Осциллограф на пик контроллере своими руками. Двухканальный USB HID осциллограф на микроконтроллере ATtiny45. Полный набор классических периферийных устройств

Измерительная техника

Карманный осциллограф до 1 МГц

Заменив в карманном осциллографе, описанном в , микроконтроллер PIC16F873A на PIC18F4550 , а операционный усилитель К140УД608 на микросхему аналогового видеоинтерфейса ТDA8708A , удалось уменьшить длительность развёртки в 150 раз, до 21 мкс на всю ширину экрана, а максимальную частоту входного сигнала увеличить до 1 МГц. Это значительно расширило возможности осциллографа.

Основные технические характеристики

Напряжение отклонения луча на всю высоту экрана, В................0,2; 1; 3; 10; 30; 100

Максимальная частота исследуемого сигнала, МГц........1

Длительность горизонтальной развёртки, мкс.......21, 170, 1000, 10-103, 30-103, 100-103, 300-103, 106

Разрешение экрана, пкс......128x64

Напряжение питания, В............5

Потребляемый ток, мА...........115

Размеры, мм..............80x62x30

Масса, г........................110

Схема осциллографа изображена на рис. 1. Входной сигнал поступает на вывод 20 (ADCIN - вход АЦП) микросхемы DA1 (TDA8708A). Для запуска её АЦП микроконтроллер DD1 формирует на выводе 17 тактовые импульсы. Двоичные коды отсчётов сигнала поступают на порт В микроконтроллера DD1, который согласно программе записывает их в оперативную память, а затем отображает на графическом ЖКИ HG1 в виде осциллограммы. Общее описание ЖКИ МТ-12864J-2FLA можно найти в , а о его использовании прочитать в .

Рис. 1. Схема осциллографа

На рис. 2 изображена осциллограмма сигнала частотой 100 кГц. Переменным резистором R6 смещают линию развёртки по вертикали, устанавливая её в наиболее удобное для наблюдения осциллограммы положение. Подборкой резистора R12 добиваются наилучшей контрастности изображения на экране ЖКИ.

Рис. 2. Осциллограмма сигнала частотой 100 кГц

Развёртка осциллографа работает в режиме однократного запуска нажатием на кнопку SB1. Нажимая на кнопку SB2, изменяют длительность развёртки. После каждого нажатия этой кнопки на экран некоторое время выводится значение новой длительности развёртки (рис. 3).

Рис. 3. Значение новой длительности развёртки

Программу микроконтроллера можно скачать .

Литература

1. Пичугов А. Карманный осциллограф.- Радио, 2013, № 10, с. 20, 21.

2.PIC18F2455/2550/4455/4550 Data Sheet. - URL: http://ww1.microchip.com/downloads/ en/DeviceDoc/39632e.pdf (22.04.15).

3. Яценков В. С. Микроконтроллеры Microchip с аппаратной поддержкой USB. - М.: Радио и связь, 2008.

4. TDA8708A. Video analog input interface. - URL: http://doc.chipfind.ru/pdf/philips/tda 8708a.pdf (21.05.15).

5. Жидкокристаллический модуль MT-12864J. - URL: http://www.melt.com.ru/ files/file2150172.5.pdf (22.04.15).

6. Милевский А. Использование графического ЖКИ МТ-12864А с микроконтроллером фирмы Microchip. - Радио, 2009, № 6, с. 28-31.


Дата публикации: 06.11.2015

Мнения читателей
  • admin / 18.04.2017 - 14:35
    Проблема на фтп сервере, откуда идет раздача. Я думаю это временное явление, попробуйте чуть позже скачать.

Предлагаемый прибор относится, скорее, к разряду осцилло-графических пробников. Его возможности позволяют лишь "на глаз" оценивать форму и параметры низкочастотных сигналов. Тем не менее благодаря своей малогабаритности и экономичности такой осциллограф может найти применение в радиолюбительской практике, особенно при диагностике и ремонте аппаратуры в полевых условиях.

За основу этой разработки взят малогабаритный двухлучевой осциллограф-мультиметр, описанный в . В нём оставлен только один "луч". Максимальная чувствительность канала вертикального отклонения повышена с 640 до 100 мВ (на весь экран). Минимальная длительность развёртки уменьшена с 5 до 3 мс, а при наблюдении логических сигналов — до 300 мкс. Значительно уменьшены габариты прибора, его масса и ток потребления.

Основные технические характеристики

Схема осциллографа изображена на рис. 1. Исследуемый сигнал произвольной формы в зависимости от его амплитуды подают на "Вход 1" — одно из гнёзд 1—5, 7, 8 разъёма Х1, а с его гнездом 6 соединяют общий провод источника исследуемого сигнала. Резисторы R1—R6, задающие чувствительность канала вертикального отклонения осциллографа, смонтированы прямо на выводах гнёзд разъёма. Через усилитель на ОУ К140УД608 (DA1) сигнал поступает на вывод 2 (RA0) микроконтроллера (DD1), служащий входом встроенного в него АЦП. Цифровые отсчёты мгновенных значений сигнала за время, соответствующее выбранной длительности развёртки, сохраняются в оперативной памяти микроконтроллера и отображаются на графическом ЖКИ HG1 в виде осциллограммы. Использован ЖКИ , управление которым ведётся по линиям портов RB0—RB4 и RC0—RC7 микроконтроллера. При разработке программного обеспечения очень полезными оказались рекомендации из статьи .

Переменный резистор R10 предназначен для смещения осциллограммы по вертикали. Резистор R17 подбирают, добиваясь наилучшей контрастности изображения на экране индикатора.

Развёртка осциллографа — однократная, запускаемая при каждом нажатии на кнопку SB2. Длительность развёртки изменяют нажатиями на кнопку SB1. После каждого нажатия на экран индикатора выводится число — значение выбранной длительности.

Если установлена длительность развёртки 300 мкс (на весь экран), АЦП микроконтроллера уже не успевает оцифровывать отсчёты исследуемого сигнала. При такой скорости на индикаторе можно наблюдать только характер изменения во времени логических уровней импульсов, поданных на гнездо 9 разъёма Х1 ("Вход 2" осциллографа). Через разделительный конденсатор С1 эти импульсы поступают непосредственно на дискретный вход RA1 (вывод 3) микроконтроллера.

Осциллограф собран навесным монтажом на плате (рис. 2), помещённой в корпус, сделанный из коробки для рыболовных снастей. Индикатор HG1 размещён на крышке корпуса. Внешний вид действующего прибора показан на рис. 3. Видимая на фотоснимках третья кнопка оставлена неподключённой. В работе с прибором она не используется.

Исходный код программы на ассемблере и прошивка для микроконтроллера PIC16F873A доступны по .

Литература:

1. Кичигин А. Малогабаритный двухлучевой осциллограф-мультиметр. - Радио, 2004, № 6, с. 24-26.
2. Жидкокристаллический модуль MT-12864J. - .
3. Милевский А. Использование графического ЖКИ MT-12864A с микроконтроллером фирмы Microchip. - Радио, 2009, № 6, с. 28-31.

Осциллограф это прибор, помогающий увидеть динамику колебаний. С его помощью можно диагностировать различные поломки и получать необходимые данные в радиоэлектронике. Раньше применялись осциллографы на транзисторных лампах. Это были весьма громоздкие приборы, которые подключались исключительно к встроенному или разработанному специально для них экрану.

Сегодня приборы для снятия основных частотных, амплитудных характеристик и формы сигнала представляют собой удобные портативные и компактнее устройства. Часто их выполняют как отдельную приставку, подключающуюся к компьютеру. Этот манёвр позволяет убрать из комплектации монитор, существенно снизив стоимость оборудования.

Как выглядит классический прибор можно увидеть, рассмотрев фото осциллографа в любой поисковой системе. В домашних условиях также можно смонтировать это устройство, используя недорогие радиодетали и корпуса с другого оборудования для более презентабельного вида.

Как можно получить осциллограф

Оборудование можно заполучить несколькими способами и все зависит исключительно от размера денежных средств, которые можно потратить на приобретение оборудования или деталей.


  • Купить готовый прибор в специализированном магазине или заказать его по сети;
  • Купить конструктор, например, широкой популярностью сейчас пользуются наборы радиодеталей, корпусов, которые продаются на китайских сайтах;
  • Самостоятельно собрать полноценный портативный прибор;
  • Смонтировать только приставку и щуп, а подключение организовать к персональному компьютеру.

Эти варианты приведены в порядке снижения затрат на оборудование. Покупка готового осциллографа будет стоить дороже всего, так как это уже доставленный и работающий блок со всеми необходимыми функциями и настройками, а в случае некорректной работы можно обратиться в центр продажи.

В конструктор входит схема простого осциллографа своими руками, а цена снижается за счет оплаты только себестоимости радиодеталей. В этой категории также необходимо различать более дорогие и простые по комплектации и функционалу модели.

Сборка прибора самому по имеющимся схемам и приобретенных в разных точках радиодеталях не всегда может оказаться дешевле, чем приобретение конструктора, поэтому необходимо предварительно оценивать стоимость затеи, ее оправданность.

Наиболее дешевым способом заполучить осциллограф станет спаять только приставку к нему. Для экрана использовать монитор компьютера, а программы для снятия и трансформации получаемых сигналов можно скачать с разных источников.


Конструктор осциллографа: модель DSO138

Китайские производители всегда славились умением создавать электронику для профессиональных потребностей с очень ограниченным функционалом и за довольно небольшие деньги.

С одной стороны такие приборы не способны полностью удовлетворить ряд потребностей человека, занимающегося радиоэлектроникой в профессиональном русле, однако начинающим и любителям таких «игрушек» будет более, чем достаточно.

Одной из популярных моделей китайского производства типа конструктор осциллографа считается DSO138. Прежде всего, у этого прибора невысокая стоимость, а поставляется он со всем комплектом необходимых деталей и инструкций, поэтому как правильно сделать осциллограф своими руками, используя имеющуюся в комплекте документацию вопросов возникать не должно.

Перед монтажом нужно ознакомиться с содержимым упаковки: плата, экран, щуп, все нужные радиодетали, инструкция для сборки и принципиальная схема.

Облегчает работу наличие практически на всех деталях и самой плате соответствующей маркировки, что действительно превращает процесс в собирание детского конструктора взрослым. На схемах и инструкции хорошо видно все нужные данные и можно разобраться, даже не владея иностранным языком.


На выходе должен получиться прибор с такими характеристиками:

  • Напряжение на входе: DC 9V;
  • Максимальное напряжение на входе: 50 Vpp (1:1 щуп)
  • Потребляемый ток 120 мА;
  • Полоса сигнала: 0-200KHz;
  • Чувствительность: электронное смещение с опцией вертикальной регулировки 10 мВ / дел - 5В / Div (1 - 2 - 5);
  • Дискретная частота: 1 Msps;
  • Сопротивление на входе: 1 MОм;
  • Временной интервал: 10 мкс / Div - 50s / Div (1 - 2 - 5);
  • Точность замеров: 12 бит.

Пошаговая инструкция сборки конструктора DSO138

Следует рассмотреть более детально подробные инструкции для изготовления осциллографа данной марки, ведь аналогичным образом осуществляется сборка других моделей.

Стоит отметить, что в данной модели плата поставляется сразу с впаянным 32-битным на M3 ядре микроконтроллере марки Cortex™. Работает он два 12-битных входа с характеристикой 1 μs и работает в максимальном частотном диапазоне до 72 МГц. Наличие этого девайса уже вмонтированным несколько облегчает задачу.

Шаг 1. Удобнее всего начинать монтаж с smd компонентов. Нужно учитывать правила при работе с паяльником и платой: не перегревать, держать не дольше 2 с, не смыкать между собой разные детали и дорожки, пользоваться паяльной пастой и припоем.

Шаг 2. Припаять конденсаторы, дросселя и сопротивления: нужно вставлять указанную деталь в отведенное на плате для нее место, отрезаем лишнюю длину ножки и запаиваем на плате. Главное не перепутать полярность конденсаторов и не сомкнуть паяльником или припоем соседние дорожки.


Шаг 3. Монтируем оставшиеся детали: переключатели и разъемы, кнопки, светодиод, кварц. Особенное внимание следует уделить стороне диодов и транзисторов. Кварц имеет металл в своем строении, потому нужно обеспечить отсутствие прямого контакта его поверхности с дорожками платы или позаботиться о диэлектрической подкладке.

Шаг 4. 3 разъема припаиваются к плате дисплея. После завершения манипуляций с паяльником нужно плату промыть спиртом без вспомогательных средств – никаких ваток, дисков или салфеток.

Шаг 5. Просушить плату и проверить насколько качественно была проведена пайка. Прежде, чем подсоединить экран, нужно припаять две перемычки к плате. В этом пригодятся имеющиеся откушенные выводы деталей.

Шаг 6. Для проверки работы нужно включить прибор в сеть с током от 200 мА и напряжением 9 В.

Проверка заключается в снятии показателей с:

  • Разъема 9 В;
  • Контрольной точки 3,3 В.

Если все параметры соответствуют нужным значениям, нужно отключить прибор от питания и установить JP4 перемычку.

Ша г 7. В 3 имеющихся разъему нужно вставить дисплей. К входу нужно подключить щуп для осциллографа, своими руками провести включение питания.

Результатом правильной установки и сборки станет появление на дисплее его номера, типа прошивки, ее версии и сайта разработчика. Спустя несколько секунд можно будет наблюдать синусоидные волны и шкалу при выключенном щупе.

Приставка для компьютера

При сборке этого простого прибора понадобится минимальное количество деталей, знаний и навыков. Принципиальная схема очень простая, разве, что нужно будет изготовить самому плату для сборки прибора.

Размеры приставки к осциллографу своими руками будет примерно как коробок для спичек или немножко больше, поэтому лучше всего использовать такого размера пластиковую емкость или бокс от батареек.

Поместив в него собранный прибор с готовыми выходами, можно приступать к организации работы с монитором компьютера. Для этого следует скачать программы «Осциллограф» и «Soundcard Oscilloscope». Можно протестировать их работу и выбрать ту, что понравилась больше.

Подключенный микрофон также сможет ретранслировать на подключенный осциллятор звуковые волны, программа будет отражать изменения. Подключается такая приставка к микрофонному или линейному входу и не требует никаких дополнительных драйверов.

Фото осциллографов своими руками


Этот простой и дешёвый USB осциллограф был придуман и сделан просто ради развлечения. Давным давно довелось чинить какой-то мутный видеопроцессор, в котором спалили вход вплоть до АЦП. АЦП оказались доступными и недорогими, я купил на всякий случай парочку, один пошёл на замену, а другой остался. Недавно он попался мне на глаза и почитав документацию к нему я решил употребить его для чего-нибудь полезного в хозяйстве. В итоге получился вот такой приборчик. Обошёлся в копейки (ну рублей 1000 примерно), и пару выходных дней. При создании я постарался уменьшить количество деталей до минимума, при сохранении минимально необходимой для осциллографа функциональности. Сначала я решил, что получился какой-то уж больно несерьёзный аппарат, однако, сейчас я им постоянно пользуюсь, потому что он оказался весьма удобным - места на столе не занимает, легко помещается в карман (он размером с пачку сигарет) и обладает вполне приличными характеристиками:

Максимальная частота дискретизации - 6 МГц;
- Полоса пропускания входного усилителя - 0-16 МГц;
- Входной делитель - от 0.01 В/дел до 10 В/дел;
- Входное сопротивление - 1 МОм;
- Разрешение - 8 бит.

Принципиальная схема осциллографа показана на рисунке 1.

Рис.1 Принципиальная схема осциллографа


Для разных настроек и поиска неисправностей во всяких преобразователях питания, схемах управления бытовой техникой, для изучения всяких устройств и т.д., там где не требуются точные измерения и высокие частоты, а нужно просто посмотреть на форму сигнала частотой, скажем, до пары мегагерц - более чем достаточно.

Кнопка S2 - это часть железа нужного для бутлоадера. Если при подключении осциллографа к USB держать её нажатой, то PIC заработает в режиме бутлоадера и можно будет обновить прошивку осциллографа при помощи соответствующей утилиты. В качестве АЦП (IC3) была использована "телевизионная" микросхема - TDA8708A. Она вполне доступна во всяких "Чип и Дип"ах и прочих местах добычи деталей. На самом деле это не только АЦП для видеосигнала, но и коммутатор входов, выравниватель и ограничитель уровней белого - чёрного и т.д. Но все эти прелести в данной конструкции не используются. АЦП весьма шустр - частота дискретизации - 30 МГц. В схеме он работает на тактовой частоте 12 МГц - быстрее не нужно, потому что PIC18F2550 просто не сможет быстрее считывать данные. А чем выше частота - тем больше потребление АЦП. Вместо TDA8708A можно использовать любой другой быстродействующий АЦП с параллельным выводом данных, например TDA8703 или что-нибудь от Analog Devices.

Тактовую частоту для АЦП удалось хитрым образом извлечь из PIC"а - там запущен ШИМ с частотой 12 МГц и скважностью 0.25. Тактовый импульс положительной полярности проходит в цикле Q1 PIC"а так что при любом обращении к порту B, которое происходит в цикле Q2 данные АЦП будут уже готовы. Ядро PIC"а работает на частоте 48 МГц, получаемой через PLL от кварца 4 МГц. Команда копирования из регистра в регистр выполняется за 2 такта или 8 циклов. Таким образом, данные АЦП возможно сохранять в память с максимальной частотой 6 МГц при помощи непрерывной последовательности команд MOVFF PORTB, POSTINC0. Для буфера данных используется один банк RAM PIC18F2550 размером 256 байт.

Меньшие частоты дискретизации реализуются добавлением задержки между командами MOVFF. В прошивке реализована простейшая синхронизация по отрицательному или положительному фронту входного сигнала. Цикл сбора данных в буфер запускается командой от PC по USB, после чего можно эти данные по USB прочитать. В результате PC получает 256 8-битных отсчётов которые может, например, отобразить в виде изображения. Входная цепь проста до безобразия. Делитель входного напряжения без всяких изысков сделан на поворотном переключателе. К сожалению не удалось придумать как передавать в PIC положение переключателя, поэтому в графической морде осциллографа есть только значения напряжения в относительных единицах - делениях шкалы. Усилитель входного сигнала (IC2B) работает с усилением в 10 раз, смещение нуля, необходимое для АЦП (он воспринимает сигнал в диапазоне от Vcc - 2.41В до Vcc - 1.41В) обеспечивается напряжением с программируемого генератора опорного напряжения PIC (CVREF IC1, R7,R9) и делителем от отрицательного напряжения питания (R6,R10, R8). Т.к. в корпусе ОУ был "лишний" усилитель (IC2A), я использовал его как повторитель напряжения смещения.

Не забудьте про емкостные цепочки для частотной компенсации входной ёмкости вашего ОУ и ограничивающих диодов, которые отсутствуют на схеме - нужно подобрать ёмкости параллельно резисторам делителя и резистору R1, иначе частотные характеристики входной цепи загубят всю полосу пропускания. С постоянным током всё просто - входное сопротивление ОУ и закрытых диодов на порядки выше сопротивления делителя, так что делитель можно просто посчитать не учитывая входное сопротивление ОУ. Для переменного тока иначе - входная ёмкость ОУ и диодов составляют значительную величину по сравнению с ёмкостью делителя. Из сопротивления делителя и входной ёмкости ОУ и диодов получается пассивный ФНЧ, который искажает входной сигнал.

Чтобы нейтрализовать этот эффект нужно сделать так, чтобы входная ёмкость ОУ и диодов стала значительно меньше ёмкости делителя. Это можно сделать соорудив емкостной делитель параллельно резистивному. Посчитать такой делитель сложно, т.к. неизвестна как входная ёмкость схемы, так и ёмкость монтажа. Проще его подобрать.

Способ подбора такой:
1. Поставить конденсатор ёмкостью примерно 1000 пФ параллельно R18.
2. Выбрать самый чувствительный предел, подать на вход прямоугольные импульсы с частотой 1 кГц и размахом в несколько делений шкалы и подобрать конденсатор параллельно R1 так, чтобы прямоугольники на экране выглядели прямоугольниками, без пиков или завалов на фронтах.
3. Повторить операцию для каждого следующего предела, подбирая конденсаторы параллельно каждому резистору делителя соответственно пределу.
4. Повторить процесс с начала, и убедиться, что на всех пределах всё в порядке (может проявиться ёмкость монтажа конденсаторов), и, если что-то не так, слегка подкорректировать ёмкости.

Сам ОУ - это Analog Devices AD823. Самая дорогая часть осциллографа. :) Но зато полоса 16 МГц - что весьма неплохо.А кроме того, это первое из шустрого, что попалось в розничной продаже за вменяемые деньги.

Конечно же этот сдвоенный ОУ без всяких переделок можно поменять на что-то типа LM2904, но тогда придётся ограничится сигналами звукового диапазона. Больше 20-30 кГц оно не потянет.

Ну и форму прямоугольных, например, сигналов будет слегка искажать. А вот если удастся найти что-то типа OPA2350 (38МГц) - то будет наоборот замечательно.

Источник отрицательного напряжения питания для ОУ сделан на хорошо известной charge-pump ICL7660. Минимум обвязки и никаких индуктивностей. Ток по выходу -5 В конечно у неё невелик, но нам много и не надо. Цепи питания аналоговой части изолированы от помех цифры индуктивностями и ёмкостями (L2, L3, C5, C6). Индуктивности попались номиналом 180 uГн, вот их и поставил. Никаких помех по питанию даже на самом чувствительном пределе. Прошивка PIC заливается по USB с помощью бутлоадера который сидит с 0-го адреса в памяти программ и запускается если при включении удерживать нажатой кнопку S2. Так что прежде чем прошивать PIC - залейте туда сначала бутлоадер - будет проще менять прошивки.
Исходники драйвера осциллографа для ядер 2.6.X находятся в архиве с прошивкой. Там же есть консольная утилитка для проверки работоспособности осциллографа. Её исходники стоит посмотреть, чтобы разобраться как общаться с осциллографом, если хочется написать для него свой софт.
Программа для компьютера проста и аскетична, ее вид показан на рисунках 2 и 3. Подключить осциллограф к USB и запустить qoscilloscope. Требуется QT4.

Осциллограф на PIC18F2550 измеряет среднее, максимальное, минимальное, пиковое напряжения и пересечение нулевого уровня. Осциллограф имеет встроенную функцию триггера, который может быть использован для остановки сигнала для его детального изучения. Масштаб времени для отображения может быть легко изменён функцией changeTimeDivision. Осциллограф измеряет напряжение в пределах 0-5В, 0-2.5В и 0-1,25. Основным недостатком этого осциллографа является низкая частота дискретизации (~ 60 кГц), а также тот факт, что входы ограничены ограничениями АЦП микроконтроллера. Тем не менее, это очень хороший прибор, и я рекомендую посмотреть видео, чтобы увидеть его в действии.

Схема

Исходники и прошивку осциллографа можно найти в нижней части страницы. Каждый блок схемы обозначен и будет подробно описан ниже.

Питание

Напряжение поступает с 9-вольтовой батареи на интегральный стабилизатор напряжения TC1262-5.0V для обеспечения стабильных 5В для питания микроконтроллера и дисплея. На выходе стоит 1мкФ конденсатор.

Дисплей AGM1264F

Графический ЖК дисплей AGM1264F разрешением 128 х 64 пикселей со встроенными контроллером KS0108, который позволяет легко управлять им с помощью микроконтроллера. Он обладает светодиодной подсветкой и генератором отрицательного напряжения для управления дисплеем.

Вывод A0 настроен на аналоговый вход. Обратите внимание, что сопротивление источника сигнала влияет на напряжение смещения на аналоговом входе. Максимально рекомендованное сопротивление составляет 2.5 кОм.

Микроконтроллер PIC18F2550 работает на частоте 48МГц от внутреннего генератора. R1 представляет собой нагрузочный резистор, необходимый для работы. C1 является стабилизирующим конденсатором. Компонент пометкой "RES" является 20MHz резонатором.

RS232 конвертер

Выводы USART должны быть подключены к RS-232 конвертеру для подключения к ПК для обновления прошивки. После этого он может быть отключен.

Исходники и прошивка

Микроконтроллер должен быть прошит файлом "SAC_tinybld18F2550usb _20MHz_115200_48MHz".

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК PIC 8-бит

PIC18F2550

1 В блокнот
IC2 Линейный регулятор

TC1264

1 5 Вольт В блокнот
С1 Конденсатор 0.22 мкФ 1 В блокнот
С2 Электролитический конденсатор 1 мкФ 1 В блокнот
R1 Резистор

3.3 кОм

1 В блокнот
R2 Подстроечный резистор 10 кОм 1 В блокнот
R3 Резистор

5 Ом

1 В блокнот
RES Кварцевый резонатор 20 МГц 1 В блокнот
LCD-дисплей AGM1264F 1 В блокнот
G1 Батарея питания 9 В 1 В блокнот
JP1 Разьем для подключения дисплея 1 В блокнот
JP2 Разьем для обновления прошивки RS-232 1


Что еще почитать