Генетический код: описание, характеристики, история исследования. Понятие о гене, генетическом коде

Лекция 5. Генетический код

Определение понятия

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в ДНК.

Поскольку ДНК непосредственного участия в синтезе белка не принимает, то код записывается на языке РНК. В РНК вместо тимина входит урацил.

Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Определение: триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.

Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом:

2 АК по 1 триплету = 2.

9 АК по 2 триплета = 18.

1 АК 3 триплета = 3.

5 АК по 4 триплета = 20.

3 АК по 6 триплетов = 18.

Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Определение:

Ген - это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tPHK , r РНК или sPHK .

Гены tPHK , rPHK , sPHK белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х триплетов, кодирующих терминирующие кодоны РНК, или стоп-сигналы. В мРНК они имеют следующий вид: UAA , UAG , UGA . Они терминируют (оканчивают) трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. (См. лекцию 8) Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG . У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.
Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961 г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактность.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген.

Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код тршплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

6. Универсальность.

Генетический код един для всех живущих на Земле существ.

В 1979 г. Беррел открыл идеальный код митохондрий человека.

Определение:

«Идеальным» называется генетический код, в котором выполняется правило вырожденности квазидублетного кода: Если в двух триплетах совпадают первые два нуклеотида, а третьи нуклеотиды относятся к одному классу (оба - пурины или оба - пиримидины), то эти триплеты кодируют одну и ту же аминокислоту.

Из этого правила в универсальном коде есть два исключения. Оба отклонения от идеального кода в универсальном касаются принципиальных моментов: начала и конца синтеза белка:

Кодон

Универсальный

код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

STOP

STOP

С UA

А G А

STOP

STOP

230 замен не меняют класс кодируемой аминокислоты. к рываемость.

В 1956 г. Георгий Гамов предложил вариант перекрываемого кода. Согласно Гамовскому коду, каждый нуклеотид, начиная с третьего в гене, входит в состав 3-х кодонов. Когда генетический код был расшифрован, оказалось, что он неперекрываем, т.е. каждый нуклеотид входит в состав лишь одного кодона.

Достоинства перекрываемого генетического кода: компактность, меньшая зависимость структуры белка от вставки или делеции нуклеотида.

Недостаток: большая зависимость структуры белка от замены нуклеотида и ограничение на соседей.

В 1976 г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D . Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D . Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

Информационная емкость ДНК

На Земле живет 6 миллиардов человек. Наследственная информация о них
заключена в 6x10 9 сперматозоидах. По разным оценкам у человека от 30 до 50
тысяч генов. У всех людей ~ 30x10 13 генов или 30x10 16 пар нуклеотидов, которые составляют 10 17 кодонов. Средняя книжная страница содержит 25x10 2 знаков. ДНК 6x10 9 сперматозоидов содержит информацию, равную по объему примерно

4x10 13 книжных страниц. Эти страницы заняли бы объем 6-и зданий НГУ. 6x10 9 сперматозоидов занимают половину наперстка. Их ДНК занимает менее четверти наперстка.

Выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Генетический код

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

C

CUU (Leu/L)Лейцин
CUC (Leu/L)Лейцин
CUA (Leu/L)Лейцин
CUG (Leu/L)Лейцин

В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин , вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК . Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.

Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.

Отклонения от стандартного генетического кода .
Пример Кодон Обычное значение Читается как:
Некоторые виды дрожжей рода Candida CUG Лейцин Серин
Митохондрии, в частности у Saccharomyces cerevisiae CU(U, C, A, G) Лейцин Серин
Митохондрии высших растений CGG Аргинин Триптофан
Митохондрии (у всех без исключения исследованных организмов) UGA Стоп Триптофан
Митохондирии млекопитающих, дрозофилы , S. cerevisiae и многих простейших AUA Изолейцин Метионин = Старт
Прокариоты GUG Валин Старт
Эукариоты (редко) CUG Лейцин Старт
Эукариоты (редко) GUG Валин Старт
Прокариоты (редко) UUG Лейцин Старт
Эукариоты (редко) ACG Треонин Старт
Митохондрии млекопитающих AGC, AGU Серин Стоп
Митохондрии дрозофилы AGA Аргинин Стоп
Митохондрии млекопитающих AG(A, G) Аргинин Стоп

История представлений о генетическом коде

Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.

См. также

Примечания

  1. Genetic code supports targeted insertion of two amino acids by one codon. Turanov AA, Lobanov AV, Fomenko DE, Morrison HG, Sogin ML, Klobutcher LA, Hatfield DL, Gladyshev VN. Science. 2009 Jan 9;323(5911):259-61.
  2. Кодон AUG кодирует метионин, но одновременно служит стартовым кодоном - с первого AUG-кодона мРНК как правило начинается трансляция.
  3. NCBI: «The Genetic Codes», Compiled by Andrzej (Anjay) Elzanowski and Jim Ostell
  4. Jukes TH, Osawa S, The genetic code in mitochondria and chloroplasts. , Experientia. 1990 Dec 1;46(11-12):1117-26.
  5. Osawa S, Jukes TH, Watanabe K, Muto A (March 1992). «Recent evidence for evolution of the genetic code ». Microbiol. Rev. 56 (1): 229–64. PMID 1579111 .
  6. SANGER F. (1952). «The arrangement of amino acids in proteins.». Adv Protein Chem. 7 : 1-67. PMID 14933251 .
  7. М. Ичас Биологический код. - Мир, 1971.
  8. WATSON JD, CRICK FH. (April 1953). «Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.». Nature 171 : 737-738. PMID 13054692 .
  9. WATSON JD, CRICK FH. (May 1953). «Genetical implications of the structure of deoxyribonucleic acid.». Nature 171 : 964-967. PMID 13063483 .
  10. Crick FH. (April 1966). «The genetic code - yesterday, today, and tomorrow.». Cold Spring Harb Symp Quant Biol. : 1-9. PMID 5237190 .
  11. G. GAMOW (February 1954). «Possible Relation between Deoxyribonucleic Acid and Protein Structures.». Nature 173 : 318. DOI :10.1038/173318a0 . PMID 13882203 .
  12. GAMOW G, RICH A, YCAS M. (1956). «The problem of information transfer from the nucleic acids to proteins.». Adv Biol Med Phys. 4 : 23-68. PMID 13354508 .
  13. Gamow G, Ycas M. (1955). «STATISTICAL CORRELATION OF PROTEIN AND RIBONUCLEIC ACID COMPOSITION. ». Proc Natl Acad Sci U S A. 41 : 1011-1019. PMID 16589789 .
  14. Crick FH, Griffith JS, Orgel LE. (1957). «CODES WITHOUT COMMAS. ». Proc Natl Acad Sci U S A. 43 : 416-421. PMID 16590032 .
  15. Hayes B. (1998). «The Invention of the Genetic Code.» (PDF reprint). American Scientist 86 : 8-14.

Литература

  • Азимов А. Генетический код. От теории эволюции до расшифровки ДНК. - М.: Центрполиграф, 2006. - 208 с - ISBN 5-9524-2230-6 .
  • Ратнер В. А.Генетический код как система - Соросовский образовательный журнал, 2000, 6, № 3, с.17-22.
  • Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins - Nature, 1961 (192), pp. 1227-32

Ссылки

  • Генетический код - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

Ведущий научный журнал Nature сообщил об обнаружении второго генетического кода – такого себе «кода внутри кода», который был недавно взломан молекулярными биологами и компьютерными программистами. Более того, для того чтобы его выявить, они использовали не эволюционную теорию, а информационные технологии.

Новый код получил название Код Сплайсинга. Он находится внутри ДНК. Этот код контролирует основной генетический код очень сложным, однако, предсказуемым образом. Код сплайсинга управляет тем, как и когда происходит сборка генов и регулирующих элементов. Раскрытие этого кода внутри кода помогает пролить свет на некоторые давнишние тайны генетики, которые всплыли на поверхность после проведения Проекта по расшифровке полной последовательности генома человека. Одна из таких тайн заключалась в том, почему в таком сложном организме, как человеческий, существует всего лишь 20 000 генов? (Ученые ожидали обнаружить намного больше.) Почему гены разбиваются на сегменты (экзоны), которые разделяются некодирующими элементами (интроны), а затем после транскрипции соединяются вместе (т.е. сплайсируются)? И почему гены включаются в одних клетках и тканях, и не включаются в других? На протяжении двух десятилетий молекулярные биологи пытались выяснить механизмы генетической регуляции. Эта статья указывает на очень важный момент в понимании того, что происходит на самом деле. Она не дает ответы на все вопросы, но она демонстрирует, что внутренний код существует. Этот код – система передачи информации, которую можно так понятно расшифровать, что ученые могли бы прогнозировать, как в определенных ситуациях и с необъяснимой точностью может вести себя геном.

Представьте, что в соседней комнате вы слышите оркестр. Вы открываете дверь, заглядываете внутрь и видите в комнате трех или четырех музыкантов, играющих на музыкальных инструментах. Это то, на что, по словам Брендона Фрея, участвовавшего в раскрытии кода, похож человеческий геном. Он говорит: «Мы смогли обнаружить только 20,000 генов, но мы знали, что они образуют огромное количество белковых продуктов и регулирующих элементов. Как? Один из методов называется альтернативным сплайсингом» . Различные экзоны (части генов) могут собираться разными способами. «Например, три гена белка нейрексина могут создавать более 3000 генетических посланий, которые помогают управлять системой связей мозга» , - говорит Фрей. Тут же в статье говорится о том, что ученым известно, что 95% наших генов имеют альтернативный сплайсинг, и в большинстве случаев в разных типах клеток и тканей транскрипты (молекулы РНК, образующиеся в результате транскрипции) экспрессируются по-разному. Должно быть что-то, что управляет тем, как собираются и экспрессируются эти тысячи комбинаций. В этом и состоит задача Кода Сплайсинга.

Читатели, которые хотят получить беглый обзор открытия, могут прочитать статью в Science Daily под названием «Исследователи, взломавшие ‘Код сплайсинга’, раскрывают тайну, лежащую в основе биологической сложности» . В статье говорится: «Ученые из университета Торонто получили фундаментально новое представление о том, как живые клетки используют ограниченное число генов для образования таких невероятно сложных органов, как мозг» . Сам журнал Nature начинается со статьи Хейди Ледфорда «Код внутри кода». Затем последовала статья Техедора и Валькарсела под названием «Регуляция генов: взлом второго генетического кода. И, наконец, решающей стала статья группы исследователей из университета Торонто под руководством Бенджамина Д. Бленкоу и Брендона Д. Фрея, «Расшифровывая код сплайсинга».

Эта статья – победа информационной науки, которая напоминает нам дешифровальщиков времен Второй Мировой Войны. Их методы включали алгебру, геометрию, теорию вероятностей, векторное исчисление, теорию информации, оптимизацию кода программы, и другие передовые методы. В чем они не нуждались, так это в эволюционной теории , которая никогда не упоминалась в научных статьях. Читая эту статью, можно увидеть, под каким сильным напряжением находятся авторы этой увертюры:

«Мы описываем схему ‘кода сплайсинга’, в которой используются комбинации сотен свойств РНК для того, чтобы предсказать обусловленные тканями изменения в альтернативном сплайсинге тысячи экзонов. Код устанавливает новые классы схем сплайсинга, распознает разные регулирующие программы в разных тканях и устанавливает контролируемые мутациями регулирующие последовательности. Мы раскрыли широко распространенные регулирующие стратегии, включая: использование непредвиденно крупных объединений свойств; выявление низких уровней включения экзона, которые ослабляются свойствами специфических тканей; проявление свойств в интронах глубже, чем считалось раньше; и модуляция уровней сплайс-варианта структурными характеристиками транскрипта. Код помог установить класс экзонов, включение которых заглушает экспрессию в тканях взрослого организма, активируя деградацию мРНКа, и исключение которых способствует экспрессии во время эмбриогенеза. Код облегчает раскрытие и детальное описание регулируемых событий альтернативного сплайсинга в масштабах всего генома».

В команде, взломавшей код, участвовали специалисты с кафедры электронной и вычислительной техники, а также с кафедры молекулярной генетики. (Сам же Фрей работает в подразделении корпорации Microsoft, Microsoft Research) Подобно дешифровальщикам прошлого времени, Фрей и Бараш разработали «новый метод биологического анализа, проводимого с помощью компьютера, который обнаруживает ‘кодовые слова’, запрятанные внутри генома» . С помощью огромного количества данных, созданных молекулярными генетиками, группа исследователей проводила «обратную разработку» кода сплайсинга до тех пор, пока они не смогли предсказать, как он будет действовать . Как только исследователи с этим справились, они проверили этот код на мутациях и увидели, как вставляются или удаляются экзоны. Они обнаружили, что код даже может вызывать тканеспецифические изменения или действовать по-разному в зависимости от того, взрослая это мышь или эмбрион. Один ген, Xpo4, связан с раком; исследователи отметили: «Эти данные подтверждают вывод о том, что экспрессия Xpo4 гена должна строго контролироваться во избежание возможных губительных последствий, включая онкогенез (рак), так как он активен во время эмбриогенеза, но его количество снижено в тканях взрослого организма. Оказывается, что они были абсолютно удивлены уровнем контроля, который они увидели. Намеренно или нет, но в качестве ключа к разгадке Фрей использовал не случайную изменчивость и отбор, а язык разумного замысла. Он отметил: «Понимание сложной биологической системы подобно пониманию сложной электронной схемы».

Хейди Ледфорд сказал, что кажущаяся простота генетического кода Уотсона-Крика, с его четырьмя основаниями, триплетными кодонами, 20 аминокислотами и 64 «символами» ДНК – скрывает под собой целый мир сложности . Заключенный внутри этого более простого кода, Код сплайсинга намного сложнее.

Но между ДНК и белками находится РНК – отдельный мир сложности. РНК – это трансформер, который иногда переносит генетические послания, а иногда управляет ими, задействуя при этом множество структур, способных влиять на его функцию. В статье, опубликованной в этом же выпуске, группа исследователей под руководством Бенджамина Д. Бленкоу и Брендона Д. Фрея из университета Торонто в Онтарио, Канада, сообщает о попытках разгадать второй генетический код, который может предсказывать, как сегменты информационной РНК, транскрибированные с определенного гена, могут смешиваться и сочетаться, чтобы образовывать разнообразные продукты в разных тканях. Это процесс известен как альтернативный сплайсинг. На этот раз нет никакой простой таблицы – вместо неё алгоритмы, которые объединяют более чем 200 различных свойств ДНК с определениями структуры РНК.

Работа этих исследователей указывает на быстрый прогресс, которого достигли вычислительные методы в составлении модели РНК. В дополнение к пониманию альтернативного сплайсинга, информатика помогает ученым предсказывать структуры РНК и устанавливать маленькие регулирующие фрагменты РНК, которые не кодируют протеины. «Это замечательное время» , - говорит Кристофер Берг, компьютерный биолог из массачусетского института технологий в Кембридже. «В будущем нас ждёт огромный успех» .

Информатика, компьютерная биология, алгоритмы и коды – эти концепции не были частью дарвиновского словаря, когда он разрабатывал свою теорию. У Менделя была очень упрощенная модель того, как распределяются признаки во время унаследования. К тому же, идея о том, что признаки кодируются, была представлена только в 1953 году. Мы видим, что исходный генетический код регулируется еще более сложным, включенным в него, кодом. Это революционные идеи . К тому же есть все признаки того, что этот уровень контроля не последний . Ледфорд напоминает нам, что например, РНК и белки имеют трехмерную структуру. Функции молекул могут изменяться, когда изменяется их форма Должно существовать что-то, что контролирует складывание, так что трехмерная структура выполняет то, что требует функция. К тому же, доступ к генам, по-видимому, контролируется другим кодом, гистоновым кодом . Этот код закодирован молекулярными маркерами или «хвостами» на гистоновых белках, которые служат центрами для скручивания и суперскручивания ДНК. Описывая наше время, Ледфорд говорит о «постоянном возрождении в информатике РНК» .

Техедор и Валькарсел согласны с тем, что за простотой кроется сложность. «По идее все выглядит очень просто: ДНК образует РНК, которая затем создает белок» , - начинают они свою статью. «Но в реальности всё намного сложнее» . В 1950-х годах мы узнали о том, что все живые организмы, от бактерий до человека, имеют основной генетический код. Но вскоре мы поняли, что сложные организмы (эукариоты) обладают каким-то неестественным и трудным для понимания свойством: их геномы имеют своеобразные участки, интроны, которые должны удаляться, чтобы экзоны могли соединиться вместе. Почему? Сегодня туман рассеивается: «Основное преимущество этого механизма заключается в том, что он позволяет разным клеткам выбирать альтернативные способы сплайсинга предшественника матричной РНК (пре-мРНК) и таким образом один ген образует различные послания», - объясняют они, - «а затем различные мРНК могут кодировать разные белки с различными функциями» . Из меньшего кода вы получаете больше информации, при условии, что внутри кода есть этот другой код, который знает, как это сделать.

Что и делает взлом кода сплайсинга настолько трудным, так это то, что факторы, контролирующие сборку экзонов, устанавливаются множеством других факторов: последовательностями, расположенными рядом с границами экзона, последовательностями интронов и регулирующими факторами, которые либо помогают, либо тормозят механизм сплайсинга. К тому же, «воздействия определенной последовательности или фактора могут изменяться в зависимости от её расположения относительно границ интрона-экзона или других регуляторных мотивов» , - поясняют Техедор и Валькарсел. «Поэтому самой сложной задачей в предсказании тканеспецифического сплайсинга является вычисление алгебры несметного числа мотивов и взаимоотношений между регуляторными факторами, которые их распознают» .

Для разрешения этой проблемы группа исследователей ввела в компьютер огромное количество данных о последовательностях РНК и условиях, в которых они образовались. «Затем компьютеру было дано задание - определить комбинацию свойств, которые лучше всего могли бы объяснить экспериментально установленный тканеспецифический отбор экзонов» . Другими словами, исследователи провели обратную разработку кода. Подобно дешифровальщикам времен Второй Мировой Войны, как только ученые узнают алгоритм, они могут делать предсказания: «Он правильно и с точностью установил альтернативные экзоны и предсказал их дифференциальное регулирование между парами типов тканей». И так же как любая хорошая научная теория, открытие дало новое понимание: «Это позволило нам по-новому объяснить ранее установленные регуляторные мотивы и указало на ранее неизвестные свойства известных регуляторов, а также неожиданные функциональные связи между ними» , - отметили исследователи. «Например, код подразумевает, что включение экзонов, ведущее к процессированным белкам, является общим механизмом управления процессом экспрессии генов во время перехода из эмбриональной ткани в ткань взрослого организма» .

Техедор и Валькарсел считают публикацию их статьи важным первым шагом: «Работу... лучше рассматривать как открытие первого фрагмента гораздо более крупного Розеттского камня, необходимого для расшифровки альтернативных сообщений нашего генома». По словам этих ученых, будущие исследования, несомненно, улучшат их знания об этом новом коде. В заключение своей статьи они вскользь упоминают эволюцию, и делают это очень необычным образом. Они говорят: «Это не значит, что эволюция создала эти коды. Это означает, что прогресс будет требовать понимания того, как коды взаимодействуют. Другой неожиданностью стало то, что наблюдаемая на сегодня степень сохранения поднимает вопрос о возможном существовании «видоспецифичных кодов» .

Код, вероятно, работает в каждой отдельной клетке и, поэтому, возможно должен отвечать более чем за 200 типов клеток млекопитающих животных. Также он должен справляться с огромным разнообразием схем альтернативного сплайсинга, не говоря уже о простых решениях о включении или пропуске отдельного экзона. Ограниченное эволюционное сохранение регулирования альтернативного сплайсинга (который по подсчетам составляет около 20% между людьми и мышами) поднимает вопрос о существовании видоспецифичных кодов. Более того, связь между процессингом ДНК и транскрипцией генов влияет на альтернативный сплайсинг, и последние данные указывают на упаковку ДНК гистоновыми белками и ковалентными модификациями гистонов (так называемый эпигенетический код) в регуляции сплайсинга. Поэтому будущим методам предстоит установить точное взаимодействие между гистоновым кодом и кодом сплайсинга. То же самое касается еще мало понимаемого влияния сложных структур РНК на альтернативный сплайсинг.

Коды, коды и снова коды. То, что ученые практически ничего не говорят о дарвинизме в этих статьях, указывает на то, что эволюционным теоретикам – приверженцам старых идей и традиций, предстоит много над чем поразмышлять после того, как они прочтут эти статьи. А вот те, кто с восторженностью относится к биологии кодов, окажутся на передовой. У них есть замечательная возможность воспользоваться увлекательным веб-приложением, которое дешифровщики создали для того, чтобы стимулировать проведение дальнейшего исследования. Его можно найти на сайте университета Торонто под названием «Веб-сайт прогнозирования альтернативного сплайсинга». Посетители напрасно будут искать здесь упоминания об эволюции, и это несмотря на старую аксиому, что ничего в биологии не имеет без неё смысла. Новая версия этого выражения 2010 года может звучать так: «Ничто в биологии не имеет смысла, если не рассматривается в свете информатики» .

Ссылки и примечания

Мы рады, что смогли рассказать вам об этой истории в день её публикации. Возможно, это одна из наиболее значимых научных статей года. (Конечно же, значимым является каждое большое открытие, сделанное другими группами ученых, как открытие Уотсона и Крика.) Единственное, что мы можем сказать на это: «Вот это да!» Это открытие – замечательное подтверждение Сотворения по замыслу и огромный вызов дарвиновской империи. Интересно, как эволюционисты попытаются исправить свою упрощенную историю случайных мутаций и естественного отбора, которая была придумана еще в 19 столетии, в свете этих новых данных.

Вы поняли, о чем говорят Техедор и Валькарсел? Виды могут иметь свой собственный код, свойственный только этим видам. «Поэтому будущим методам предстоит установить точное взаимодействие между гистоновым [эпигенетическим] кодом и кодом сплайсинга», - отмечают они. В переводе это означает: «Дарвинисты здесь не причем. Они просто не способны с этим справиться». Если простой генетический код Уотсона-Крика был проблемой для дарвинистов, то, что они скажут теперь о коде сплайсинга, который из одних и тех же генов создает тысячи транскриптов? А как они справятся с эпигенетическим кодом, который управляет экспрессией генов? И кто знает, может в этом невероятном «взаимодействии», о котором мы только начинаем узнавать, задействованы и другие коды, напоминающие Розеттский камень, только начинающий показываться из песка?

Теперь, когда мы размышляем о кодах и информатике, мы начинаем думать о разных парадигмах нового исследования. Что если геном частично действует как сеть хранения данных? Что если в нем имеет место криптография или происходят алгоритмы сжатия? Нам следует вспомнить о современных информационных системах и технологиях хранения информации. Может быть, мы даже обнаружим элементы стеганографии. Несомненно, существуют дополнительные механизмы устойчивости, такие как дублирования и исправления, которые возможно помогут объяснить существование псевдогенов. Копирования всего генома могут быть реакциями на стресс. Некоторые из этих явлений могут оказаться полезными показателями исторических событий, которые не имеют ничего общего с универсальным общим предком, но помогают исследовать сравнительную геномику в рамках информатики и дизайна устойчивости, а также помогают понять причину заболевания.

Эволюционисты оказываются в сильном затруднении. Исследователи попытались видоизменить код, а получили только рак и мутации. Как они собираются пройти по полю приспособленности, если оно всё заминировано катастрофами, ждущими своего часа, как только кто-то начинает вмешиваться в эти неразрывно связанные коды? Мы знаем, что существует некая встроенная устойчивость и переносимость, но вся картина представляет собой невероятно сложную, разработанную, оптимизированную информационную систему , а не беспорядочное соединение частей, которыми можно бесконечно играться. Вся идея кода является концепцией разумного замысла.

A. E. Уайлдер-Смит придавал этому особое значение. Код предполагает соглашение между двумя частями. Соглашение – это заблаговременное согласие. Оно подразумевает планирование и цель. Символ SOS, как сказал бы Уайлдер-Смит, мы используем по соглашению как сигнал бедствия. SOS не выглядит как бедствие. Оно не пахнет как бедствие. Оно не ощущается как бедствие. Люди не понимали бы, что эти буквы обозначают бедствие, если бы они не понимали суть самого соглашения. Подобным образом, кодон аланина, ГЦЦ, не выглядит, не пахнет и не ощущается как аланин. Кодон не имел бы никакого отношения к аланину, если бы между двумя кодирующими системами (кодом белка и кодом ДНК) не было заранее установленного соглашения о том, что «ГЦЦ должен означать аланин». Для передачи этого соглашения используется семейство преобразователей, аминоацил-тРНК-синтетаз, которые переводят один код в другой.

Это должно было укрепить теорию замысла в 1950-х годах и многие креационисты эффективно её проповедовали. Но эволюционисты похожи на красноречивых торговцев. Они сочинили свои сказки о фее Динь-Динь, которая разбирает код и создает новые виды путем мутации и отбора, и убедили многих людей в том, что чудеса могут происходить и сегодня. Ну, хорошо, сегодня за окном 21-й век и нам известен эпигенетический код и код сплайсинга – два кода, которые намного сложнее и динамичнее, чем простой код ДНК. Мы знаем о кодах внутри кодов, о кодах над кодами и под кодами – нам известна целая иерархия кодов. На этот раз эволюционисты не могут просто вставить палец в пистолет и с блефом убеждать нас своими красивыми речами, когда по обеим сторонам расставлены пушки – целый арсенал, направленный на их главные элементы конструкции. Всё это игра. Вокруг них выросла целая эра информатики, они давно вышли из моды и похожи на Греков, которые пытаются с копьями лезть на современные танки и вертолеты.

Грустно признавать, но эволюционисты не понимают этого, или даже если и понимают, то не собираются сдаваться. Между прочим, на этой неделе, как раз когда была опубликована статья о Коде сплайсинга, со страниц продарвиновских журналов и газет посыпалась наиболее злая и ненавистная за последнее время риторика, направленная против креационизма и разумного замысда. Нам предстоит услышать еще о многих подобных примерах. И пока они держат в своих руках микрофоны и контролируют институты, многие люди будут попадаться на их удочку, думая, что наука продолжает давать им достаточное основание. Мы рассказываем вам всё это для того, чтобы вы читали этот материал, изучали его, понимали и запаслись информацией, которая вам необходима для того, чтобы сразить истиной этот фанатичный, вводящий в заблуждение вздор. А теперь, вперёд!

ГЕНЕТИЧЕСКИЙ КОД , способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов. Определённой последовательности нуклеотидов в ДНК и РНК соответствует определённая последовательность аминокислот в полипептидных цепях белков. Код принято записывать с помощью заглавных букв русского или латинского алфавита. Каждый нуклеотид обозначается буквой, с которой начинается название входящего в состав его молекулы азотистого основания: А (А) – аденин, Г (G) – гуанин, Ц (С) – цитозин, Т (Т) – тимин; в РНК вместо тимина урацил – У (U). Каждую кодирует комбинация из трёх нуклеотидов – триплет, или кодон. Кратко путь переноса генетической информации обобщён в т. н. центральной догме молекулярной биологии: ДНК ` РНК f белок.

В особых случаях информация может переноситься от РНК к ДНК, но никогда не переносится от белка к генам.

Реализация генетической информации осуществляется в два этапа. В клеточном ядре на ДНК синтезируется информационная, или матричная, РНК (транскрипция). При этом нуклеотидная последовательность ДНК «переписывается» (перекодируется) в нуклеотидную последовательность мРНК. Затем мРНК переходит в цитоплазму, прикрепляется к рибосоме, и на ней, как на матрице, синтезируется полипептидная цепь белка (трансляция). Аминокислоты с помощью транспортной РНК присоединяются к строящейся цепи в последовательности, определяемой порядком нуклеотидов в мРНК.

Из четырёх «букв» можно составить 64 различных трёхбуквенных «слова» (кодона). Из 64 кодонов 61 кодирует определённые аминокислоты, а три отвечают за окончание синтеза полипептидной цепи. Так как на 20 аминокислот, входящих в состав белков, приходится 61 кодон, некоторые аминокислоты кодируются более чем одним кодоном (т. н. вырождённость кода). Такая избыточность повышает надёжность кода и всего механизма биосинтеза белка. Другое свойство кода – его специфичность (однозначность): один кодон кодирует только одну аминокислоту.

Кроме того, код не перекрывается – информация считывается в одном направлении последовательно, триплет за триплетом. Наиболее удивительное свойство кода – его универсальность: он одинаков у всех живых существ – от бактерий до человека (исключение составляет генетический код митохондрий). Учёные видят в этом подтверждение концепции о происхождении всех организмов от одного общего предка.

Расшифровка генетического кода, т. е. определение «смысла» каждого кодона и тех правил, по которым считывается информация, осуществлена в 1961–1965 гг. и считается одним из наиболее ярких достижений молекулярной биологии.



Что еще почитать