Production structure of the tungsten ore enrichment factory. Enrichment of tin and tungsten ores and placers. Selection and calculation of screen of the second stage of screening

Tungsten minerals and ores

From tungsten minerals practical significance have minerals of the wolframite and scheelite group.

Wolframite (xFeWO4 yMnWO4) is an isomorphic mixture of iron and manganese tungstates. If a mineral contains more than 80% iron, the mineral is called ferberite. If the mineral contains more than 80% manganese, then the mineral is called hubernite.

Scheelite CaWO4 is almost pure calcium tungstate.

Tungsten ores contain small amounts of tungsten. The minimum WO3 content at which their processing is advisable. is 0.14-0.15% for large deposits and 0.4-0.5% for small deposits. In ores, tungsten is accompanied by tin in the form of cassiterite, as well as the minerals molybdenum, bismuth, arsenic and copper. The main gangue rock is silica.

Tungsten ores undergo beneficiation. Wolframite ores are enriched using the gravity method, and scheelite ores are enriched by flotation.

Tungsten ore enrichment schemes are varied and complex. They combine gravitational enrichment with magnetic separation, flotation gravity and flotation. By combining various enrichment methods, concentrates containing up to 55-72% WO3 are obtained from ores. The extraction of tungsten from ore into concentrate is 82-90%.

The composition of tungsten concentrates varies within the following limits,%: WO3-40-72; MnO-0.008-18; SiO2-5-10; Mo-0.008-0.25; S-0.5-4; Sn-0.03-1.5; As-0.01-0.05; P-0.01-0.11; Cu-0.1-0.22.

Technological schemes for processing tungsten concentrates are divided into two groups: alkaline and acidic.

Methods for processing tungsten concentrates

Regardless of the method of processing wolframite and scheelite concentrates, the first stage of their processing is opening, which is the transformation of tungsten minerals into easily soluble chemical compounds.

Wolframite concentrates are opened by sintering or fusion with soda at a temperature of 800-900°C, which is based on chemical reactions:

4FeWO4 + 4Na2CO3 + O2 = 4Na2WO4 + 2Fe2O3 +4CO2 (1)

6MnWO4 + 6Na2CO3 + O2 = 6Na2WO4 + 2Mn3O4 +6CO2 (2)

When sintering scheelite concentrates at a temperature of 800-900°C, the following reactions occur:

CaWO4 + Na2CO3 = Na2WO4+ CaCO3 (3)

CaWO4 + Na2CO3 = Na2WO4+ CaO + CO2 (4)

In order to reduce soda consumption and prevent the formation of free calcium oxide, silica is added to the charge to bind calcium oxide into a sparingly soluble silicate:

2CaWO4 + 2Na2CO3 + SiO2 = 2Na2WO4+ Ca2SiO4 + CO2 (5)

Sintering of scheelite concentrate with soda and silica is carried out in drum furnaces at a temperature of 850-900°C.

The resulting cake (alloy) is leached with water. During leaching, sodium tungstate Na2WO4 and soluble impurities (Na2SiO3, Na2HPO4, Na2AsO4, Na2MoO4, Na2SO4) and excess soda pass into the solution. Leaching is carried out at a temperature of 80-90°C in steel reactors with mechanical stirring, operating in batch mode, or in continuous drum rotary kilns. The recovery of tungsten into the solution is 98-99%. The solution after leaching contains 150-200 g/l WO3. The solution is filtered, and after separating the solid residue, it is sent for purification from silicon, arsenic, phosphorus and molybdenum.

Purification from silicon is based on the hydrolytic decomposition of Na2SiO3 by boiling a solution neutralized at pH = 8-9. Neutralization of excess soda in the solution is carried out with hydrochloric acid. As a result of hydrolysis, slightly soluble silicic acid is formed:

Na2SiO3 + 2H2O = 2NaOH + H2SiO3 (6)

To remove phosphorus and arsenic, the method of precipitation of phosphate and arsenate ions in the form of poorly soluble ammonium-magnesium salts is used:

Na2HPO4 + MgCl2+ NH4OH = Mg(NH4)PO4 + 2NaCl + H2O (7)

Na2HAsO4 + MgCl2+ NH4OH = Mg(NH4)AsO4 + 2NaCl + H2O (8)

Purification from molybdenum is based on the decomposition of molybdenum sulfosalt, which is formed when sodium sulfide is added to a solution of sodium tungstate:

Na2MoO4 + 4NaHS = Na2MoS4 + 4NaOH (9)

Upon subsequent acidification of the solution to pH = 2.5-3.0, the sulfosalt is destroyed with the release of slightly soluble molybdenum trisulfide:

Na2MoS4 + 2HCl = MoS3 + 2NaCl + H2S (10)

Calcium tungstate is first precipitated from a purified solution of sodium tungstate using CaCl2:

Na2WO4 + CaCl2 = CaWO4 + 2NaCl. (eleven)

The reaction is carried out in a boiling solution containing 0.3-0.5% alkali

while stirring with a mechanical stirrer. The washed sediment of calcium tungstate in the form of a pulp or paste is subjected to decomposition with hydrochloric acid:

CaWO4 + 2HCl = H2WO4 + CaCl2 (12)

During decomposition, the high acidity of the pulp is maintained at about 90-120 g/l HCl, which ensures the separation of impurities of phosphorus, arsenic and partly molybdenum, which are soluble in hydrochloric acid, from the tungstic acid sediment.

Tungstic acid can also be obtained from a purified solution of sodium tungstate by direct precipitation with hydrochloric acid. When the solution is acidified with hydrochloric acid, H2WO4 precipitates as a result of hydrolysis of sodium tungstate:

Na2WO4 + 2H2O = 2NaOH + H2WO4 (11)

The alkali formed as a result of the hydrolysis reaction reacts with hydrochloric acid:

2NaOH + 2HCl = 2NaCl + 2H2O (12)

The addition of reactions (8.11) and (8.12) gives the total reaction of precipitation of tungstic acid with hydrochloric acid:

Na2WO4 + 2HCl = 2NaCl + H2WO4 (13)

However, in this case, great difficulties arise in washing the sediment from sodium ions. Therefore, at present, the latter method of tungstic acid deposition is used very rarely.

The technical tungstic acid obtained by precipitation contains impurities and therefore needs to be purified.

The most widely used method is the ammonia method for purifying technical tungsten acid. It is based on the fact that tungstic acid is highly soluble in ammonia solutions, while a significant part of the impurities it contains are insoluble in ammonia solutions:

H2WO4 + 2NH4OH = (NH4)2WO4 + 2H2O (14)

Ammonia solutions of tungstic acid may contain impurities of molybdenum and alkali metal salts.

Deeper cleaning is achieved by isolating large crystals of ammonium paratungstate from the ammonia solution, which are obtained by evaporating the solution:

12(NH4)2WO4 = (NH4)10W12O41 5H2O + 14NH3 + 2H2O (15)

tungsten acid anhydride precipitation

Deeper crystallization is impractical to avoid contamination of the crystals with impurities. From the mother liquor, enriched with impurities, tungsten is precipitated in the form of CaWO4 or H2WO4 and returned to the previous stages.

Paratungstate crystals are squeezed out on filters, then in a centrifuge, washed with cold water and dried.

Tungsten oxide WO3 is obtained by calcining tungstic acid or paratungstate in a rotating tubular furnace with a stainless steel pipe and heated by electricity at a temperature of 500-850oC:

H2WO4 = WO3 + H2O (16)

(NH4)10W12O41 5H2O = 12WO3 + 10NH3 +10H2O (17)

In tungsten trioxide intended for the production of tungsten, the WO3 content must be no lower than 99.95%, and for the production of hard alloys - no lower than 99.9%

Send your good work in the knowledge base is simple. Use the form below

Students, graduate students, young scientists who use the knowledge base in their studies and work will be very grateful to you.

Posted on http:// www. allbest. ru/

Navoi Mining and Metallurgical Plant

Navoi State Mining Institute

"Chemical and Metallurgical" Faculty"

Department of Metallurgy

Explanatory note

for final qualifying work

on the topic of: “Selection, justification and calculation of tungsten-molybdenum ore processing technology”

Graduate: K. Sayfiddinov

Navoi-2014
  • Introduction
  • 1. General information about methods of beneficiation of tungsten ores
  • 2. Enrichment of molybdenum-tungsten ores
  • 2. Technological section
  • 2.1 Calculation of crushing scheme with equipment selection
  • 2.2 Calculation of the grinding scheme
  • 2.3 Selection and calculation of semi-autogenous grinding mills
  • List of used literature

Introduction

Minerals are the basis of the national economy, and there is not a single industry where minerals or their processed products are not used.

Significant mineral reserves in many deposits of Uzbekistan make it possible to build large, highly mechanized mining, processing and metallurgical enterprises that extract and process many hundreds of millions of tons of minerals with high technical and economic indicators.

The mining industry deals with solid minerals from which, with modern technology, it is advisable to extract metals or other minerals. The main conditions for the development of mineral deposits are increasing their extraction from the subsoil and integrated use. This is due to:

- significant material and labor costs during exploration and industrial development of new deposits;

- the growing need of various sectors of the national economy for almost all mineral components that make up the ore;

- the need to create waste-free technology and thereby preventing contamination environment production waste.

For these reasons, the possibility of industrial use of a deposit is determined not only by the value and content of the mineral, its reserves, geographical location, production and transportation conditions, other economic and political factors, but also the presence effective technology processing of mined ores.

1. General information about methods of beneficiation of tungsten ores

Tungsten ores are enriched, as a rule, in two stages - primary gravity enrichment and finishing of rough concentrates using various methods, which is explained by the low tungsten content in the processed ores (0.2 - 0.8% WO3) and high requirements for the quality of standard concentrates (55 - 65% WO3), The total enrichment degree is approximately 300 - 600.

Wolframite (huebnerite and ferberite) bedrock ores and placers usually contain a number of other heavy minerals, therefore, during the primary gravity enrichment of ores, they strive to isolate collective concentrates, which can contain from 5 to 20% WO3, as well as cassiterite, tantalite-columbite, magnetite, sulfides, etc. When finishing collective concentrates, it is necessary to obtain conditioned monomineral concentrates, for which flotation or flotogravity of sulfides, magnetic separation of magnetite in a weak magnetic field, and wolframite in a stronger one can be used. It is possible to use electric separation, gravitational enrichment on tables, flotation of gangue minerals and other processes to separate minerals so that the finished concentrates meet the requirements of GOSTs and technical specifications not only for the content of the base metal, but also for the content of harmful impurities.

Considering the high density tungsten minerals(6 - 7.5 g/cm 3), during enrichment, gravitational enrichment methods can be successfully used on jigs, concentration tables, sluices, jet and screw separators, etc. When valuable minerals are finely disseminated, flotation or a combination of gravitational processes with flotation is used. Considering the possibility of wolframite sludge during gravitational enrichment, flotation is used as an auxiliary process even when enriching coarsely disseminated wolframite ores for more complete extraction of tungsten from sludge.

If there are large tungsten-rich ore pieces or large pieces of waste rock in the ore, sorting of ore with a particle size of 150 + 50 mm on belt conveyors can be used to separate the rich large-lump concentrate or pieces of rock that dilute the ore supplied for enrichment.

When beneficiating scheelite ores, gravity is also used, but most often a combination of gravity methods with flotation and flotation gravity, or flotation alone.

When sorting scheelite ores, luminescent installations are used. Scheelite, when irradiated with ultraviolet rays, glows with a bright blue light, which makes it possible to separate pieces of scheelite or pieces of waste rock.

Scheelite is an easily floated mineral characterized by high sludge properties. The extraction of scheelite increases significantly with flotation enrichment compared to gravity, therefore, in the enrichment of scheelite ores in the CIS countries, flotation has now begun to be used in all factories.

During the flotation of tungsten ores, a number of difficult technological problems arise that require the correct solution depending on the material composition and association of individual minerals. In the process of flotation of wolframite, hübnerite and ferberite, it is difficult to separate from them iron oxides and hydroxides, tourmaline and other minerals containing neutralize their flotation properties with tungsten minerals.

Flotation of scheelite from ores with calcium-containing minerals (calcite, fluorite, apatite, etc.) is carried out by anionic fatty acid collectors, ensuring their good flotation with calcium cations of scheelite and other calcium-containing minerals. Separation of scheelite from calcium-containing minerals is possible only with the use of such regulators as liquid glass, sodium fluorosilicone, soda, etc.

2. Enrichment of molybdenum-tungsten ores

On Tyrnyauzskaya The factory enriches the molybdenum-tungsten ores of the Tyrnyauz deposit, which are complex in the material composition of not only valuable minerals with very fine dissemination, but also associated gangue minerals. Ore minerals - scheelite (tenths of a percent), molybdenite (hundredths of a percent), powellite, partially ferrimolybdite, chalcopyrite, bismuthite, pyrrhotite, pyrite, arsenopyrite. Nonmetallic minerals - skarns (50-70%), hornfels (21-48%), granite (1 - 12%), marble (0.4-2%), quartz, fluorite, calcite, apatite (3-10%) and etc.

In the upper part of the deposit, 50-60% of molybdenum is represented by powellite and ferrimolybdite, in the lower part their content decreases to 10-20%. Molybdenum is present in scheelite as an isomorphic impurity. Part of the molybdenite, oxidized from the surface, is covered with a film of powellite. Part of the molybdenum grows very finely with molybdoscheelite.

More than 50% of oxidized molybdenum is associated with scheelite in the form of powellite inclusions - a decomposition product of the Ca(W, Mo)O 4 solid solution. Such forms of tungsten and molybdenum can only be isolated into a collective concentrate with subsequent separation by hydrometallurgical methods.

Since 1978, the ore preparation scheme at the factory has been completely reconstructed. Previously, ore, after large crushing at the mine, was transported to the factory in trolleys via an overhead cableway. In the crushing department of the factory, the ore was crushed to - 12 mm, unloaded into bunkers and then crushed in one stage in ball mills operating in a closed cycle with double-spiral classifiers, up to 60% of the class - 0.074 mm.

A new ore preparation technology was developed jointly by the Mekhanobr Institute and the plant and put into operation in August 1978.

The ore preparation scheme provides for coarse crushing of the original ore up to -350 mm, screening according to the 74 mm class, separate storage of each class in bunkers in order to more accurately regulate the supply of large and small classes of ore to the autogenous grinding mill.

Self-grinding of coarse ore (-350 mm) is carried out in Cascade type mills with a diameter of 7 m (MMC-70X X23) with additional grinding of the coarse-grained fraction to 62% class -0.074 mm in MSHR-3600X5000 mills operating in a closed cycle with single-spiral classifiers 1KSN-3 and located in a new building on the mountainside at an elevation of about 2000 m above sea level between the mine and the operating factory.

The finished product is supplied from the autogenous vessel to flotation by hydraulic transport. The hydraulic transport route is a unique engineering structure that ensures the transportation of pulp with a height difference of more than 600 m. It consists of two pipelines with a diameter of 630 mm, a length of 1750 m, equipped with stilling wells with a diameter of 1620 mm and a height of 5 m (126 wells for each pipeline).

The use of a hydraulic transport system made it possible to eliminate the cargo workshop cable cars, medium and fine crushing building, MSHR-3200X2100 mills at the processing plant. In the main building of the factory, two main flotation sections, new scheelite and molybdenum finishing departments, a liquid glass melting shop, and recycling water supply systems were built and put into operation. The thickening front for rough flotation concentrates and middlings has been significantly expanded due to the installation of thickeners with a diameter of 30 m, which reduces losses from thickening discharges.

The newly commissioned facilities are equipped with modern automated process control systems and local automation systems. Thus, in the autogenous building the automatic control system operates in direct control mode based on M-6000 computers. In the main building, a system for centralized control of the material composition of the pulp was introduced using X-ray spectral analyzers KRF-17 and KRF-18 in combination with an M-6000 computer. An automated system for sampling and delivery of samples (by pneumatic mail) to the express laboratory, controlled by the KM-2101 computer complex and issuing analyzes by teletype, has been mastered.

One of the most complex processing processes - finishing rough scheelite concentrates according to the method of N. S. Petrov - is equipped with an automatic monitoring and control system, which can work either in the “advisor” mode to the flotation operator, or in the mode of direct control of the process, regulating the flow rate of the suppressor (liquid glass), pulp level in cleaning operations and other process parameters.

The sulfide minerals flotation cycle is equipped with automatic control and dosing systems for collector (butyl xanthate) and suppressor (sodium sulfide) in the copper-molybdenum flotation cycle. The systems operate using ion-selective electrodes as sensors.

Due to the increase in production volume, the factory switched to processing new varieties of ores, characterized by a lower content of certain metals and a higher degree of oxidation. This required improvement of the reagent regime for flotation of sulfide-oxidized ores. In particular, a progressive technological solution was used in the sulfide cycle - a combination of two foaming agents of active and selective types. Reagents containing terpene alcohols are used as an active foaming agent, and a new reagent LV, developed for the enrichment of multicomponent ores, primarily Tyrnyauz ores, is used as a selective agent.

In the flotation cycle of oxidized minerals by fatty acid collectors, intensifying additives of a modifier reagent based on low molecular weight carboxylic acids are used. To improve the flotation properties of circulating industrial products pulp, regulation of their ionic composition has been introduced. Methods of chemical finishing of concentrates have found wider application.

From the autogenous grinding mill, the ore is sent to screening. Class +4 mm is further ground in a ball mill. Mill overflow and under-screen product (--4 mm) are subject to I and II classifications.

690 g/t soda and 5 g/t transformer oil are fed into the ball mill. The classifier discharge goes to the main molybdenum flotation, where 0.5 g/t xanthate and 46 g/t terpineol are fed. After I and II cleaning flotations, the molybdenum concentrate (1.2-1.5% Mo) is subjected to steaming with liquid glass (12 g/t) at 50-70°C, III cleaning flotation and further grinding to 95-98% class --0.074 mm with a supply of 3 g/t sodium cyanide and 6 g/t liquid glass.

The finished molybdenum concentrate contains about 48% Mo, 0.1% Cu and 0.5% WO 3 with a Mo extraction of 50%. The control flotation tailings of the III and IV cleaning operations are thickened and sent to copper-molybdenum flotation with a supply of 0.2 g/t xanthate and 2 g/t kerosene. The twice purified copper-molybdenum concentrate, after steaming with sodium sulfide, is sent to selective flotation, where a copper concentrate containing 8-10% Cu (with an extraction of about 45%), 0.2% Mo, 0.8% Bi is isolated.

The tailings of the control molybdenum flotation, containing up to 0 2% WO 3, are sent to scheelite flotation, which is carried out according to a very branched and complex scheme. After mixing with liquid glass (350 g/t), basic scheelite flotation is carried out with sodium oleate (40 g/t). After the first cleaning flotation and thickening to 60% solid, the scheelite concentrate is steamed with liquid glass (1600 g/t) at 80--90 °C. Next, the concentrate is cleaned twice more and again goes to steaming at 90--95 ° C with liquid glass (280 g/t) and is cleaned again three times.

2. Technological section

2.1 Calculation of crushing scheme with equipment selection

The designed concentration plant is intended for processing molybdenum-containing tungsten ores.

Medium-sized ore (f = 12 ± 14 units on Professor Protodyakonov’s scale) is characterized by a density c = 2.7 t/m 3 and is supplied to the factory with a moisture content of 1.5%. Maximum piece d=1000 mm.

In terms of productivity, the enrichment plant belongs to the category of medium productivity (Table 4/2/), according to the international classification - to group C.

To the factory ore D max. =1000 mm is supplied from open-pit mining.

1. Let's determine the productivity of the coarse crushing shop. We calculate productivity according to Razumov K.A. 1, pp. 39-40. The project adopted the delivery of ore 259 days a year, in 2 shifts of 7 hours, 5 days a week.

Ore strength factor /2/

where: Q c. etc. - daily productivity of the crushing shop, t/day

Coefficient taking into account the uneven properties of raw materials /2/

where: Q h..t. dr - hourly productivity of the crushing shop, t/h

k n - coefficient taking into account the uneven properties of raw materials,

n days - estimated number of working days per year,

n cm - number of shifts per day,

t cm - shift duration,

k" - coefficient for accounting for ore strength,

Calculation of annual working hours:

C = (n day n cm t cm) = 259 2 5 = 2590 (3)

Time utilization rate:

k in = 2590/8760 = 0.29 units = 29%

2. Calculation of crushing scheme. We carry out the calculation according to pp. 68-78 2.

According to the instructions, the moisture content of the initial ore is 1.5%, i.e. e.

Calculation procedure:

1. Determine the degree of fragmentation

2. Let us accept the degree of fragmentation.

3. Let’s determine the maximum size of products after crushing:

4. Let's determine the width of the crusher's discharge slots, taking the typical characteristics Z - coarsening of the crushed product relative to the size of the discharge slot.

5. Let’s check the compliance of the selected crushing scheme with the manufactured equipment.

The requirements that crushers must satisfy are listed in Table 1.

Table 1

In terms of the width of the receiving opening and the range of adjustment of the discharge slot, crushers of the ShchDP 12X15 brand are suitable.

Let's calculate the productivity of the crusher using the formula (109/2/):

Q cat. = m 3 / h

Q fraction. = Q cat. · with n · k f · k cr. · k ow. · k c, m 3 / h (7)

where c n is the bulk density of ore = 1.6 t/m 3,

Q cat. - passport capacity of the crusher, m 3 / h

k f . , k ow. , kcr, kc - correction factors for strength (crushingability), bulk density, ore size and moisture content.

The value of the coefficients is found from the table k f =1.6; k cr =1.05; k ow. =1%;

Q cat. = S pr. / S n · Q n = 125 / 155 · 310 ? 250 m 3 /h

Let's find the actual productivity of the crusher for the conditions defined by the project:

Q fraction. = 250 · 1.6 · 1.00 · 1.05 · 1 · 1 = 420 t/h

Based on the calculation results, we determine the number of crushers:

We accept 12 x 15 boards for installation - 1 pc.

2.2 Calculation of the grinding scheme

The grinding scheme chosen in the project is a type of VA Razumov K.A. page 86.

Calculation procedure:

1. Determining the hourly productivity of the grinding shop , which is actually the hourly productivity of the entire factory, since the grinding shop is the main ore preparation building:

where 343 is the number of working days in a year

24 - continuous work week 3 shifts of 8 hours (3x8=24 hours)

Kv - equipment utilization factor

Kn - coefficient taking into account the uneven properties of raw materials

We accept: K in =0.9 K n =1.0

The coarse ore warehouse provides a two-day supply of ore:

V= 48,127.89 / 2.7 = 2398.22

We accept the initial data

Let's ask ourselves about liquefaction in plums and sands classification:

R 10 =3 R 11 =0.28

(R 13 is based on row 2 p. 262 depending on the size of the drain)

in 1 -0.074 =10% - class content - 0.074 mm in crushed ore

in 10 -0.074 =80% - class content - 0.074 mm in the classification plum.

We accept the optimal circulation load With opt = 200%.

Calculation procedure:

Grinding stages I and II are represented by a type VA scheme, page 86 fig. 23.

The calculation of scheme B comes down to determining the weights of products 2 and 5 (the yields of products are found according to the general formula r n = Q n: Q 1)

Q 7 = Q 1 C opt = 134.9 · 2 = 269.8 t/h;

Q 4 = Q 5 = Q 3 + Q 7 = 404.7 t/h;

g 4 = g 5 = 300%;

g 3 = g 6 = 100%

The calculation is carried out according to Razumov K.A. 1 pp. 107-108.

1. Calculation of scheme A

Q 8 = Q 10 ; Q 11 = Q 12 ;

Q 9 = Q 8 + Q 12 = 134.88 + 89.26 = 224.14 t/h

g 1 = 100%; g 8 = g 10 = 99.987%;

g 11 = g 12 =Q 12: Q 1 = 89.26: 134.88 = 66.2%;

g 9 = Q 9: Q 1 = 224.14: 134.88 = 166.17%

Process flow diagramschleniyamolybdenum-tungsten ores.

CalculationByqualitative-quantitative scheme.

Initial data for calculating qualitative-quantitative schemess.

Extraction of tungsten into the final concentrate - e tungsten 17 = 68%

Extraction of tungsten into collective concentrate - e tungsten 15 =86%

Extraction of tungsten into molybdenum concentrate - e tungsten 21 = 4%

Extraction of molybdenum into the final concentrate - e Mo 21 = 77%

Extraction of molybdenum into tungsten flotation tailings - e Mo 18 =98%

Extraction of molybdenum into control flotation concentrate - eMo 19 =18%

Extraction of molybdenum into collective concentrate - e Mo 15 = 104%

Yield of collective concentrate - g 15 = 36%

Yield of tungsten concentrate - g 17 = 14%

Yield of molybdenum concentrate - g 21 = 15%

Yield of control flotation concentrate - g 19 =28%

Determining the yield of enrichment products

G 18 = g 15 - G 17 =36-14=22%

G 22 = g 18 - G 21 =22-15=7%

G 14 = g 13 + g 19 + g 22 =100+28+7=135%

G 16 = g 14 - G 15 =135-36=99%

G 20 = g 16 - G 19 =99-28=71%

Determining the masses of enrichment products

Q 13 = 127.89t/h.

Q 1 4 = Q 13 XG 14 = 127.89x1.35=172.6 t/h

Q 1 5 = Q 13 XG 15 = 127.89x0.36=46.0 t/h

Q 1 6 = Q 13 XG 16 = 127.89x0.99=126.6t/h

Q 1 7 = Q 13 XG 17 = 127.89x0.14=17.9 t/h

Q 1 8 = Q 13 XG 18 = 127.89x0.22=28.1 t/h

Q 1 9 = Q 13 XG 19 = 127.89x0.28=35.8 t/h

Q 20 = Q 13 XG 20 = 127.89x0.71=90.8 t/h

Q 21 = Q 13 XG 21 = 127.89x0.15=19.1 t/h

Q 22 = Q 13 XG 22 = 127.89x0.07=8.9 t/h

Determining the recovery of enrichment products

For tungsten

e tungsten 13 =100 %

e tungsten 18 = e tungsten 15 - e tungsten 17 =86-68=28 %

e tungsten 22 = e tungsten 18 - e tungsten 21 =28-14=14 %

e tungsten 14 = e tungsten 13 + e tungsten 22 + e tungsten 19 =100+14+10=124 %

e tungsten 16 = e tungsten 14 - e tungsten 15 =124-86=38%

e tungsten 20 = e tungsten 13 - e tungsten 17 + e tungsten 21 =100 - 68+4=28%

e tungsten 19 = e tungsten 16 - e tungsten 20 =38-28=10 %

for molybdenum

e Mo 13 =100%

e Mo 22 = e Mo 18 - e Mo 21 =98-77=11 %

e Mo 14 = e Mo 13 + e Mo 22 + e Mo 19 =100+11+18=129 %

e Mo 16 = e Mo 14 - e Mo 15 =129-94=35 %

e Mo 17 = e Mo 15 - e Mo 18 =104-98=6%

e Mo 20 = e Mo 13 - e Mo 17 + e Mo 21 =100 - 6+77=17%

e Mo 19 = e Mo 16 - e Mo 20 =35-17=18%

Determining the amount of metals in the product Oh enrichment

For tungsten

14 =124 x0.5 / 135=0.46%

15 =86x0.5 / 36=1.19%

16 =38 x0.5 / 99=0.19%

17 =68 x0.5 / 14=2.43%

18 =28 x0.5 / 22=0.64%

19 =10 x0.5 / 28=0.18%

20 =28 x0.5 / 71=0.2%

21 =14 x0.5 / 15=0.46%

22 =14 x0.5 / 7=1%

For molybdenum

14 =129 x0.04/ 135=0.04%

15 =94x0.04/ 36=0.1%

16 =35 x0.04 / 99=0.01%

17 =6 x0.04 / 14=0.017%

18 =98 x0.04 / 22=0.18%

19 =18 x0.04 / 28=0.025%

20 =17 x0.04 / 71=0.009%

21 =77 x0.04 / 15=0.2%

22 =11 x0.04 / 7=0.06%

Table 3. Table of qualitative-quantitative enrichment scheme

Operation no. cont.

Q, t/h

, %

copper , %

copper , %

zinc , %

zinc , %

I

Grinding stage I

arrives

crushed ore

comes out

crushed ore

II

Classification

arrives

CrushedbChennsth product IArt. grinding

CrushedbChennsth product II st .grinding

comes out

drain

sands

III

Grinding I I stage

arrives

Sands classification

comes out

Shreddedsth product

IV

Collective

Wo 3 -Mo flotation

arrives

Drain classification

TailsMo flotationAnd

comes out

concentrate

tails

V

Control flotation

arrives

Tailcollective flotation

comes out

concentrate

tails

VI

Tungsten flotation

arrives

Concentratecollective flotation

comes out

concentrate

tails

Mo flotation

arrives

Tails Wo 3 flotation

comes out

concentrate

tails

Calculation of water-sludge scheme .

The purpose of calculating the water-sludge scheme is to: ensure optimal liquid: solid ratios in the operations of the scheme; determining the amount of water added to operations or, conversely, released from products during dehydration operations; determination of L:T ratios in the products of the scheme; determination of the total water requirement and specific water consumption per ton of processed ore.

To obtain high technological indicators of ore processing, each operation of the technological scheme must be carried out at optimal values ​​of the L:T ratio. These values ​​are established based on data from ore dressing tests and the operating practices of existing processing plants.

The relatively low specific water consumption per ton of processed ore is explained by the presence of intra-factory water circulation at the designed plant, since the thickener drains are fed into the grinding - classification cycle. Water consumption for flushing floors, washing equipment and for other purposes is 10-15% of the total consumption.

Table 3. Table of qualitative-quantitative enrichment scheme.

Opera no.walkie-talkies cont.

Name of operations and products

Q, t/h

, %

R

W

I

Grinding stage I

arrives

crushed ore

0 , 0 25

comes out

crushed ore

II

Classification

arrives

CrushedbChennsth product IArt. grinding

CrushedbChennsth product II st .grinding

comes out

drain

sands

III

Grinding I I stage

arrives

Sands classification

comes out

Shreddedsth product

IV

Collective

Wo 3 -Mo flotation

arrives

Drain classification

Control flotation concentrate

Tails Mo flotationAnd

comes out

concentrate

Tails

V

Control flotation

arrives

Tailcollective flotation

comes out

concentrate

Tails

VI

Tungsten flotation

Incoming

Concentratecollective flotation

It turns out

Concentrate

Tails

Mo flotation

Incoming

Tails tungstenflotation

It turns out

concentrate

tails

Crusher selection and calculation.

The choice of crusher type and size depends on the physical properties of the ore, the required crusher capacity, the size of the crushed product and the hardness of the ore.

Tungsten-molybdenum ore by strength category is an ore of medium strength.

The maximum size of a piece of ore entering the crushing operation is 1000 mm.

To crush the ore coming from the mine, I install a jaw crusher with a simple swing jaw ShchDP 12x15. *

Crusher productivity, Q is equal to:

Q =q*L*i, t/h,

where q - specific productivity of the jaw crusher per 1 cm 2 of the discharge slot area, t/(cm 2 * h);

L is the length of the discharge slot of the neck crusher, cm;

i - width of the unloading slot, see /4/

According to the practice of operating the crushing department of the processing plant, the specific productivity of the jaw crusher is 0.13 t/cm 2 * hour.

The productivity of a jaw crusher will be determined by:

Q= 0.13*150*15.5 = 302.25 t/h.

The crusher accepted for installation provides the specified ore productivity.

The maximum size of a piece in the crusher feed will be:

120*0.8 = 96 cm.

Selection and calculation of grate screen

A grate screen with a hole size of 95 cm (950 mm) is installed in front of the crusher.

The required screening area is determined by the formula:

where Q* - productivity, t/h;

a is a coefficient equal to the width of the gap between the grates, mm. /5/ According to the layout conditions, the width of the grate screen is taken to be 2.7 m, length 4.5 m.

The practice of the crushing department of the factory shows that the ore delivered from the quarry contains about 4.5% of pieces with a particle size of more than 950 mm. Pieces of this size are delivered by a front-end loader to the ore yard, where they are crushed and again fed by the loader to the grate screen.

2.3 Selection and calculation of semi-autogenous grinding mills

Recently, when processing gold ores In world and domestic practice, in the first stage of grinding, semi-autogenous grinding mills with subsequent cyanidation are becoming increasingly common. In this case, the loss of gold from iron scrap and crumbs is eliminated, the consumption of cyanide during cyanidation is reduced, and the sanitary conditions of working on quartz silicate ores are improved. Therefore, I accept a semi-autogenous grinding (SAG) mill for installation in the first stage of grinding.

1. Find the specific productivity for the newly formed class of the operating SSI mill, t/(m 3 * h):

where Q is the productivity of the operating mill, t/h;

- class content -0.074 mm in the mill discharge, %;

- class content -0.074 mm in the original product,%;

D is the diameter of the operating mill, m;

L is the length of the operating mill, m.

2. We determine the specific productivity of the designed mill according to the newly formed class:

where q 1 is the specific productivity of a working mill in the same class;

K and is a coefficient that takes into account differences in the grindability of the ore designed for processing and the ore being processed (Ki = 1);

K k - coefficient taking into account the difference in the size of the initial and final grinding products at the existing and designed factories (K k = 1);

K D is a coefficient that takes into account the difference in the diameters of the drums of the designed and operating mills:

K D = ,

where D and D 1 respectively, the nominal diameters of the drums of the mills being designed for installation and those in operation. (K D =1.1);

Kt is a coefficient that takes into account differences in the type of designed and operating mills (Kt=1).

q = 0.77*1*1*1.1*1 =0.85 t/(m 3 * h).

I accept for installation an autogenous grinding mill "Cascade" with a diameter of 7 m and a length of 2.3 m with a working volume of 81.05 m3

3. We determine the productivity of the mills for ore using the formula:

where V is the working volume of the mill. /4/

4. Determine the estimated number of mills:

n- 101/125.72 = 0.8;

then the accepted one will be equal to 1. The Cascade mill provides the specified productivity.

Screen selection and calculation II screening stage .

Draining of semi-autogenous mills using pumps...

Similar documents

    Selection of technological scheme for iron ore enrichment. Calculation of power and selection of the type of enrichment separator. Determination of the performance of separators for dry magnetic separation with top feeding. Technical parameters of separator 2PBS-90/250.

    test, added 06/01/2014

    Determination of the overall degree of crushing for the crushing shop. Selection of the degree of crushing. Calculation and selection of crushers, grate screen. Calculation of the screen of the second crushing stage. Calculation of the grinding scheme and selection of equipment for grinding and classification.

    course work, added 01/20/2016

    Study of the material composition of ore. Selection and calculation of mills of the first and second stages of grinding, hydrocyclones, magnetic separators. Calculation of the deslimer for the desludge operation. Requirements for concentrate quality. Calculation of water-sludge scheme.

    course work, added 04/15/2015

    Selection and justification of the scheme for grinding, classification and enrichment of ore. Calculation of product yield and metal content in it. Calculation of qualitative-quantitative and water-sludge scheme. Control methods technological process automation means.

    course work, added 10/23/2011

    Selection and justification of the crushing and grinding scheme, crushing, classifying and grinding equipment. Characteristics of the size of the original ore. Calculation of crushing stages, screens, mills, classifier. Sieve size characteristics.

    course work, added 11/19/2013

    Geological characteristics of the deposit. Characteristics of the processed ore, development and calculation of its crushing scheme. Selection and calculation of equipment for the crushing department. Determination of the number of shifts and labor costs to provide crushing technology.

    course work, added 02/25/2012

    Technology of enrichment of iron ore and concentrate, analysis of the experience of foreign enterprises. Characteristics of the mineral composition of the ore, requirements for the quality of the concentrate. Technological calculation of water-sludge and qualitative-quantitative enrichment scheme.

    course work, added 10/23/2011

    Construction of a qualitative and quantitative scheme of preparatory operations for crushing and screening of iron ore: choice of method, product yield. Review of recommended equipment. Magnetic-gravity technology and flotation concentration of iron ore.

    course work, added 01/09/2012

    Features and stages of crushing technology implementation. Refined calculation of the screening scheme. Selection and calculation of crushers. Determining the need for ore preparation equipment and auxiliary equipment. Safety regulations in the crushing shop.

    course work, added 01/12/2015

    Selection and calculation of the main technological equipment mineral processing process, feeders. Calculation of screening operations. Selection and justification of the quantity of capital equipment, their specifications, purpose and main functions.

IRKUTSK STATE TECHNICAL UNIVERSITY

As a manuscript

Artemova Olesya Stanislavovna

DEVELOPMENT OF TECHNOLOGY FOR EXTRACTING TUNGSTEN FROM STANDING TAILS OF THE DZHIDINSK VMK

Specialty 25.00.13- Mineral processing

dissertation for the degree of candidate of technical sciences

Irkutsk 2004

The work was carried out at Irkutsk State Technical University.

Scientific supervisor: Doctor of Technical Sciences,

Professor K.V. Fedotov

Official opponents: Doctor of Technical Sciences,

Professor Yu.P. Morozov

Candidate of Technical Sciences A.Ya. Mashovich

Leading organization: St. Petersburg State

Mining Institute (Technical University)

The defense will take place on December 22, 2004 at /O* hours at a meeting of the dissertation council D 212.073.02 of the Irkutsk State technical university at the address: 664074, Irkutsk, st. Lermontova, 83, room. K-301

Scientific secretary of the dissertation council, professor

GENERAL DESCRIPTION OF WORK

Relevance of the work. Tungsten alloys are widely used in mechanical engineering, mining, metalworking industry, and in the production of electric lighting equipment. The main consumer of tungsten is metallurgy.

An increase in tungsten production is possible due to the involvement in processing of ores that are complex in composition, difficult to enrich, poor in the content of valuable components and off-balance ores, through the widespread use of gravity enrichment methods.

Involving the processing of stale ore dressing tailings from the Dzhida VMC will solve the current problem of the raw material base, increase the production of in-demand tungsten concentrate and improve the environmental situation in the Trans-Baikal region.

Purpose of the work: to scientifically substantiate, develop and test rational technological methods and modes of enrichment of stale tungsten-containing tailings from the Dzhidinsky VMC.

The idea of ​​the work: to study the relationship between the structural, material and phase compositions of the stale tailings of the Dzhida VMC with their technological properties, which makes it possible to create a technology for processing technogenic raw materials.

The following tasks were solved in the work: to assess the distribution of tungsten throughout the entire space of the main technogenic formation of the Dzhida VMC; study the material composition of the stale tailings of the Dzhizhinsky VMC; study the contrast of stale tailings in the original size in terms of W and 8 (II) content; to study the gravitational enrichment of stale tailings of the Dzhida VMC in various sizes; determine the feasibility of using magnetic enrichment to improve the quality of crude tungsten-containing concentrates; to optimize the technological scheme for the enrichment of technogenic raw materials of the general waste treatment plant of the Dzhida VMC; conduct pilot tests of the developed scheme for extracting W from the stale tailings of the DVMK.

Research methods: spectral, optical, optical-geometric, chemical, mineralogical, phase, gravitational and magnetic methods for analyzing the material composition and technological properties of initial mineral raw materials and enrichment products.

The reliability and validity of scientific statements and conclusions are ensured by a representative volume of laboratory research; confirmed by satisfactory convergence of calculated and experimentally obtained enrichment results, compliance with the results of laboratory and pilot tests.

NATIONAL I LIBRARY I SPEC gLYL!

Scientific novelty:

1. It has been established that technogenic tungsten-containing raw materials of the Dzhida VMC in any size are effectively enriched by the gravitational method.

2. Using generalized gravity washability curves, the maximum technological indicators processing of stale tailings of the Dzhida VMC of various sizes using the gravitational method and the conditions for obtaining waste tailings with minimal losses of tungsten were identified.

3. New patterns of separation processes have been established that determine the gravitational enrichment of tungsten-containing technogenic raw materials in a particle size of +0.1 mm.

4. For the stale tailings of the Dzhida VMC, a reliable and significant correlation between the contents of WO3 and S(II) was revealed.

Practical significance: a technology has been developed for the enrichment of stale tailings from the Dzhida VMC, which ensures the effective extraction of tungsten, making it possible to obtain standard tungsten concentrate.

Approbation of the work: the main content of the dissertation work and its individual provisions were presented at the annual scientific and technical conferences of the Irkutsk State Technical University (Irkutsk, 2001-2004), the All-Russian school-seminar of young scientists “Leonov Readings - 2004” (Irkutsk , 2004), scientific symposium “Miner’s Week - 2001” (Moscow, 2001), All-Russian scientific and practical conference “New technologies in metallurgy, chemistry, enrichment and ecology” (St. Petersburg, 2004 .), Plaksinsky readings - 2004. The dissertation work was presented in full at the Department of Mineral Processing and Environmental Engineering at ISTU, 2004 and at the Department of Mineral Processing at SPGGI (TU), 2004.

Publications. 8 printed publications have been published on the topic of the dissertation work.

Structure and scope of work. The dissertation consists of an introduction, 3 chapters, a conclusion, 104 bibliographic sources and contains 139 pages, including 14 figures, 27 tables and 3 appendices.

The author expresses deep gratitude to the scientific supervisor, Doctor of Technical Sciences, Prof. K.V. Fedotov for professional and friendly leadership; prof. HE. Belkova - for valuable advice and useful critical comments expressed during the discussion of the dissertation work; G.A. Badenikova - for consulting on the calculation of the technological scheme. The author sincerely thanks the department staff for their comprehensive assistance and support provided during the preparation of the dissertation.

The objective prerequisites for the involvement of man-made formations in production turnover are:

The inevitability of preserving natural resource potential. This is achieved by reducing the extraction of primary mineral resources and reducing the amount of damage caused to the environment;

The need to replace primary resources with secondary ones. Determined by the needs of production for material and raw materials, including those industries whose natural resource base is practically exhausted;

The possibility of using technogenic waste is ensured by the introduction of scientific and technological progress.

Production of products from technogenic deposits, as a rule, is several times cheaper than from raw materials specially mined for this purpose, and is characterized by a quick return on investment.

Ore processing waste storage facilities are objects of increased environmental hazard due to their negative impact on the air basin, underground and surface water, soil cover over vast areas.

Payments for pollution are a form of compensation for economic damage from emissions and discharges of pollutants into the environment, as well as for the disposal of waste on the territory of the Russian Federation.

The Dzhida ore field belongs to the high-temperature deep hydrothermal quartz-wolframite (or quartz-huebnerite) type of deposits, which play a critical role in tungsten mining. The main ore mineral is wolframite, the composition of which ranges from ferberite to pobnerite with all intermediate members of the series. Scheelite is a less common tungstate.

Wolframite ores are enriched mainly by gravity; Gravity methods of wet enrichment are usually used on jigging machines, hydrocyclones and concentration tables. To obtain quality concentrates, magnetic separation is used.

Until 1976, ores at the Dzhida VMC factory were processed according to a two-stage gravity scheme, including heavy-medium concentration in hydrocyclones, two-stage concentration of narrowly classified ore materials on three-deck tables of the SK-22 type, additional grinding and enrichment of industrial products in a separate cycle. The sludge was enriched according to a separate gravitational scheme using domestic and foreign sludge concentration tables.

From 1974 to 1996 Only tungsten ore enrichment tailings were stored. In 1985-86, ores were processed using a gravity-flotation technological scheme. Therefore, gravity enrichment tailings and sulfide flotogravity product were dumped into the main tailings pond. Since the mid-80s, due to the increased flow of ore supplied from the Inkursky mine, the share of large waste has increased

classes, up to 1-3 mm. After the Dzhidinsky GOK was shut down in 1996, the settling pond self-destructed due to evaporation and filtration.

In 2000, the “emergency discharge tailings storage facility” (EDT) was identified as an independent object due to its rather significant difference from the main tailings storage facility in terms of the conditions of occurrence, the scale of reserves, the quality and degree of safety of technogenic sands. Another secondary tailings reservoir is alluvial technogenic sediments (ATS), which include redeposited flotation tailings molybdenum ores in the river valley section Modoncul.

The basic standards for payment for waste disposal within the established limits for the Dzhida VMC are 90,620,000 rubles. Annual environmental damage from land degradation due to the disposal of stale ore processing tailings is estimated at 20,990,200 rubles.

Thus, the involvement of stale ore dressing tailings of the Dzhida VMC in the processing will allow: 1) to solve the problem of the enterprise’s raw material base; 2) increase the production of the sought-after "-concentrate" and 3) improve the environmental situation in the Trans-Baikal region.

Material composition and technological properties of technogenic mineral formation of the Dzhida VMC

Geological sampling of the stale tailings of the Dzhida VMC was carried out. During the inspection of the secondary tailings dump (emergency discharge tailings dump (EDT)), 13 samples were taken. 5 samples were taken from the ATO deposit area. The sampling area of ​​the main tailings dump (MTD) was 1015 thousand m2 (101.5 hectares), 385 private samples were taken. The weight of the selected samples is 5 tons. All selected samples were analyzed for the content of "03 and 8 (I).

OTO, CHAT and ATO were statistically compared in terms of "03" content using the Student's t test. With a confidence level of 95%, it was established: 1) the absence of a significant statistical difference in "03" content between private samples of side tailings; 2) the average results of testing the general waste dumps in terms of content "03 in 1999 and 2000 refer to the same general population; 3) the average results of testing the main and side tailings dumps in terms of content "03 significantly differ from each other and the mineral raw materials of all tailings dumps cannot be processed according to the same technology.

The subject of our research is general relativity.

The material composition of the mineral raw materials of the OTO of the Dzhida VMC was established based on the analysis of ordinary and group technological samples, as well as the products of their processing. Random samples were analyzed for the content of "03 and 8(11). Group samples were used for mineralogical, chemical, phase and sieve analyses.

According to the spectral semi-quantitative analysis of a representative analytical sample, the main useful component- " and minor ones - Pb, /u, Cu, Au and Contents "03 in the form of scheelite

quite stable in all size classes of various sand varieties and averages 0.042-0.044%. The content of WO3 in the form of hübnerite varies in different size classes. High contents of WO3 in the form of hübnerite were observed in particles of +1 mm size (from 0.067 to 0.145%) and especially in the -0.08+0 mm class (from 0.210 to 0.273%). This feature is typical for light and dark sands and is preserved for the average sample.

The results of spectral, chemical, mineralogical and phase analyzes confirm that the properties of hübnerite, as the main mineral form of \UOz, will determine the technology of enrichment of mineral raw materials of the OTO of the Dzhida VMC.

The granulometric characteristics of OTO raw materials with the distribution of tungsten by size class are shown in Fig. 1.2.

It can be seen that the bulk of the OTO sample material (~58%) has a particle size of -1+0.25 mm, 17% each falls on the large (-3+1 mm) and small (-0.25+0.1 mm) classes . The share of material with a particle size of -0.1 mm is about 8%, of which half (4.13%) is of the slurry class -0.044+0 mm.

Tungsten is characterized by a slight fluctuation (0.04-0.05%) in the content in size classes from -3 +1 mm to -0.25+0.1 mm and a sharp increase (up to 0.38%) in the size class -0 .1+0.044 mm. In the slurry class -0.044+0 mm, the tungsten content is reduced to 0.19%. That is, 25.28% of tungsten is concentrated in the -0.1+0.044 mm class with an output of this class of about 4% and 37.58% in the -0.1+0 mm class with an output of this class of 8.37%.

As a result of the analysis of data on the dissemination of hübnerite and scheelite in the OTO mineral raw material of the original size and crushed to - 0.5 mm (see Table 1).

Table 1 - Distribution of grains and intergrowths of pobnerite and scheelite by size class of initial and crushed mineral raw materials _

Size classes, mm Distribution, %

Huebnerite Scheelite

Free grains | Splices Free grains | Splices

OTO material in original size (- 5 +0 mm)

3+1 36,1 63,9 37,2 62,8

1+0,5 53,6 46,4 56,8 43,2

0,5+0,25 79,2 20,8 79,2 20,8

0,25+0,125 88,1 11,9 90,1 9,9

0,125+0,063 93,6 6,4 93,0 7,0

0,063+0 96,0 4,0 97,0 3,0

Amount 62.8 37.2 64.5 35.5

OTO material, crushed to - 0.5 +0 mm

0,5+0,25 71,5 28,5 67,1 32,9

0,25+0,125 75,3 24,7 77,9 22,1

0,125+0,063 89,8 10,2 86,1 13,9

0,063+0 90,4 9,6 99,3 6,7

Amount 80.1 19.9 78.5 21.5

It was concluded that it is necessary to classify deslimed mineral raw materials OTO according to a particle size of 0.1 mm and separate enrichment of the resulting classes. From the large class it is necessary: ​​1) to separate free grains into a rough concentrate, 2) tailings containing intergrowths are subjected to additional grinding, desliming, combining with the desliming class -0.1+0 mm of the original mineral raw material and gravity enrichment to extract fine grains of scheelite and pobnerite into industrial products.

To assess the contrast of OTO mineral raw materials, a technological sample was used, which is a combination of 385 individual samples. The results of fractionation of individual samples according to the content of WO3 and sulfide sulfur are shown in Fig. 3, 4.

0 Y OS 0.2 "l M o l O 2 SS * _ " 8

S(kk|Yupytetr "oknsmm" fr**m.% Contained gulfkshoy

Rice. 3 Conditional contrast curves of the original Fig. 4 Conditional contrast curves of the original

mineral raw materials OTO by content Ch/O) mineral raw materials OTO by content 8 (II)

It was found that the contrast indices for the content of WO3 and S (II) are equal to 0.44 and 0.48, respectively. Taking into account the classification of ores by contrast, the studied mineral raw materials in terms of WO3 and S (II) content belong to the category of non-contrast ores. Radiometric enrichment is not

suitable for extracting tungsten from small-sized stale tailings of the Dzhida VMC.

The results of the correlation analysis, with the help of which a mathematical relationship was revealed between the concentrations of \\Sos and 8 (II) (Stoz = 0»0232 + 0.038C5(u)And r = 0.827; the correlation is valid and reliable), confirm the conclusions about the inappropriateness of using radiometric separation.

The results of the analysis of the separation of OTO mineral grains in heavy liquids prepared on the basis of selenium bromide were used to calculate and construct gravity enrichment curves (Fig. 5), from the form of which, especially the curve, it follows that the OTO of the Dzhida VMC in any size is suitable for mineral raw materials gravity enrichment method.

Taking into account the shortcomings in the use of gravity concentration curves, especially the curve for determining the metal content in floating fractions with a given yield or recovery, generalized gravity concentration curves were constructed (Figure 6), the results of the analysis of which are given in Table. 2.

Table 2 - Forecast technological indicators of enrichment different classes size of stale tailings from the Dzhida VMC using the gravity method_

g Size class, mm Maximum losses \U with tailings, % Tailings yield, % XV content, %

in the tails at the end

3+1 0,0400 25 82,5 0,207 0,1

3+0,5 0,0400 25 84 0,19 0,18

3+0,25 0,0440 25 90 0,15 0,28

3+0,1 0,0416 25 84,5 0,07 0,175

3+0,044 0,0483 25 87 0,064 0,27

1+0,5 0,04 25 84,5 0,16 0,2

1+0,044 0,0500 25 87 0,038 0,29

0,5+0,25 0,05 25 92,5 0,04 0,45

0,5+0,044 0,0552 25 88 0,025 0,365

0,25+0,1 0,03 25 79 0,0108 0,1

0,25+0,044 0,0633 15 78 0,02 0,3

0,1+0,044 0,193 7 82,5 0,018 1,017

In terms of gravity washability, the classes -0.25+0.044 and -0.1+0.044 mm are significantly different from materials of other sizes. The best technological indicators of gravitational enrichment of mineral raw materials are predicted for the size class -0.1+0.044 mm: ^ |*0M4=82.5%, =0.018% and e* =7%.

The results of electromagnetic fractionation of heavy fractions (HF), gravitational analysis using the Sochnev S-5 universal magnet and magnetic separation of HF showed that the total yield of highly magnetic and non-magnetic fractions is 21.47% and the losses in them are 4.5%. Minimum losses "with a non-magnetic fraction and the maximum content" in the combined weakly magnetic product are predicted provided that the separation power in a strong magnetic field has a particle size of -0.1+0 mm.

Rice. 5 Gravity enrichment curves for stale tailings of the Dzhida VMC

e) class -0.1+0.044 mm

Rice. 6 Generalized gravity concentration curves for various size classes of mineral raw materials GTO

Development of a technological scheme for the enrichment of stale ore dressing tailings of the Dzhidinsky VM K

The results of technological testing of various methods of gravitational enrichment of stale tailings of the Dzhidinsky VMC are presented in Table. 3.

Table 3 - Results of testing gravity devices

Comparable technological indicators were obtained for the extraction of WO3 into rough concentrate during the enrichment of unclassified stale tailings using both screw separation and centrifugal separation. Minimal losses of WO3 with tailings were detected during enrichment in a centrifugal concentrator of class -0.1+0 mm.

In table Figure 4 shows the granulometric composition of the rough W-concentrate with a particle size of -0.1+0 mm.

Table 4 - Granulometric composition of rough W-concentrate

Size class, mm Yield of classes, % Content Distribution of AUOz

Absolute Relative, %

1+0,071 13,97 0,11 1,5345 2,046

0,071+0,044 33,64 0,13 4,332 5,831

0,044+0,020 29,26 2,14 62,6164 83,488

0,020+0 23,13 0,28 6,4764 8,635

Total 100.00 0.75 75.0005 100.0

In the concentrate, the main amount of WO3 is in the class -0.044+0.020 mm.

According to mineralogical analysis, compared to the source material, the concentrate contains a higher mass fraction of pobnerite (1.7%) and ore sulfide minerals, especially pyrite (16.33%). The content of rock-forming materials is 76.9%. The quality of rough W-concentrate can be increased by the sequential use of magnetic and centrifugal separation.

The results of testing gravitational devices for extracting >V03 from the tailings of the primary gravitational enrichment of mineral raw materials OTO in a particle size of +0.1 mm (Table 5) have proven that the most effective device is the KKEL80No concentrator

Table 5 - Results of testing gravity devices

Product G,% ßwo>, % rßwo> st">, %

screw separator

Concentrate 19.25 0.12 2.3345 29.55

Tails 80.75 0.07 5.5656 70.45

Initial sample 100.00 0.079 7.9001 100.00

wing gateway

Concentrate 15.75 0.17 2.6750 33.90

Tails 84.25 0.06 5.2880 66.10

Initial sample 100.00 0.08 7.9630 100.00

concentration table

Concentrate 23.73 0.15 3.56 44.50

Tails 76.27 0.06 4.44 55.50

Initial sample 100.00 0.08 8.00 100.00

centrifugal concentrator KC-MD3

Concentrate 39.25 0.175 6.885 85.00

Tails 60.75 0.020 1.215 15.00

Initial sample 100.00 0.081 8.100 100.00

When optimizing the technological scheme for the beneficiation of mineral raw materials of the OTO of the Dzhida VMC, the following were taken into account: 1) technological schemes for processing finely disseminated wolframite ores from domestic and foreign enrichment plants; 2) technical characteristics of the modern equipment used and its dimensions; 3) the possibility of using the same equipment for simultaneous implementation of two operations, for example, separation of minerals by size and dehydration; 4) economic costs for the hardware design of the technological scheme; 5) the results presented in Chapter 2; 6) GOST requirements for the quality of tungsten concentrates.

During semi-industrial testing of the developed technology (Figure 7-8 and Table 6), 15 tons of initial mineral raw materials were processed in 24 hours.

results spectral analysis A representative sample of the resulting concentrate confirms that the W-concentrate III of magnetic separation is standard and corresponds to the KVG (T) grade of GOST 213-73.

Fig. 8 Results of technological testing of the scheme for finishing rough concentrates and middling products from the stale tailings of the Dzhida VMC

Table 6 - Results of testing the technological scheme

Product

Conditioned concentrate 0.14 62.700 8.778 49.875

Dump tailings 99.86 0.088 8.822 50.125

Initial ore 100.00 0.176 17.600 100.000

CONCLUSION

The work provides a solution to a pressing scientific and production problem: scientifically substantiated, developed and, to a certain extent, implemented effective technological methods for extracting tungsten from the stale ore dressing tailings of the Dzhida VMC.

The main results of the research, development and their practical implementation are as follows:

The main useful component is tungsten, the content of which stale tailings are a non-contrasting ore, represented mainly by hübnerite, which determines the technological properties of technogenic raw materials. Tungsten is unevenly distributed among size classes and its main amount is concentrated in the size

It has been proven that the only effective method enrichment of W-containing stale tailings of the Dzhida VMC is gravitational. Based on the analysis of generalized gravity enrichment curves for stale W-containing tailings, it was established that dump tailings with minimal tungsten losses are a distinctive feature of the enrichment of technogenic raw materials in a size of -0.1+Ohm. New patterns of separation processes have been established that determine the technological indicators of gravitational enrichment of stale tailings from the Dzhida VMC in a size of +0.1 mm.

It has been proven that among the gravitational devices used in the mining industry for the beneficiation of W-containing ores, the screw separator and the centrifugal concentrator KKEL80N are suitable for maximum extraction of tungsten from the technogenic raw materials of the Dzhida VMC into rough W-concentrates. The effectiveness of using the KKEL80K concentrator has also been confirmed for additional extraction of tungsten from tailings of primary enrichment of technogenic W-containing raw materials in size - 0.1 mm.

3. Optimized technology system extraction of tungsten from the stale ore dressing tailings of the Dzhidinsky VMC made it possible to obtain a standard W-concentrate, solve the problem of depletion of mineral resources of the Dzhidinsky VMC and reduce negative impact production activities of the enterprise on the environment.

Preferred use of gravity equipment. During semi-industrial testing of the developed technology for extracting tungsten from the stale tailings of the Dzhida VMC, a standard “-concentrate” was obtained with a “03 content of 62.7% with an extraction of 49.9%. The payback period for the processing plant for processing stale tailings from the Dzhida VMC in order to extract tungsten was 0.55 years.

The main provisions of the dissertation work were published in the following works:

1. Fedotov K.V., Artemova O.S., Polinskina I.V. Assessment of the possibility of processing stale tailings of the Dzhida VMC, Ore dressing: Sat. scientific works - Irkutsk: ISTU Publishing House, 2002. - 204 pp., pp. 74-78.

2. Fedotov K.V., Senchenko A.E., Artemova O.S., Polinkina I.V. Application of a centrifugal separator with continuous discharge of concentrate for the extraction of tungsten and gold from the tailings of the Dzhidinsky VMC, Environmental problems and new technologies complex processing mineral raw materials: Materials of the International Meeting “Plaksin Readings - 2002”. - M.: P99, Publishing House PKTs "Altex", 2002 - 130 p., P.96-97.

3. Zelinskaya E.V., Artemova O.S. The possibility of regulating the selectivity of the action of the collector during the flotation of tungsten-containing ores from stale tailings, Directed changes in the physico-chemical properties of minerals in mineral processing processes (Plaksin Readings), materials of the international meeting. - M.: Altex, 2003. -145 p., pp. 67-68.

4. Fedotov K.V., Artemova O.S. Problems of processing stale tungsten-containing products Modern methods of processing mineral raw materials: Conference materials. Irkutsk: Irk. State Those. Univ., 2004 - 86 s.

5. Artemova O. S., Gaiduk A. A. Extraction of tungsten from stale tailings of the Dzhida tungsten-molybdenum plant. Prospects for the development of technology, ecology and automation of chemical, food and metallurgical industries: Materials of a scientific and practical conference. - Irkutsk: ISTU Publishing House. - 2004 - 100 p.

6. Artemova O.S. Assessment of the uneven distribution of tungsten in the Dzhida tailings dump. Modern methods for assessing the technological properties of mineral raw materials noble metals and diamonds and advanced technologies for their processing (Plaksin Readings): Materials of the international meeting. Irkutsk, September 13-17, 2004 - M.: Altex, 2004. - 232 s.

7. Artemova O.S., Fedotov K.V., Belkova O.N. Prospects for the use of the technogenic deposit of the Dzhidinsky VMC. All-Russian scientific and practical conference “New technologies in metallurgy, chemistry, enrichment and ecology”, St. Petersburg, 2004.

Signed for publication on November 12, 2004. Format 60x84 1/16. Printing paper. Offset printing. Conditional oven l. Academician-ed.l. 125. Circulation 400 copies. Law 460.

ID No. 06506 dated December 26, 2001 Irkutsk State Technical University 664074, Irkutsk, st. Lermontova, 83

RNB Russian Fund

1. IMPORTANCE OF TECHNOGENIC MINERAL RAW MATERIALS

1.1. Mineral resources mining industry in the Russian Federation and tungsten sub-industry

1.2. Technogenic mineral formations. Classification. Need for use

1.3. Technogenic mineral formation of the Dzhida VMC

1.4. Goals and objectives of the study. Research methods. Provisions for defense

2. RESEARCH OF THE SUBSTANTIAL COMPOSITION AND TECHNOLOGICAL PROPERTIES OF STELLED TAILINGS OF THE DZHIDINSK VMK

2.1. Geological testing and evaluation of tungsten distribution

2.2. Material composition of mineral raw materials

2.3. Technological properties of mineral raw materials

2.3.1. Grading

2.3.2. Study of the possibility of radiometric separation of mineral raw materials in the original size

2.3.3. Gravity analysis

2.3.4. Magnetic analysis

3. DEVELOPMENT OF A TECHNOLOGICAL SCHEME FOR THE EXTRACTION OF TUNGSTEN FROM STANDING TAILS OF THE DZHIDINSK VMK

3.1. Technological testing of various gravity devices for the enrichment of stale tailings of various sizes

3.2. Optimization of the general waste processing scheme

3.3. Pilot testing of the developed technological scheme for the enrichment of general waste and an industrial plant

Introduction Dissertation on geosciences, on the topic "Development of technology for extracting tungsten from the stale tailings of the Dzhida VMC"

The sciences of mineral processing are, first of all, aimed at developing the theoretical foundations of mineral separation processes and the creation of processing apparatus, at revealing the relationship between the distribution patterns of components and separation conditions in processing products in order to increase the selectivity and speed of separation, its efficiency and economy, and environmental safety.

Despite significant mineral reserves and a reduction in resource consumption in recent years, the depletion of mineral resources is one of the most important problems in Russia. Weak use of resource-saving technologies contributes to big losses minerals in the extraction and enrichment of raw materials.

An analysis of the development of equipment and technology for mineral processing over the past 10-15 years indicates significant achievements of domestic fundamental science in the field of knowledge of the basic phenomena and patterns in the separation of mineral complexes, which makes it possible to create highly efficient processes and technologies for the primary processing of ores of complex composition and, as Consequently, to provide the metallurgical industry with the necessary range and quality of concentrates. At the same time, in our country in comparison with developed foreign countries There is still a significant lag in the development of the machine-building base for the production of main and auxiliary enrichment equipment, in its quality, metal intensity, energy intensity and wear resistance.

In addition, due to the departmental affiliation of mining and processing enterprises, complex raw materials were processed only taking into account the necessary industry needs for a specific metal, which led to the irrational use of natural mineral resources and increased costs for waste storage. Currently, more than 12 billion tons of waste have been accumulated, the content of valuable components in which in some cases exceeds their content in natural deposits.

In addition to the above negative trends, since the 90s, the environmental situation at mining and processing enterprises has sharply worsened (in a number of regions, threatening the existence of not only biota, but also humans), there has been a progressive decline in the production of non-ferrous and ferrous metal ores, mining and chemical raw materials, deterioration in the quality of processed ores and, as a consequence, the involvement in the processing of difficult-to-process ores of complex material composition, characterized by a low content of valuable components, fine dissemination and similar technological properties of minerals. Thus, over the past 20 years, the content of non-ferrous metals in ores has decreased by 1.3-1.5 times, iron by 1.25 times, gold by 1.2 times, the share of difficult ores and coal has increased from 15% to 40% of the total mass of raw materials supplied for enrichment.

The human impact on the natural environment in the process of economic activity is now becoming global character. In terms of the scale of extracted and transported rocks, transformation of the relief, impact on the redistribution and dynamics of surface and groundwater, activation of geochemical transfer, etc. this activity is comparable to geological processes.

The unprecedented scale of extracted mineral resources leads to their rapid depletion, the accumulation of large amounts of waste on the Earth’s surface, in the atmosphere and hydrosphere, the gradual degradation of natural landscapes, a reduction in biodiversity, and a decrease in the natural potential of territories and their life-supporting functions.

Ore processing waste storage facilities are objects of increased environmental hazard due to their negative impact on the air basin, ground and surface water, and soil cover over vast areas. Along with this, tailings dumps are little-studied technogenic deposits, the use of which will make it possible to obtain additional sources of ore and mineral raw materials while significantly reducing the scale of disturbance of the geological environment in the region.

Production of products from technogenic deposits, as a rule, is several times cheaper than from raw materials specially mined for this purpose, and is characterized by a quick return on investment. However, the complex chemical, mineralogical and granulometric composition of tailings, as well as the wide range of minerals they contain (from main and associated components to the simplest building materials) make it difficult to calculate the total economic effect of their processing and determine an individual approach to the assessment of each tailings.

Consequently, at the moment a number of insoluble contradictions have emerged between the change in the nature of the mineral resource base, i.e. the need to involve difficult-to-process ores and technogenic deposits in the processing, the environmentally aggravated situation in mining regions and the state of technology, technology and organization of primary processing of mineral raw materials.

The issues of using waste from the enrichment of polymetallic, gold-containing and rare metals have both economic and environmental aspects.

In achieving the current level of development of the theory and practice of processing tailings from the enrichment of non-ferrous, rare and precious metal ores, V.A. made a great contribution. Chanturia, V.Z. Kozin, V.M. Avdokhin, S.B. Leonov, J.I.A. Barsky, A.A. Abramov, V.I. Karmazin, S.I. Mitrofanov and others.

An important component of the overall strategy of the ore industry, incl. tungsten, is the increased use of ore processing waste as additional sources of ore and mineral raw materials, with a significant reduction in the scale of disturbance of the geological environment in the region and the negative impact on all components of the environment.

In the field of using ore processing waste, the most important thing is a detailed mineralogical and technological study of each specific, individual technogenic deposit, the results of which will make it possible to develop an effective and environmentally friendly technology for the industrial development of an additional source of ore and mineral raw materials.

The problems considered in the dissertation work were solved in accordance with the scientific direction of the Department of Mineral Processing and Environmental Engineering of Irkutsk State Technical University on the topic “Fundamental and technological research in the field of processing of mineral and technogenic raw materials for the purpose of their integrated use, taking into account environmental problems in complex industrial systems " and paper topic No. 118 "Study on the enrichment of stale tailings of the Dzhida VMC."

The purpose of the work is to scientifically substantiate, develop and test rational technological methods for the enrichment of stale tungsten-containing tailings from the Dzhida VMC.

The following tasks were solved in the work:

Assess the distribution of tungsten throughout the entire space of the main technogenic formation of the Dzhida VMC;

To study the material composition of the stale tailings of the Dzhizhinsky MMC;

Investigate the contrast of stale tailings in the original size according to the content of W and S (II); to study the gravitational enrichment of stale tailings of the Dzhida VMC in various sizes;

To determine the feasibility of using magnetic enrichment to improve the quality of rough tungsten-containing concentrates;

Optimize the technological scheme for the enrichment of technogenic raw materials of the OTO of the Dzhida VMC; conduct pilot tests of the developed scheme for extracting W from the stale tailings of DVMC;

Develop a circuit diagram of devices for industrial processing stale tailings from the Dzhida VMC.

To carry out the research, a representative technological sample of stale tailings from the Dzhida VMC was used.

When solving the formulated problems, the following research methods were used: spectral, optical, chemical, mineralogical, phase, gravitational and magnetic methods for analyzing the material composition and technological properties of the initial mineral raw materials and enrichment products.

The following basic scientific provisions are submitted for defense: The patterns of distribution of initial technogenic mineral raw materials and tungsten by size classes have been established. The need for primary (preliminary) classification by size of 3 mm has been proven.

Installed quantitative characteristics stale tailings of ore processing of ores from the Dzhida VMC in terms of WO3 and sulfide sulfur content. It has been proven that the initial mineral raw materials belong to the category of non-contrasting ores. A reliable and reliable correlation between the contents of WO3 and S (II) was revealed.

Quantitative patterns of gravitational enrichment of stale tailings from the Dzhida VMC have been established. It has been proven that for source material of any size, an effective method for extracting W is gravitational enrichment. Forecast technological indicators of gravitational enrichment of initial mineral raw materials in various sizes have been determined.

Quantitative patterns of distribution of stale ore dressing tailings of the Dzhida VMC into fractions of different specific magnetic susceptibility have been established. The effectiveness of the sequential use of magnetic and centrifugal separation has been proven to improve the quality of rough W-containing products. The technological modes of magnetic separation have been optimized.

Conclusion Dissertation on the topic "Beneficiation of mineral resources", Artemova, Olesya Stanislavovna

The main results of the research, development and their practical implementation are as follows:

1. An analysis of the current situation in the Russian Federation with mineral resources of the ore industry, in particular tungsten, was carried out. Using the example of the Dzhidinsky VMC, it is shown that the problem of involving stale ore dressing tailings in the processing is relevant, having technological, economic and environmental significance.

2. The material composition and technological properties of the main W-containing technogenic formation of the Dzhida VMC have been established.

The main useful component is tungsten, the content of which stale tailings are a non-contrasting ore, represented mainly by hübnerite, which determines the technological properties of technogenic raw materials. Tungsten is unevenly distributed across size classes and its main amount is concentrated in sizes -0.5+0.1 and -0.1+0.02 mm.

It has been proven that the only effective method for enriching W-containing stale tailings of the Dzhida VMC is gravity. Based on the analysis of generalized gravity enrichment curves of stale W-containing tailings, it was established that dump tailings with minimal tungsten losses are a distinctive feature of the enrichment of technogenic raw materials in a size of -0.1+0 mm. New patterns of separation processes have been established that determine the technological indicators of gravitational enrichment of stale tailings from the Dzhida VMC in a size of +0.1 mm.

It has been proven that among the gravitational devices used in the mining industry for the enrichment of W-containing ores, a screw separator and a KNELSON centrifugal concentrator are suitable for maximum extraction of tungsten from the technogenic raw materials of the Dzhida VMC into rough W-concentrates. The effectiveness of using the KNELSON concentrator has also been confirmed for the additional extraction of tungsten from the tailings of the primary enrichment of technogenic W-containing raw materials in a particle size of 0.1 mm.

3. An optimized technological scheme for extracting tungsten from the stale ore dressing tailings of the Dzhidinsky VMC made it possible to obtain a standard W-concentrate, solve the problem of depletion of mineral resources of the Dzhidinsky VMC and reduce the negative impact of the enterprise’s production activities on the environment.

The essential features of the developed technology for extracting tungsten from the stale tailings of the Dzhida VMC are:

Narrow classification by feed size of primary enrichment operations;

Preferred use of gravity equipment.

During semi-industrial testing of the developed technology for extracting tungsten from the stale tailings of the Dzhida VMC, a standard W-concentrate was obtained with a WO3 content of 62.7% with an extraction of 49.9%. The payback period for the processing plant for processing stale tailings from the Dzhida VMC in order to extract tungsten was 0.55 years.

Bibliography Dissertation on geosciences, candidate of technical sciences, Artemova, Olesya Stanislavovna, Irkutsk

1. Technical and economic assessment of technogenic deposits of non-ferrous metals: Review/V.V. Olenin, L.B. Ershov, I.V. Belyakova. M., 1990 - 64 p.

2. Mining sciences. Development and conservation of the Earth's interior / RAS, AGN, RANS, MIA; Ed. K.N. Trubetskoy. M.: Publishing house of the Academy of Mining Sciences, 1997. -478 p.

3. Novikov A.A., Sazonov G.T. State and prospects for the development of the ore and raw material base of non-ferrous metallurgy in the Russian Federation, Mining Journal 2000 - No. 8, pp. 92-95.

4. Karelov S.V., Vyvarets A.D., Distergeft JI.B., Mamyachenkov S.V., Khilai V.V., Naboychenko E.S. Assessment of the environmental and economic efficiency of processing secondary raw materials and technogenic waste, Izvestia of Universities, Mining Journal 2002 - No. 4, pp. 94-104.

5. Mineral resources of Russia. Economics and management of modular processing plants, Special issue, September 2003 - HTJI TOMS ISTU.

6. Beresnevich P.V. and others. Environmental protection during the operation of tailings dumps. M.: Nedra, 1993. - 127 p.

7. Dudkin O.B., Polyakov K.I. The problem of technogenic deposits, Ore enrichment 1999 - No. 11, pp. 24-27.

8. Deryagin A.A., Kotova V.M., Nikolsky A.JI. Assessment of the prospects for involving technogenic deposits in the exploitation, Mine Surveying and Subsoil Use, 2001 - No. 1, pp. 15-19.

9. Chuyanov G.G. Tailings dumps of processing plants, News of Universities, Mining Journal 2001 - No. 4-5, pp. 190-195.

10. Voronin D.V., Havelya E.A., Karpov S.V. Study and processing of technogenic deposits, Ore enrichment - 2000 No. 5, pp. 16-20.

11. Smoldyrev A.E. Possibilities for mining tailings, Mining Journal -2002, No. 7, pp. 54-56.

12. Kvitka V.V., Kumakova L.B., Yakovleva E.P. Processing of stale tailings from processing plants in Eastern Kazakhstan, Mining Journal - 2001 - No. 9, pp. 57-61.

13. Khasanova G.G. Cadastral assessment of technogenic-mineral objects of the Middle Urals Izvestia of Universities, Mining Journal - 2003 - No. 4, P. 130136.

14. Tumanova E.S., Tumanov P.P. Mineral raw materials. Technogenic raw materials // Directory. M.: JSC "Geoinformmark", 1998. - 44 p.

15. Popov V.V. Mineral resource base of Russia. State and problems, Mining Journal 1995 - No. 11, pp. 31-34.

16. Uzbaeva L.K. Stale enrichment tailings are an additional source of metals, Non-ferrous metals 1999 - No. 4, pp. 30-32.

17. Fishman M.A., Sobolev D.S. Practice of beneficiation of non-ferrous and rare metal ores, vol. 1-2. -M.: Metallurgizdat, 1957 1960.

18. Fishman M.A., Sobolev D.S. Practice of beneficiation of non-ferrous and rare metal ores, vol. 3-4. M.: Gosgortekhizdat, 1963.

19. Leonov S.B., Belkova O.N. Study of minerals for dressing: Textbook. - M.: "Intermet Engineering", 2001. - 631 p.

20. Trubetskoy K.N., Umanets V.N., Nikitin M.B. Classification of technogenic deposits, main categories and concepts, Mining Journal - 1990 - No. 1, pp. 6-9.

21. Instructions for applying the Classification of Reserves to tungsten ore deposits. M., 1984 - 40 p.

22. Betekhtin A.G., Golikov A.S., Dybkov V.F. and others. Course of mineral deposits. Ed. 3rd revision and additional/sub. Ed. P.M. Tatarinov and A.G. Betekhtina-M.: Nedra, 1964.

23. Khabirov V.V., Vorobyov A.E. Theoretical foundations for the development of mining and processing industries in Kyrgyzstan / Ed. acad. N.P. Laverov. M.: Nedra, 1993. - 316 p.

24. Izoitko V.M. Technological mineralogy of tungsten ores. - L.: Science, 1989.-232 p.

25. Izoitko V.M., Boyarinov E.V., Shanaurin V.E. Features of the mineralogical and technological assessment of ores at enterprises of the tungsten-molybdenum industry. M.TSNIITSVETMET and information, 1985.

26. Minelogical Encyclopedia/Ed. K. Freya: Per. from English - L-d: Nedra, 1985.-512 p.

27. Mineralogical study of non-ferrous and rare metal ores / Under the general editorship. A.F. Lee. Ed. 2nd. M.: Nedra, 1967. - 260 p.

28. Ramder Paul Ore minerals and their intergrowths. M.: IL, 1962.

29. Kogan B.I. Rare metals. Status and prospects. M.: Nauka, 1979. - 355 p.

30. Kochurova R.N. Geometric methods of quantitative-mineralogical analysis of rocks. - L-d: Leningrad State University, 1957.-67 p.

31. Methodological basis of the study chemical composition rocks, ores and minerals. Ed. G.V. Ostroumova. M.: Nedra, 1979. - 400 p.

32. Methods of mineralogical research: Handbook/Ed. A.I. Ginsburg. M.: Nedra, 1985. - 480 p.

33. Kopchenova E.V. Mineralogical analysis of concentrates and ore concentrates. M.: Nedra, 1979.

34. Determination of mineral forms of tungsten in primary ores and ores of the weathering crust of hydrothermal quartz stockworks. Instruction NSAM No. 207-F-M.: VIMS, 1984.

35. Methodological mineralogical studies. M.: Nauka, 1977. - 162 p. (AS USSR IMGRE).

36. Panov E.G., Chukov A.V., Koltsov A.A. Assessment of the quality of raw materials for recycling waste from mining and processing industries. Exploration and protection of subsoil, 1990 No. 4.

37. Materials of the Republican Analytical Center PGO "Buryatgeology" on the study of the material composition of the ores of the Kholtoson and Inkur deposits and man-made products of the Dzhidinsky plant. Ulan-Ude, 1996.

38. Giredmet's report "Study of the material composition and enrichment of two samples of stale tailings from the Dzhida Mining and Processing Plant." Authors Chistov L.B., Okhrimenko V.E. M., 1996.

39. Zelikman A.N., Nikitin J.I.C. Tungsten. M.: Metallurgy, 1978. - 272 p.

40. Fedotov K.V. Numerical determination of the components of fluid flow velocity in centrifugal apparatuses, Ore Enrichment - 1998 No. 4, pp. 34-39.

41. Shokhin V.I. Gravity enrichment methods. M.: Nedra, 1980. - 400 p.

42. Fomenko T.G. Gravity processes of mineral processing. M.: Nedra, 1966. - 330 p.

43. Voronov V.A. On one approach to controlling the opening of minerals during the grinding process, Ore Enrichment 2001 - No. 2, pp. 43-46.

44. Barsky JI.A., Kozin V.Z. System analysis in mineral processing. M.: Nedra, 1978. - 486 p.

45. Technological assessment of mineral raw materials. Research methods: Handbook/Ed. P.E. Ostapenko. M.: Nedra, 1990. - 264 p.

46. ​​Sorokin M.M., Shepeta E.D., Kuvaeva I.V. Reducing losses of tungsten trioxide from sulfide waste products. Physico-technological problems of mineral development, 1988 No. 1, pp. 59-60.

47. Report of the Research and Development Center "Extekhmet" "Assessment of the beneficiation of sulfide products of the Kholtoson deposit." Authors Korolev N.I., Krylova N.S. et al., M., 1996.

48. Dobromyslov Yu.P., Semenov M.I. and others. Development and implementation of technology for complex processing of waste products from processing plants of the Dzhidinsky plant. Integrated use of mineral raw materials, Alma-Ata, 1987 No. 8. pp. 24-27.

49. Nikiforov K.A., Zoltoev E.V. Obtaining artificial tungsten raw materials from low-grade pobnerite middlings of a processing plant. Integrated use of mineral raw materials, 1986 No. 6, P.62-65.

50. Methodology for determining prevented environmental damage/State. Committee of the Russian Federation for Environmental Protection. M., 1999. - 71 p.

51. Rubinshtein Yu.B., Volkov JI.A. Mathematical methods in mineral processing. - M.: Nedra, 1987. 296 p.

52. Modern methods of mineralogical research / Ed. E.V. Rozhkova, vol.1. M.: Nedra, 1969. - 280 p.

53. Modern methods of mineralogical research / Ed. E.V. Rozhkova, vol.2. M.: Nedra, 1969. - 318 p.

54. Electron microscopy in mineralogy/Under the general editorship. G.R. Venka. Per. from English M.: Mir, 1979. - 541 p.

55. Feklichev V.G. Diagnostic spectra of minerals. - M.: Nedra, 1977. - 228 p.

56. Cameron Yu.N. Ore microscopy. M.: Mir, 1966. - 234 p.

57. Volynsky I.S. Determination of ore minerals under a microscope. - M.: Nedra, 1976.

58. Vyalsov JT.H. Optical methods for diagnosing ore minerals. - M.: Nedra, 1976.-321 p.

59. Isaenko M.P., Borishanskaya S.S., Afanasyev E.L. Determinant of the main minerals of ores in reflected light. M.: Nedra, 1978.

60. Zevin L.S., Zavyalova L.L. Quantitative X-ray phase analysis. M.: Nedra, 1974.

61. Bolshakov A.Yu., Komlev V.N. Methodological recommendations for assessing the concentration of ores using nuclear physical methods. Apatity: KF AS USSR, 1974.-72 p.

62. Vasiliev E.K., Nakhmanson M.S. Qualitative X-ray phase analysis. - Novosibirsk: Nauka, SO, 1986. 199 p.

63. Fillipova N.A. Phase analysis of ores and products of their processing. - M.: Chemistry, 1975.-280 p.

64. Blokhin M.A. Methods of X-ray spectral studies. - M., Fizmatgiz, 1959. 386 p.

65. Technological assessment of mineral raw materials. Pilot installations: Handbook/Ed. P.E. Ostapenko. M.: Nedra, 1991. - 288 p.

66. Bogdanovich A.V. Ways to improve the gravitational enrichment of fine-grained ores and slurries, Ore Enrichment 1995 - No. 1-2, pp. 84-89.

67. Plotnikov R.I., Pshenichny G.A. Fluorescent X-ray radiometric analysis. - M., Atomizdat, 1973. - 264 p.

68. Mokrousov V. A., Lileev V. A. Radiometric enrichment of non-radioactive ores. M.: Nedra, 1978. - 191 p.

69. Mokrousov V.A. Study of the particle size distribution and contrast of minerals to assess the possibility of enrichment: Guidelines/VIMS. M.: 1978. - 24 p.

70. Barsky L.A., Danilchenko L.M. Dressability of mineral complexes. -M.: Nedra, 1977.-240 p.

71. Albov M.N. Testing of mineral deposits. - M.: Nedra, 1975.-232 p.

72. Mitrofanov S.I. Study of mineral resources for enrichment. - M.: Metallurgizdat, 1954.-495 p.

73. Mitrofanov S.I. Study of mineral resources for enrichment. - M.: Gosgortekhizdat, 1962. - 580 p.

74. Ural State Mining and Geological Academy, 2002, P. 6067.

75. Karmazin V.V., Karmazin V.I. Magnetic and electrical enrichment methods. M.: Nedra, 1988. - 303 p.

76. Olofinsky N.F. Electrical enrichment methods. 4th ed., revised. and additional M.: Nedra, 1977. - 519 p.

77. Mesenyashin A.I. Electrical separation in strong fields. M.: Nedra, 1978.

78. Polkin S.I. Enrichment of ores and placers of rare metals. M.: Nedra, 1967.-616 p.

79. Handbook on ore dressing. Special and auxiliary processes, washability tests, control and automation / Ed. O.S. Bogdanov. M.: Nedra, 1983 - 386 p.

80. Handbook on ore dressing. Basic processes./Ed. O.S. Bogdanov. M.: Nedra, 1983. - 381 p.

81. Handbook on ore dressing. In 3 vols. Ch. ed. O.S. Bogdanov. T.Z. Processing factories. Rep. Ed. Yu.F. Nenarokomov. M.: Nedra, 1974. - 408 p.

82. Mining magazine 1998 - No. 5, 97 p.

83. Potemkin A.A. The KNELSON CONSENTRATOR company is a world leader in the production of gravity centrifugal separators, Mining Journal - 1998, No. 5, pp. 77-84.

84. Bogdanovich A.V. Separation in a centrifugal field of particles suspended in a liquid under pseudostatic conditions, Ore Enrichment - 1992 No. 3-4, pp. 14-17.

85. Stanoilovich R. New directions in the development of gravitational concentration, Ore enrichment 1992 - No. 1, pp. 3-5.

86. Podkosov L.G. On the theory of gravitational enrichment, Non-ferrous metals - 1986, No. 7, pp. 43-46.

87. Bogdanovich A.V. Intensification of gravitational enrichment processes in centrifugal fields, Ore Enrichment 1999 - No. 1-2, pp. 33-36.

88. Polkin S.I., Enrichment of ores and placers of rare and precious metals. 2nd ed., revised. and additional - M.: Nedra, 1987. - 429 p.

89. Polkin S.I., Laptev S.F. Enrichment of tin ores and placers. - M.: Nedra, 1974.-477 p.

90. Abramov A.A. Technology of enrichment of non-ferrous metal ores. M.: Nedra, 1983.-359 p.

91. Karpenko N.V. Testing and quality control of enrichment products. - M.: Nedra, 1987.-214 p.

92. Andreeva G.S., Goryushkin S.A. processing and enrichment of minerals from placer deposits. M.: Nedra, 1992. - 410 p.

93. Enbaev I.A. Modular centrifugal installations for the concentration of precious and noble metals from alluvial and technogenic deposits, Ore Enrichment 1997 - No. 3, P.6-8.

94. Chanturia V.A. Technology of processing ores and placers of precious metals, Non-ferrous metals 1996 - No. 2, pp. 7-9.

95. Kalinichenko V.E." Installation for additional extraction of metals from waste tailings of current production, Non-ferrous metals 1999 - No. 4, P.33-35.

96. Berger G.S., Orel M.A., Popov E.L. Semi-industrial tests of ores for dressing. M.: Nedra, 1984. - 230 p.

97. GOST 213-73 “Technical requirements (composition,%) for tungsten concentrates obtained from tungsten-containing ores”

99. Fedotov K.V., Artemova O.S., Polinskina I.V. Assessment of the possibility of processing stale tailings of the Dzhida VMC, Ore dressing: Sat. scientific works Irkutsk: ISTU Publishing House, 2002. - 204 pp., pp. 74-78.

100. Fedotov K.V., Artemova O.S. Problems of processing stale tungsten-containing products Modern methods of processing mineral raw materials: Conference materials. Irkutsk: Irk. State Those. Univ., 2004 86 p.

101. Artemova O.S., Fedotov K.V., Belkova O.N. Prospects for the use of the technogenic deposit of the Dzhidinsky VMC. All-Russian scientific and practical conference “New technologies in metallurgy, chemistry, enrichment and ecology”, St. Petersburg, 2004.

Cassiterite SnO 2– the main industrial mineral of tin, which is present in tin-bearing placers and bedrock ores. The tin content in it is 78.8%. Cassiterite has a density of 6900...7100 kg/t and a hardness of 6...7. The main impurities in cassiterite are iron, tantalum, niobium, as well as titanium, manganese, pigs, silicon, tungsten, etc. The physical and chemical properties of cassiterite, for example, magnetic susceptibility, and its flotation activity depend on these impurities.

Stannin Cu 2 S FeS SnS 4- tin sulfide mineral, although it is the most common mineral after cassiterite, has no industrial significance, firstly, because it has a low tin content (27...29.5%), and secondly, the presence of copper and iron sulfides in it complicates the metallurgical processing of concentrates and, thirdly, the proximity of the flotation properties of the bed to sulfides makes separation during flotation difficult. Composition of tin concentrates obtained from processing plants, is different. From rich tin placers, gravity concentrates containing about 60% tin are isolated, and slurry concentrates obtained by both gravity and flotation methods can contain from 15 to 5% tin.

Tin deposits are divided into placer and bedrock deposits. Alluvial Tin deposits are the main source of world tin production. Placers contain about 75% of the world's tin reserves. Indigenous Tin deposits have a complex material composition, depending on which they are divided into quartz-cassiterite, sulfide-quartz-cassiterite and sulfide-cassiterite.

Quartz-cassiterite ores are usually complex tin-tungsten ores. Cassiterite in these ores is represented by large-, medium- and finely disseminated crystals in quartz (from 0.1 to 1 mm m more). In addition to quartz and cassiterite, these ores typically contain feldspar, tourmaline, micas, wolframite or scheelite, and sulfides. Sulfide-cassiterite ores are dominated by sulfides - pyrite, pyrrhotite, arsenopyrite, galena, sphalerite and stanine. Also contains iron minerals, chlorite and tourmaline.

Tin placers and ores are enriched mainly by gravity methods using jigging machines, concentration tables, screw separators and sluices. Placers are usually much easier to enrich by gravity methods than ores from primary deposits, because they do not require expensive crushing and grinding processes. Finishing of rough gravity concentrates is carried out using magnetic, electrical and other methods.

Enrichment on sluices is used when the cassiterite grain size is more than 0.2 mm, because smaller grains are poorly captured on the sluices and their extraction does not exceed 50...60%. More efficient devices are jigging machines, which are installed for primary enrichment and allow the extraction of up to 90% of cassiterite. Finishing of coarse concentrates is carried out on concentration tables (Fig. 217).

Fig. 217. Scheme of enrichment of tin placers

Primary enrichment of placers is also carried out on dredges, including sea dredges, where drum screens with holes of 6...25 mm in size are installed to wash sand, depending on the distribution of cassiterite according to the classes of sand size and washability. To enrich the under-sieve product of screens, jigging machines of various designs are used, usually with an artificial bed. Gateways are also installed. Primary concentrates are subjected to cleaning operations on jigging machines. Finishing is usually carried out at onshore finishing installations. The recovery of cassiterite from placers is usually 90...95%.

The enrichment of primary tin ores, characterized by the complexity of their material composition and uneven dissemination of cassiterite, is carried out according to more complex multi-stage schemes using not only gravitational methods, but also flotation gravity, flotation, and magnetic separation.

When preparing tin ores for beneficiation, it is necessary to take into account the ability of cassiterite to sludge due to its size. More than 70% of tin losses during enrichment are due to sludged cassiterite, which is carried away with the drains of gravity devices. Therefore, the grinding of tin ores is carried out in rod mills, which operate in a closed cycle with screens. At some factories, enrichment in heavy suspensions is used at the head of the process, which makes it possible to separate up to 30...35% of the host rock minerals into the tailings, reduce grinding costs and increase tin extraction.

To isolate coarse-grained cossiterite at the head of the process, jigging is used with a feed size ranging from 2...3 to 15...20 mm. Sometimes, instead of jigging machines, when the material size is minus 3+ 0.1 mm, screw separators are installed, and when enriching material with a size of 2...0.1 mm, concentration tables are used.

For ores with uneven dissemination of cassiterite, multi-stage schemes are used with sequential grinding of not only tailings, but also poor concentrates and middlings. In tin ore, which is enriched according to the scheme presented in Fig. 218, cassiterite has a particle size of 0.01 to 3 mm.

Rice. 218. Scheme of gravity enrichment of primary tin ores

The ore also contains iron oxides, sulfides (arsenopyrite, chalcopyrite, pyrite, stanine, galena), and wolframite. The nonmetallic part is represented by quartz, tourmaline, chlorite, sericite and fluorite.

The first stage of enrichment is carried out in jigging machines at an ore size of 90% minus 10 mm with the release of coarse tin concentrate. Then, after additional grinding of the tailings of the first stage of enrichment and hydraulic classification according to equal incidence, enrichment is carried out on concentration tables. The tin concentrate obtained according to this scheme contains 19...20% tin with an extraction of 70...85% and is sent for finishing.

During finishing, sulfide minerals and host rock minerals are removed from coarse tin concentrates, which makes it possible to increase the tin content to standard levels.

Coarsely disseminated sulfide minerals with a particle size of 2...4 mm are removed by flotogravity on concentration tables, before which the concentrates are treated with sulfuric acid (1.2...1.5 kg/t), xanthate (0.5 kg/t) and kerosene (1...2 kg/t). T).

Cassiterite is extracted from gravity enrichment sludge by flotation using selective collecting reagents and depressants. For ores of complex mineral composition containing significant amounts of tourmaline and iron hydroxides, the use of fatty acid collectors makes it possible to obtain poor tin concentrates containing no more than 2...3% tin. Therefore, when flotating cassiterite, selective collectors such as Asparal-F or aerosol -22 (succinamates), phosphonic acids and the IM-50 reagent (alkylhydroxamic acids and their salts) are used. Liquid glass and oxalic acid are used to depress minerals in host rocks.

Before cassiterite flotation, material with a particle size of minus 10...15 microns is removed from the sludge, then sulfide flotation is carried out, from the tails of which at pH 5 with the supply of oxalic acid, liquid glass and the Asparal-F reagent (140...150 g/t), supplied to cassiterite floats as a collector (Fig. 219). The resulting flotation concentrate contains up to 12% tin with extraction from the operation up to 70...75% tin.

Sometimes Bartles-Moseley orbital locks and Bartles-Crosbelt concentrators are used to extract cassiterite from slurries. The rough concentrates obtained on these devices, containing 1...2.5% tin, are sent for finishing to slurry concentration tables to obtain commercial slurry tin concentrates.

Tungsten in ores it is represented by a wider range of minerals of industrial importance than tin. Of the 22 tungsten minerals currently known, four are the main ones: wolframite (Fe,Mn)WO 4(density 6700...7500 kg/m 3), hübnerite MnWO 4(density 7100 kg/m 3), ferberite FeWO 4(density 7500 kg/m 3) and sheelite CAWO 4(density 5800...6200 kg/m3). In addition to these minerals, molybdoscheelite, which is scheelite and an isomorphic admixture of molybdenum (6...16%), is of practical importance. Wolframite, hübnerite and ferberite are weakly magnetic minerals; they contain magnesium, calcium, tantalum and niobium as impurities. Wolframite is often found in ores together with cassiterite, molybdenite and sulfide minerals.

TO industrial types tungsten-containing ores are veined quartz-wolframite and quartz-cassiterite-wolframite, stockwork, skarn and placer. In the deposits vein type contains wolframite, hübnerite and scheelite, as well as molybdenum minerals, pyrite, chalcopyrite, tin, arsenic, bismuth and gold minerals. IN stockwork In deposits, the tungsten content is 5...10 times lower than in vein deposits, but they have large reserves. IN skarn The ores, along with tungsten, represented mainly by scheelite, contain molybdenum and tin. Alluvial tungsten deposits have small reserves, but play a significant role in tungsten mining. The industrial content of tungsten trioxide in placers (0.03...0.1%) is significantly lower than in bedrock ores, but their development is much simpler and more economically profitable. These placers, along with wolframite and scheelite, also contain cassiterite.

The quality of tungsten concentrates depends on the material composition of the ore being processed and the requirements that are placed on them when used in various industries. So, to produce ferrotungsten, the concentrate must contain at least 63% WO 3, wolframite-huebnerite concentrate for the production of hard alloys must contain at least 60% WO 3. Scheelite concentrates typically contain 55% WO 3. The main harmful impurities in tungsten concentrates are silica, phosphorus, sulfur, arsenic, tin, copper, lead, antimony and bismuth.

Tungsten placers and ores are enriched, like tin ones, in two stages - primary gravity enrichment and finishing of rough concentrates using various methods. With a low content of tungsten trioxide in the ore (0.1...0.8%) and high requirements for the quality of concentrates, the total degree of enrichment ranges from 300 to 600. This degree of enrichment can only be achieved by combining various methods, from gravity to flotation.

In addition, wolframite placers and bedrock ores usually contain other heavy minerals (cassiterite, tantalite-columbite, magnetite, sulfides), therefore, during primary gravity enrichment, a collective concentrate containing from 5 to 20% WO 3 is released. When finishing these collective concentrates, conditioned monomineral concentrates are obtained, for which flotogravity and sulfide flotation, magnetic separation of magnetite and wolframite are used. It is also possible to use electrical separation, enrichment on concentration tables, and even flotation of minerals from displacement rocks.

The high density of tungsten minerals makes it possible to effectively use gravitational enrichment methods for their extraction: in heavy suspensions, on jigging machines, concentration tables, screw and jet separators. During enrichment and especially during finishing of collective gravity concentrates, magnetic separation is widely used. Wolframite has magnetic properties and therefore separates in a strong magnetic field, for example, from non-magnetic cassiterite.

The original tungsten ore, like tin ore, is crushed to a size of minus 12+ 6 mm and enriched by jigging, where coarse wolframite and part of the tailings with a waste content of tungsten trioxide are isolated. After jigging, the ore is crushed into rod mills, in which it is crushed to a particle size of minus 2+ 0.5 mm. To avoid excessive sludge formation, grinding is carried out in two stages. After grinding, the ore is subjected to hydraulic classification with the separation of sludge and enrichment of sand fractions on concentration tables. The industrial products and tailings obtained on the tables are further crushed and sent to the concentration tables. The tailings are also successively further crushed and enriched on concentration tables. Enrichment practice shows that the extraction of wolframite, hübnerite and ferberite by gravitational methods reaches 85%, while scheelite, inclined to sludge, is extracted by gravitational methods only by 55...70%.

When enriching finely disseminated wolframite ores containing only 0.05...0.1% tungsten trioxide, flotation is used.

Flotation is especially widely used to extract scheelite from skarn ores, which contain calcite, dolomite, fluorite and barite, floated by the same collectors as scheelite.

Collectors during flotation of scheelite ores are fatty acids such as oleic, which are used at a temperature of at least 18...20°C in the form of an emulsion prepared in soft water. Often, before entering the process, oleic acid is saponified in a hot solution of soda ash at a ratio of 1:2. Instead of oleic acid, tall oil, naphthenic acids, etc. are also used.

It is very difficult to separate scheelite from alkaline earth metal minerals containing calcium, barium and iron oxides by flotation. Scheelite, fluorite, apatite and calcite contain calcium cations in the crystal lattice, which provide chemical sorption of the fatty acid collector. Therefore, selective flotation of these minerals from scheelite is possible within narrow pH limits using depressants such as liquid glass, sodium fluorosilicone, soda, sulfuric and hydrofluoric acid.

The depressive effect of liquid glass during flotation of calcium-containing minerals with oleic acid is the desorption of calcium soaps formed on the surface of the minerals. In this case, the floatability of scheelite does not change, but the floatability of other calcium-containing minerals sharply deteriorates. Increasing the temperature to 80...85°C reduces the contact time of the pulp with the liquid glass solution from 16 hours to 30...60 minutes. Liquid glass consumption is about 0.7 kg/t. The process of selective scheelite flotation, shown in Fig. 220, using a steaming process with liquid glass, is called the Petrov method.

Rice. 220. Scheme of flotation of scheelite from tungsten-molybdenum ores using

finishing according to Petrov's method

The concentrate of the main scheelite flotation, which is carried out at a temperature of 20°C in the presence of oleic acid, contains 4...6% tungsten trioxide and 38...45% calcium oxide in the form of calcite, fluorite and apatite. Before steaming, the concentrate is thickened to 50...60% solid. Steaming is carried out sequentially in two vats in a 3% solution of liquid glass at a temperature of 80...85°C for 30...60 minutes. After steaming, cleaning operations are carried out at a temperature of 20...25°C. The resulting scheelite concentrate can contain up to 63...66% tungsten trioxide with its recovery being 82...83%.

Tungsten is the most refractory metal, melting point 3380°C. And this determines its scope. It is also impossible to build electronics without tungsten; even the filament in a light bulb is tungsten.

And, naturally, the properties of the metal also determine the difficulties in obtaining it...

First, you need to find ore. These are just two minerals - scheelite (calcium tungstate CaWO 4) and wolframite (iron and manganese tungstate - FeWO 4 or MnWO 4). The latter has been known since the 16th century under the name "wolf's foam" - "Spuma lupi" in Latin, or "Wolf Rahm" in German. This mineral accompanies tin ores and interferes with the smelting of tin, turning it into slag. Therefore, it is possible to find it already in antiquity. Rich tungsten ores usually contain 0.2 - 2% tungsten. Tungsten was actually discovered in 1781.

However, this is the easiest thing to find in tungsten mining.
Next, the ore needs to be enriched. There are a bunch of methods and they are all quite complex. First of all, of course. Then - magnetic separation (if we have wolframite with iron tungstate). Next is gravitational separation, because the metal is very heavy and the ore can be washed, much like when mining gold. Nowadays they still use electrostatic separation, but it is unlikely that the method will be useful to the endangered person.

So, we have separated the ore from the gangue. If we have scheelite (CaWO 4), then we can skip the next step, but if we have wolframite, then we need to turn it into scheelite. To do this, tungsten is extracted with a soda solution under pressure and at elevated temperatures (the process takes place in an autoclave), followed by neutralization and precipitation in the form of artificial scheelite, i.e. calcium tungstate.
It is also possible to sinter wolframite with an excess of soda, then we obtain tungstate not of calcium, but of sodium, which for our purposes is not so significant (4FeWO 4 + 4Na 2 CO 3 + O 2 = 4Na 2 WO 4 + 2Fe 2 O 3 + 4CO 2).

The next two stages are leaching with water CaWO 4 -> H 2 WO 4 and decomposition with hot acid.
You can take different acids - hydrochloric (Na 2 WO 4 + 2HCl = H 2 WO 4 + 2NaCl) or nitric.
As a result, tungsten acid is isolated. The latter is calcined or dissolved in an aqueous solution of NH 3, from which paratungstate is crystallized by evaporation.
As a result, it is possible to obtain the main raw material for the production of tungsten - WO 3 trioxide with good purity.

Of course, there is also a method for producing WO 3 using chlorides, when tungsten concentrate is treated with chlorine at elevated temperatures, but this method will not be simple for the outsider.

Tungsten oxides can be used in metallurgy as an alloying additive.

So, we have tungsten trioxide and there is only one step left - reduction to metal.
There are two methods here - reduction with hydrogen and reduction with carbon. In the second case, the coal and the impurities it always contains react with tungsten, forming carbides and other compounds. Therefore, tungsten comes out “dirty”, brittle, and for electronics it is pure that is very desirable, because having only 0.1% iron, tungsten becomes brittle and it is impossible to draw the thinnest wire for incandescent filaments from it.
The coal process also has one more drawback - high temperature: 1300 – 1400°C.

However, production with hydrogen reduction is also not a gift.
The reduction process takes place in special tube furnaces, heated in such a way that as it moves through the tube, the “boat” of WO3 passes through several temperature zones. A stream of dry hydrogen comes towards it. Recovery occurs in both “cold” (450...600°C) and “hot” (750...1100°C) zones; in “cold” ones – to the lower oxide WO 2, then – to the elemental metal. Depending on the temperature and duration of the reaction in the “hot” zone, the purity and grain size of the powdered tungsten released on the walls of the “boat” change.

So, we have obtained pure tungsten metal in the form of a tiny powder.
But this is not yet an ingot of metal from which something can be made. The metal is produced by powder metallurgy. That is, it is first pressed, sintered in a hydrogen atmosphere at a temperature of 1200-1300 °C, then passed through it electricity. The metal is heated to 3000 °C, and sintering occurs into a monolithic material.

However, we rather need not ingots or even rods, but thin tungsten wire.
As you yourself understand, here again everything is not so simple.
Wire drawing is carried out at a temperature of 1000°C at the beginning of the process and 400-600°C at the end. In this case, not only the wire, but also the die is heated. Heating is carried out by a gas burner flame or an electric heater.
In this case, after drawing, the tungsten wire is coated with graphite lubricant. The surface of the wire must be cleaned. Cleaning is carried out using annealing, chemical or electrolytic etching, and electrolytic polishing.

As you can see, the task of producing a simple tungsten filament is not as simple as it seems. And only the basic methods are described here; there are probably a lot of pitfalls there.
And, of course, even now tungsten is not a cheap metal. Now one kilogram of tungsten costs more than $50, the same molybdenum is almost two times cheaper.

Actually, there are several uses for tungsten.
Of course, the main ones are radio and electrical engineering, where tungsten wire goes.

The next one is the production of alloy steels, which are distinguished by their particular hardness, elasticity and strength. Added together with chromium to iron, it produces so-called high-speed steels, which retain their hardness and sharpness even when heated. They are used to make cutters, drills, milling cutters, as well as other cutting and drilling tools (in general, drilling tools contain a lot of tungsten).
Tungsten-rhenium alloys are interesting - they are used to make high-temperature thermocouples that operate at temperatures above 2000°C, although only in an inert environment.

Well, another interesting application is tungsten welding electrodes for electric welding. Such electrodes are non-consumable and it is necessary to supply additional metal wire to the welding site to provide a weld pool. Tungsten electrodes are used in argon arc welding - for welding non-ferrous metals such as molybdenum, titanium, nickel, as well as high-alloy steels.

As you can see, tungsten production is not for ancient times.
And why is tungsten there?
Tungsten can only be obtained with the construction of electrical engineering - with the help of electrical engineering and for electrical engineering.
No electricity means no tungsten, but you don’t need it either.



What else to read