень дороги: их среднемировая стоимость на поисковом этапе составляет 3000-5000 долларов на 1 км 2 Поэтому применяются другие, например геоморфологические методы разведки.

Поисково-разведочные работы ведутся в целях открытия нефтяного или газового месторождения, определения его за­пасов и составления проекта разработки. При этом поиско­вые работы делятся на несколько этапов:

1) общая геологическая съемка;

2) детальная геологическая съемка;

3) глубокое бурение поисковых скважин.

На первом этапе, который называется общей геологичес­кой съемкой, составляется геологическая карта местности. Горных выработок на этом этапе не делают, проводят лишь работы по расчистке местности для обнажения коренных пород. Общая геологическая съемка позволяет получить не­которое представление о геологическом строении современ­ных отложений на изучаемой площади. Характер залегания пород, покрытых современными отложениями, остается не­изученным.

На втором этапе, называемом детальной структурно-гео­логической съемкой, бурят картировочные и структурные скважины для изучения геологического строения площади. Картировочные скважины бурят глубиной от 20 до 300 м для определения мощности наносов и современных отложений, а также для установления формы залегания слоев, сложенных коренными породами. По результатам общей геологической съемки и картировочного бурения строят геологическую кар­ту, на которой условными обозначениями изображается рас­пространение пород различного возраста. Для более полного представления об изучаемой площади геологическая съемка дополняется сводным стратиграфическим разрезом отложе­ний и геологическими профилями.

коренными породами. По результатам общей геологической съемки и картировочного бурения строят геологическую кар­ту, на которой условными обозначениями изображается рас­пространение пород различного возраста. Для более полного представления об изучаемой площади геологическая съемка дополняется сводным стратиграфическим разрезом отложе­ний и геологическими профилями.

Сводный стратиграфический разрез, вычерчиваемый в виде колонки пород, должен содержать подробную характеристи­ку пород, слагающих изучаемый район .

Геологические профили строятся в крест простирания по­род для изображения геологического строения участка в вер­тикальных плоскостях. Для детального выяснения характера залегания пластов или, как говорят, для изучения их струк­турной формы в дополнение к геологической карте строят структурную карту по данным специально пробуренных струк­турных скважин. Структурная карта отражает поверхность интересующего геологов пласта и дает представление о фор­ме пласта при помощи горизонталей. Строят структурную карту следующим образом (рис. 1.6). Исследуемую поверх­ность, отделяющую пласты Аи В, мысленно рассекают гори­зонтальными плоскостями, расположенными, например, че­рез 100 м друг от друга, начиная от уровня моря. Линии пересечения горизонтальных плоскостей с поверхностью пла­ста в определенном масштабе откладывают на плане. Перед цифрой, показывающей глубину нахождения секущей гори­зонтальной поверхности, ставят знак «плюс», если сечение проводится выше уровня моря, и знак «минус», когда оно расположено ниже уровня моря. На втором этапе проводят также геофизические и геохимические методы, позволяющие более детально изучить строение недр и более обоснованно выделить площади, перспективные для глубокого бурения с целью поисков залежей нефти и газа. Из геофизических методов наиболее распространены сейсмо- и электроразвед­ка. Сейсморазведка основана на использовании закономерно­стей распространения упругих волн в земной коре, искусст­венно создаваемых в ней путем взрывов в неглубоких сква­жинах. Сейсмические волны распространяется по поверхнос­ти Земли и в ее недрах.

Некоторая часть энергии этих волн, дойдя до поверхности плотных пород, отразится от нее и возвратится на поверх­ность Земли. Отраженные волны регистрируются специаль­ными приборами - сейсмографами. По времени прихода отраженной волны к сейсмографу и расстоянию от места взрыва судят об условиях залегания пород.

Электроразведка основана на способности пород пропус­кать электрический ток, т. е. на их электропроводности. Из­вестно, что некоторые горные породы (граниты, известняки, песчаники, насыщенные соленой минерализованной водой) хорошо проводят электрический ток, а другие (глины, песча­ники, насыщенные нефтью) практически не обладают электропроводностью. Естественно, что породы, имеющие плохую электропроводность, обладают более высоким сопротивлени­ем. Зная сопротивление различных горных пород, можно по характеру распределения электрического поля определить пос­ледовательность и условия их залегания.

Электрические методы изучения недр Земли широко при­меняются при исследовании разрезов в пробуренных сква­жинах при электрометрии скважин. Для этого в скважину на специальном каротажном кабеле спускают три электрода, а четвертый заземляют на поверхности у устья. Затем включа­ют электрический ток. С помощью специальных приборов измеряется разность потенциалов по всей скважине, при этом записываются диаграмма кажущегося сопротивления и кри­вая потенциалов. Против таких пород, как известняки и на­сыщенные нефтью песчаники, регистрируется значительное кажущееся сопротивление, против глин и водоносных песча­ников отмечаются несравненно меньшие сопротивления. Так как жидкость в скважине не изолирована от пластовой, вслед­ствие перепада давления она из скважины может переме­щаться в пласт и обратно. В результате движения соленой минерализованной воды через пористые породы происходит поляризация и возникает естественная электродвижущая сила. В более проницаемых породах жидкость перемещается быст­рее и, следовательно, возникает большая разность естествен­ных потенциалов. Например, при прохождении жидкости че­рез хорошо проницаемые пески возникает значительно боль­шая естественная разность потенциалов, чем при движении жидкости через плохо проницаемые глины и плотные извес­тняки. Таким образом, в процессе электрометрии скважин при помощи специальных приборов проводится измерение и автоматическая запись кажущихся сопротивлений и естествен­ных разностей потенциалов. Путем сравнения показаний ус­танавливаются глубина залегания и мощность песчаника, на­сыщенного нефтью, характеризующегося большими значени­ями кажущегося сопротивления и естественной разности по­тенциалов. Среди полевых геофизических методов известны также гравиразведка и магниторазведка, а среди методов исследования скважин - радиометрия и др.

Применение геофизических методов позволяет выявить структуры, благоприятные для образования ловушек нефти и газа. Однако содержать нефть и газ могут далеко не все выявленные структуры. Выделить из общего числа обнару­женных структур наиболее перспективные без бурения сква­жин помогают геохимические методы исследования недр, основанные на проведении газовой и бактериологической съемок. Газовая съемка основана на диффузии углеводоро­дов, из которых состоит нефть. Каждая нефтяная или газовая залежь выделяет поток углеводородов, проникающих через любые породы. При помощи специальных геохимических при­боров определяют содержание углеводородов в воздухе на исследуемой площади. Над залежью нефти и газа приборы показывают повышенное содержание углеводородов. Резуль­таты газовой съемки упрощают выбор участка для детальной разведки бурением.

Бактериологическая съемка основана на поиске бактерий, содержащихся в углеводородах. Анализ почв на изучаемой площади позволяет обнаружить места скопления этих бакте­рий, а следовательно, и углеводородов. В результате бактери­ологического анализа почв составляется карта расположения предполагаемых залежей. Таким образом, результаты газовой и бактериологической съемок взаимно дополняют друг друга, что обеспечивает реальность планирования буровых работ на исследуемой площади.

После проведения комплекса геофизических и геохими­ческих исследований приступают к третьему этапу поиско­вых работ - глубокому бурению поисковых скважин. Ус­пешность поисковых работ на третьем этапе в значительной степени зависит от качества работ, проведенных на втором этапе. В случае получения из поисковой скважины нефти и газа заканчиваются поисковые работы и начинается деталь­ная разведка открытого нефтяного или газового месторож­дения. На площади одновременно бурятся так называемые оконтуривающие, оценочные и контрольно-исследовательс­кие глубокие скважины для установления размера (или кон­тура) залежи и контроля за ходом разведки месторождения. После бурения необходимого числа глубоких скважин для разведки месторождения период поисково-разведочных ра­бот заканчивается и начинается период бурения эксплуата­ционных скважин внутри контура нефтеносности (или газо­носности), через которые будет осуществляться добыча не­фти или газа из недр Земли.

ЗАПАСЫ МЕСТОРОЖДЕНИЙ

Запасы нефти, горючих газов и содержащихся в них ком­понентов по народнохозяйственному значению разделяются на две группы, подлежащие отдельному подсчету и учету:

1) балансовые - запасы, удовлетворяющие промышлен­ным кондициям и горно-техническим условиям эксплуатации; разработка их экономически целесообразна (эти запасы на­зывают геологическими);

2) забалансовые - запасы, выработка которых на данном этапе нерентабельна вследствие небольшого их количества, сложности условий эксплуатации, плохого качества нефти и газа или низкой производительности скважин.

По балансовым запасам рассчитывают извлекаемые запа­сы, т. е. те, которые можно извлечь из недр методами, соот­ветствующими современному уровню техники и технологии.

По степени изученности месторождений запасы нефти, газа и сопутствующих им компонентов разделяются на четы­ре категории: А, В, С, С 2 .

К категории А относятся запасы, подсчитанные на площа­ди, детально разведанной и оконтуренной скважинами, дав­шими промышленные притоки нефти и газа. Для подсчета запасов этой категории должны быть хорошо известны пара­метры продуктивного пласта, его продуктивность, границы залежи, свойства нефти и газа, а также содержания в них сопутствующих компонентов (по геолого-геофизическим ре­зультатам и результатам пробной эксплуатации многих сква­жин). Запасы этой категории определяют при разработке месторождения.

К категории В относятся запасы, подсчитанные на площа­ди, промышленная нефтеносность или газоносность которой доказана при бурении скважин с благоприятными промыслово-геофизическими показателями, при условии, что эти сква­жины вскрыли пласт на разных гипсометрических отметках и в них получены промышленные притоки нефти. При под­счете запасов категории В должны быть приближенно изуче­ны геолого-промысловая характеристика пласта, его продук­тивность, контуры нефтегазоносное™, свойства газожидкост­ных смесей в степени, достаточной для составления проекта разработки.

К категории С, относятся запасы залежей, нефтегазоносность которых установлена на основании получения промыш­ленных притоков нефти или газа в отдельных скважинах и благоприятных промыслово-геофизических данных в ряде других скважин, а также запасы части залежи (тектоническо­го блока), примыкающей к площадям с запасами более высо­ких категорий.

В рациональном комплексе геологоразведочных работ на нефть и газ разведочный этап, как видно из таблицы рациональной последовательности этих работ, является естественным продолжением поискового. Разведочные работы имеют целью промышленную оценку открытых на поисковом этапе залежей и месторождений и подготовку их к разработке. При этом полученные в результате поискового бурения запасы углеводородов промышленной категории С1 и предварительно оцененные запасы категории С2 должны быть переведены в промышленные по всей площади открытого месторождения или залежи.

Основными видами разведочных работ являются: бурение и испытание разведочных скважин, анализ всей необходимой геолого-геохимической информации для уточнения параметров залежи (месторождения) и подготовки его к пробной эксплуатации. При необходимости могут предусматриваться скважинная сейсморазведка методом ОГТ и в небольшом объеме полевые геофизические методы.

Основным методологическим принципом разведки, сформулированным Г.А. Габриэлянцем и В.И. Пороскуном еще в 1974 году, является принцип равномерности бурения, который реализуется путем равномерного размещения разведочных скважин по объему залежи. Согласно этому принципу предусматривается детальное изучение прежде всего тех частей залежи (месторождений), которые содержат основные запасы углеводородов. При этом повышается точность оценки запасов, а следовательно, и качество подготовки месторождения к пробной эксплуатации и последующей разработке. Одновременно предусматривается дифференцированное размещение разведочного бурения, учитывающее морфогенетические особенности строения залежи или месторождения.

Современная разведка нефтяных и газовых месторождений учитывает принципы оптимизации и универсальности процесса разведочного бурения, впервые предложенные В.М. Крейтером и В.И. Бирюковым (1976). Эти принципы формулируются следующим образом:

  1. Принцип рациональной системы и полноты исследований отдельной залежи или месторождения.
  2. Принцип последовательных приближений в изучении месторождения или отдельной залежи.
  3. Принцип относительной равномерности изучения объекта разведки.
  4. Принцип наименьших трудовых, научно-прикладных и материально-технических затрат.
  5. Принцип наименьших затрат времени и достижения наибольшей экономии при соблюдении энергосберегающих технологий.

Рациональная система разведки нефтяных и газовых месторождений предполагает бурение некоторого, как правило минимального, количества разведочных скважин, закладываемых в определенной последовательности для получения информации, необходимой и достаточной для промышленной оценки открытого месторождения и подготовки его к разработке. При этом система размещения разведочных скважин должна соответствовать особенностям геологического строения изучаемого объекта.

Разрез открытой залежи (месторождения) разбивается на этажи разведки. Под этажом разведки понимается часть разреза осадочного чехла, включающая один или несколько продуктивных пластов, расположенных на близких гипсометрических уровнях и характеризующихся сходством по геологическому строению вмещающих пород и физическим свойствам углеводородных флюидов. Их разведку можно проводить одной сеткой скважин.

Выделяются три системы и соответствующие методики разведочного бурения: треугольная, кольцевая и профильная с системой параллельных поперечных и продольных профилей разведочных скважин.

Треугольная система размещения разведочного бурения. Эта методика является наиболее старой и использовалась на заре развития нефтяной промышленности. При этом, как видно из рис. 65, первая поисковая скважина расположена в наиболее оптимальных структурно-гипсометрических условиях, остальные закладываются как разведочные в виде равносторонних треугольников со стороной, длина которой не должна превышать 500 метров при углах наклона крыльев локального поднятия до 10 градусов. При 20 градусах наклона она уменьшается до 400 метров, далее сокращаясь примерно на 50 метров с ростом угла наклона крыльев на каждые 5-6 градусов.

Нерациональность принятой треугольной системы размещения разведочных скважин даже при принятых максимальных расстояниях между ними 500 метров состоит в бурении для соблюдения указанного принципа равномерности излишне большого их числа. Это приводит к существенному удорожанию буровых работ. Процесс в известной мере оправдан с достижением весьма скромной геологической эффективности (до 80-100 усл. тонн на 1 метр поисково-разведочного бурения) лишь при площади ловушки и прогнозируемой залежи не более 2-2,5 км2. Опыт разведки выявленных литологических и стратиграфических углеводородных скоплений размерами до 1-1,5 км2 также свидетельствует о рентабельности реализации треугольной системы разведочного бурения.

В США широким распространением, наряду с крупными заливообразными литолого-стратиграфическими залежами, пользуются небольшие литологически ограниченные, или »шнурковые», или линзообразные, скопления нефти и газа с извлекаемыми запасами до 1,5 млн. усл. т размерами до 1,5-2 км2. Для разведки подобных месторождений также применяется треугольная сетка скважин с количеством их от 12 до 15, что находится в пределах рентабельности с получением средней эффективности до 120 усл. т/м. В России подобная система размещения разведочного бурения в качестве рациональной успешно использовалась в 1912 году на начальном этапе разведки открытой впервые в мировой практике И.М. Губкиным »рукавообразной» залежи нефти с переходом с 1916 года на профильное бурение. В настоящее время данная методика разведочных работ применяется при разведке небольших нефтяных залежей, связанных с эрозионными “врезами” довизийского и дотурнейского возраста в пределах Волго-Уральской и соседних с юга нефтегазоносных областей.

Кольцевая система размещения разведочного бурения. Рациональный характер кольцевой системы разведки открытых залежей и месторождений, успешно сочетающейся с освоением отдельных разведываемых этажей, подтвержден на примере уникального Заполярного газоконденсатного месторождения общей площадью свыше 2000 км2 и величиной извлекаемых запасов газа 1,5 трлн. м3. Поиски в целом осуществлены по системе “крест поискового бурения” 12 поисковыми скважинами, а разведка – 27 разведочными скважинами, размещенными по кольцевой методике, показанной на рис. 66.

Специфика кольцевой системы определяется на Заполярном месторождении следующим положением скважин на структурных межизогипсовых полях. В пределах первого поля первооткрывательницы от скважины 1 закладываются 4 буровых. После оконтуривания внутренней площади месторождения в следующем более внешнем поле по отношению к уже оконтуренной центральной зоне проектируются 5 буровых, помеченных квадратами. Завершив оконтуривание и этой части залежи, предусматривается освоение внешней зоны газоконденсатного месторождения с заложением сначала 7 разведочных скважин в предпоследнем поле, а затем 9 – в последнем межизогипсовом контуре, обрамляющем месторождение.

Рациональный характер кольцевой системы разведочного бурения в освоении уникального Заполярного ГКМ подтверждается достигнутой величины геологической эффективности, превышающей здесь 1000 усл. т на 1 м поисково-разведочного бурения.

Следовательно, высокая эффективность применения кольцевой системы достигается наличием крупных (до гигантских и более) запасов углеводородного сырья и относительно простым строением месторождения с залежью пластового или массивного строения сводового типа. На это следует, прежде всего, ориентироваться при выборе рациональной методики разведочных работ, что, как видно на примере уникального Заполярного месторождения, вполне оправдано полученными результатами. Кольцевая система была применена при разведке ряда крупных газоконденсатных месторождений Ейско-Березанской газоносной области, в частности Каневского и Ленинградского. В США на этой методике была разведана основная сводовая залежь в известняках свиты арбокл на крупнейшем нефтяном месторождении Оклахома-Сити Западной внутренней провинции.

Профильная система размещения разведочных скважин

В современ-
ных условиях для разведки нефтегазовых залежей и месторождений антиклинального и неантиклинального типов любой сложности строения, кроме случаев, отмеченных выше в первых методиках, наиболее эффективной и повсеместно рациональной является профильная система разведочного бурения. Сущность ее состоит в проектировании определенного числа разведочных скважин, закладываемых каждой в точках пересечения поперечных и продольных профилей. Причем в зависимости от величины разведуемого месторождения строго регламентируются расстояние между поперечными и продольными профилями и площадь, приходящаяся на одну проектируемую бурением скважину. По сравнению с предыдущими методиками, профильная методика является наиболее “гибкой”, допуская текущие изменения рациональной сетки скважин и, тем самым, площади охвата разведуемой части месторождения.

Рассмотрим типичные примеры размещения разведочных скважин по профильной системе. На рис. 67 дано расположение скважин на газоконденсатном месторождении. В разведку по профильной методике введен более крупный восточный блок, причем рациональная площадь на каждую скважину достигает 26 км2. Положение скважин на профиле показано на примере центральной части разведуемого блока. Общее количество скважин для восточного блока месторождения составляет 38. При тех же выбранных параметрах рациональное число разведочных скважин для меньшей по величине западной газоконденсатной залежи с той же отметкой ГВК составит 26. Однако, учитывая газоконденсатный тип углеводородного флюида и возможность полуторного увеличения расстояний между профилями и площади, приходящейся на одну скважину, общее число скважин в восточном блоке без нарушения принципа рациональности может составить 25, а для западной залежи – 18.

На рис. 68 показана рациональная методика для антиклинального блока
размерами 30х70 км, осложненного сбросами и включающего нефтяную залежь
с отметкой ВНК минус 1590 м. Здесь наиболее рационально размещение разве-
дочных скважин по системе параллельных взаимоперпендикулярных профилей
с площадью каждого квадрата 18 км2.

Положение профилей и скважин показано на примере центральной части западного купола антиклинали.

На примере центральной части залежи дано рациональное размещение разведочных скважин для западного более крупного блока антиклинальной ловушки с прогнозируемой нефтяной залежью при отметке ВНК минус 3200 метров. В качестве наиболее рациональной принята методика, аналогичная отмеченной выше, с площадью отдельных квадратов сетки скважин 10 км2 и количеством скважин 12, начиная с поисковой скважины-первооткрывательницы месторождения. Для разведки показанных на рис. 69 и 70 соответственно прогнозируемых газоконденсатного и нефтяного месторождений рациональная система размещения скважин рассматривается для продуктивных блоков.

От поисковой скважины 1, давшей промышленные притоки газоконденсата и нефти, предусматривается развитие рациональной сетки проектируемых буровых с сохранением “квадратичного” принципа размещения. Для разведуемого газоконденсатного месторождения площадь, приходящаяся на одну скважину, составляет с учетом газоконденсатного типа УВ флюида 12 км2 вместо 8 км2 для нефти, а рациональный комплекс разведки включает 24 скважины.

Освоение разведкой других блоков месторождения не должно предусматривать увеличение числа буровых. В качестве рациональной для более крупной прогнозируемой нефтяной залежи (рис. 70) с отметкой ВНК минус 2400 м также предусматривается в центральной части структуры от поисковой скважины 1 по схеме, показанной на рисунках выше; в качестве более эффективной принята площадь 28 км2 на одну буровую, а общее количество разведочных скважин – 32. Далее по той же схеме выполняется разведка 16 скважинами меньшего, центрального структурного блока.

На рис. 71 приведена газоконденсатная залежь сводового типа с отметкой ГВК минус 1050 м, осложненная в центральной части горстом, ограниченным поверхностями сместителей в виде двух лучей.

Наиболее рациональным для разведки данного месторождения будет последовательное разбуривание по профильно-квадратной схеме сначала центральной части залежи при площади 8 км2 на одну скважину, начиная с горста. За пределами горста расстояние между скважинами может быть увеличено до 3 км, а площадь на одну буровую – до 10 км2. Рациональное число скважин для разведки месторождения не должно превышать 20. Для западного меньшего блока – 12 скважин.

Для разведки нефтяной залежи сводового типа в антиклинальной ловушке, осложненной с юга сбросом (рис. 72), с отметкой ВНК минус 2810 метров площадью 18х6 км используется та же квадратная рациональная сетка скважин площадью 5 км2. Исходной для начала разведки является поисковая скважина 1. Минимальное количество скважин для полного охвата залежи с переводом ресурсов в категорию С1 составит 20.

Разведка сводовых нефтяных залежей, изображенных на рис. 73 и 74, осуществляется по аналогичной профильной системе с площадью 4 км2 на одну разведочную скважину. Общая площадь месторождения, как и морфоструктурные условия в целом, тождественны залежам (рис. 70 и 71) с использованием также в качестве основы для размещения рациональной схемы буровых в центральной части залежи с поисковой скважиной 1.

На рис. 75 изображена газоконденсатная залежь сложного строения сводового тектонически-экранированного типа с отметкой ГВК минус 775 метров. Рациональное размещение разведочного бурения предусматривает заложение разведочных скважин в центральном блоке от скважины 1 по сетке площадью 8 км2 (до ГВК) десяти скважин, что позволяет рассчитывать на наиболее эффективную разведку месторождения с показателем не менее 500 усл. т на метр разведочного бурения.

Пример рациональной разведки нефтяной залежи приконтактного типа, приуроченной к диапировой брахиантиклинали показан на рис. 76.

В пределах залежи проектируется рациональная сетка буровых по указанной профильной схеме с величиной площади, приходящейся на скважину, 6 км2. Проектом предусматривается, как видно из рисунка, бурение 30 разведочных скважин вплоть до ВНК на отметке минус 3300 м, начиная от поисковой скважины 1 – первооткрывательницы месторождения.

Для рассмотренных выше залежей структурно-литологического и структурно-стратиграфического типов рациональной сохраняется та же профильная система размещения разведочных скважин с указанной квадратной сеткой. При этом площадь на одну скважину изменяется от 5 км2 для средних по размеру залежей до 18 км2 – у крупных.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

Ценнейшее природное ископаемое – нефть – выявляется путём активного поиска месторождений. Наиболее крупные разведанные её запасы сосредоточены в страх Среднего и Близкого Востока, Африки, Латинской и Северной Америки, Юго-Восточной Азии. сайт

Какую цель преследует поиск залежей нефти? В первую очередь, анализируются резервы, далее их всесторонне подготавливают к технической разработке. Работы сопровождаются геофизическими, гидрогеохимическими, геологическими мерами выявления месторождений, также осуществляется бурение проёмов и подробное их исследование.

Общая подготовка

На первой стадии в ход идут геологические технологии поиска – специалисты обследуют территорию, организуют полевые работы. Последние заключаются в анализе прослоек горных пород, проектировании угла наклона. В результате обработки полученных данных составляются разрезы местности и геологические карты. www.сайт

Особенности геофизических методов поиска нефти

Здесь выделяют несколько технологий:

  • гравиразведку,
  • магниторазведку,
  • сейсморазведку,
  • электроразведку. https://www.сайт/

Сейсморазведка сводится к использованию упругих волн искусственного происхождения – исследователи смотрят, как они распределяются в земной коре.

Гравиразведка базируется на взаимосвязи земной силы тяжести и уровня насыщенности горных пород. Прослойки, в которых содержится нефть, менее плотные, если сравнивать с теми породами, в которых есть жидкость. оффбанк.ру

Специфика электрической разведки заключается в том, что эта методика использует разницу в электропроводности у разнообразных полезных ископаемых. В частности, прослойки, несущие нефтяные месторождения, характеризуются очень низкими показателями.

Магниторазведка берёт в основу неоднородность магнитной проницаемости, сопровождающую неодинаковые по залежам прослойки.

Виды гидрогеохимических методов

Современная отрасль базируется на нескольких технологиях:

  • гидрохимическом приёме,
  • люминесцентно-битумонологической съёмке,
  • газовой съёмке,
  • радиоактивной съёмке. https://www.сайт/

Гидрохимический приём позволяет проанализировать химические особенности грунтовых вод, распознать растворённые в них биологические компоненты и газы.

Люминесцентно-битумонологическое исследование базируется на том факте, что в породе непосредственно над нефтяным месторождением скапливаются существенные объёмы битумов. сайт

В результате газовой съёмки исследователи могут выявить в образцах из подземных вод и горных пород углеводородные газы. Последние рассеиваются в изначальной зоне локации нефти.

Перед радиоактивной съёмкой стоит конкретная цель – найти область с низким радиационным полем, обычно сопровождающим нефтяные залежи.

Технологии дополнительного подтверждения

Чтобы очертить границы залежей, прибегают к бурению скважин. Эта технология позволяет не только убедиться в расчётной масштабности залегания – в результате можно выявить интенсивность (насыщенность) пластов.

Сейчас также широко используется электрокаротаж – этот приём эффективен при поиске источников горючих ископаемых. В заранее сформированный проём помещают особое устройство, считывающее электрические свойства исследуемых пластов. оффбанк.ру

Практическое изучение нефтяных месторождения

Поисковая фаза, как правило, проходит в 3 этапа:

  1. Локальное геолого-геофизическое исследование. В результате определяются примерные границы залегания, анализируются потенциальные запасы. На этой стадии разработчики устанавливают участки, которые необходимо опустошить в первую очередь.
  2. Подготовка участка к бурению. Здесь необходимо обеспечить тщательное и всестороннее нефтеносной локации.
  3. Определение месторождений. Оформляются проёмы, на которых в дальнейшем будет базироваться производство. www.сайт

Чаще всего скважины, обустраиваемые во время поиска, обладают вертикальной направленностью. Но благодаря современным техническим решениям появилась возможность пользоваться более удобными наклонными проёмами, создаваемые под широким диапазоном углов.

После точной установки присутствия месторождения приступают к этапу его разработки, сопровождающемуся разрушением горных пород. Воздействие может быть вращательным и ударным. Первая технология сводится к выводу раздробленных во время бурения частиц на поверхность посредством пускания в скважину рабочей жидкости. Ударный способ разрушения породы предусматривает мощное механическое воздействие, здесь обломки выводятся с помощью воды. сайт

Скорость разведки зависит от качества и новизны имеющегося оборудования, типа основной породы и профессионализма исследователей. Для обслуживания одного производства может понадобиться лишь 30-50 скважин, но нередки случаи, когда их количество исчисляется тысячами.

Важно полностью координировать циркуляцию жидкости, с этой целью разрабатываются особые схемы расположения проёмов, контролируются все аспекты их функционирования. Весь комплекс работ, описанных выше, является сердцем процесса – поиска и разработки месторождения нефти. оффбанк.ру

Обзор современных тенденций

Последнее десятилетие характеризуется высокими темпами поиска и разработки нефтяных месторождений. Сейчас уже более 1% поверхности планеты изучено на глубине 2-3 км. Также интенсивно осваиваются морские залежи.

Одной из главных тенденций отрасли является минимальное негативное воздействие на окружающую природную среду. В связи с чем от исследователей требуются максимально точные расчёты, позволяющие во время поиска нефти делать как можно меньше скважин.

Примерно 65 государств на данный момент активно занимаются выявлением и добычей промышленной нефти. Самыми богатыми в этом отношении являются следующие страны:

  • Саудовская Аравия,
  • Россия,
  • Ливия,
  • Венесуэла,
  • Канада,
  • Ирак,
  • Иран. https://www.сайт/

Не во многом им уступают:

  • Алжир,
  • Катар,
  • Мексика,
  • Нигерия,
  • Аргентина,
  • Индия.

На Земле существует более 10 тыс. месторождений горючих углеводородов, и существенная их часть расположена на территории Российской Федерации. сайт

работ применяются геологические, геофизические, методы, а также бурение скважин и их исследование.

Геологические методы. Проведение геологической съёмки предшествует всем остальным видам поисковых работ . Для этого геологи выезжают в исследуемый район и осуществляют так называемые полевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклонов. Для анализа коренных пород, укрытых современными наносами, роются шурфы (вертикальная, реже наклонная, неглубокая горная выработка, обычно с площадью сечения прямоугольной формы, пройденная с поверхности) глубиной до 3 м. А с тем, чтобы получить представление о более глубоко залегающих породах, бурят картировочные скважины глубиной до 600 м.

По возвращении домой выполняются камеральные работы, т. е. обработка материалов, собранных в ходе предыдущего этапа. Итогом камеральных работ являются геологическая карта и геологические разрезы местности.

Геологическая карта – это проекция выходов горных пород на дневную поверхность. Антиклиналь (изгиб пласта, направленный выпуклостью вверх) на геологической карте имеет вид овального пятна, в центре которого располагаются более древние породы, а на периферии – более молодые.

Однако как бы тщательно не производилась геологическая съемка, она дает возможность судить о строении лишь верхней части горных пород. Чтобы "прощупать" глубокие недра используют геофизические методы. Геофизические методы. К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

Сейсмическая разведка (рис. 3.6) основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн.


Рис. 3.6.

Волны создаются одним из следующих способов:

  • взрывом специальных зарядов в скважинах глубиной до 30 м;
  • вибраторами;
  • преобразователями взрывной энергии в механическую.

Скорость распространения сейсмических волн в породах различной плотности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли, а частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками. Расшифровывая затем полученные графики колебаний.

Электрическая разведка основана на различной электропроводности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а глины, песчаники, насыщенные нефтью, обладают очень низкой электропроводностью.

Принципиальная схема электроразведки с поверхности земли приведена на рис. 3.7 . Через металлические стержни и сквозь грунт пропускается электрический ток, а с помощью стержней и и специальной аппаратуры исследуется искусственно созданное электрическое поле . На основании выполненных замеров определяют электрическое сопротивление горных пород. Высокое электросопротивление является косвенным признаком наличия нефти или газа.


Рис. 3.7.

Гравиразведка основана на зависимости силы тяжести на поверхности Земли от плотности горных пород. Породы, насыщенные нефтью или газом, имеют меньшую плотность, чем те же породы, содержащие воду. Задачей гравиразведки является определение мест с аномально низкой силой тяжести.

Магниторазведка основана на различной магнитной проницаемости горных пород. Наша планета – это огромный магнит, вокруг которого расположено магнитное поле . В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200 300 м.

Геологическими и геофизическими методами, главным образом, выявляют строение толщи осадочных пород и возможные ловушки для нефти и газа. Однако наличие ловушки ещё не означает присутствия нефтяной или газовой залежи. Выявить из общего числа обнаруженных структур те, которые наиболее перспективны на нефть и газ, без бурения скважин помогают гидрогеохимические методы исследования недр.

Гидрогеохимические методы. К гидрохимическим относят газовую, люминесцентно-битумонологическую, радиоактивную съёмки и гидрохимический метод.

Газовая съёмка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовых вод, отобранных с глубины от 2 до 50 метров. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность 10 -5 10 -6 %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет наклонного залегания покрывающих пластов) или же быть связана с непромышленными залежами.

Применение люминесцентно-битумонологической съемки основано на том, что над залежами нефти увеличено содержание битумов в породе, с одной стороны, и на явлении свечения битумов в ультрафиолетовом свете, с другой. По характеру свечения отобранные пробы пород делают вывод о наличии нефти в предполагаемой залежи.

Известно, что в любом месте нашей планеты имеется, так называемый, радиационный фон, обусловленный наличием в её недрах радиоактивных трансурановых элементов, а также воздействием космического излучения. Специалистам удалось установить, что над нефтяными и газовыми залежами радиационный фон понижен. Радиоактивная съемка выполняется с целью обнаружения указанных аномалий радиационного фона. Недостатком метода является то, что радиоактивные аномалии в приповерхностных слоях могут быть обусловлены рядом других естественных причин. Поэтому данный метод пока применяется ограниченно.



Что еще почитать