Экологические стратегии выживания популяций. Размножение и жизненные циклы гидробионтов Для r стратегии характерно

Размножение - производство потомков любым доступным для организма способом.

Биологический смысл

Биологический смысл размножения и связанных с ним процессов довольно разнообразен. Это: по-первых - воспроизводство численности видов и увеличение ее, в противовес естественной смертности, выеданию хищниками и прочим неурядицам. Во-вторых - это обеспечение новых генетических комбинаций и возможность появления новых признаков у потомства, что делает возможным эволюционное развитие группы. Кроме того, в ходе размножения часто решается проблема расселения в пространстве (особенно для малоподвижных видов), переживания периода неблагоприятных условий (чаще всего на стадии покоящихся яиц) и может осуществляться выход на новые пищевые ресурсы (доступные только молоди или личинкам, но не взрослым организмам).

Проблемы и приспособления.

Лишь немногие организмы, главным образом примитивные, способны размножаться пассивно (например, когда их порвут на части). Кроме того, подобный способ (бесполое, оно же вегетативное размножение) не обеспечивает одну из главных функций - появление новых признаков у потомства, которые могли бы дать материал для дальнейшей эволюции. Поэтому, как правило, основным для животных является половое размножение. Для него требуется: развитие специальных систем органов для созревания половых клеток, обеспечение спаривания этих клеток (мужских и женских) от разных особей, обеспечение этих клеток питанием для развития и роста зародыша, а нередко также и дальнейшая забота о молоди до обретения ей самостоятельности.

Возникает как минимум несколько разных сложных моментов. Во-первых, малоподвижные (тем более прикрепленные) организмы должны как-то решить проблему поиска партнера и спаривания (на первый взгляд, практически неразрешимую, особенно при небольшой плотности популяции). Во-вторых, появляющаяся при размножении молодь в любом случае сильно отличается от взрослых особей - она во много раз меньше, что требует выработки новых жизненных стратегий (других механизмов питания , защиты от хищников, осморегуляции и т.п.). Наконец, приходится решать вопросы, связанные с ростом молоди - то есть специально конструировать все структуры, в том числе скелетные, таким образом, чтобы они могли более или менее непрерывно расти, в конечном счете увеличиваясь во много раз. Впрочем, понятно, что все эти проблемы животным удалось успешно решить, и различаются скорее механизмы их решения.

К- и R - стратегии размножения

Стратегии размножения и заботы о потомстве стали предметом одной из общеэкологических теорий - теории R- и K-стратегий. Считается, что все организмы тяготеют к одной из этих двух стратегий размножения. К-стратеги (обычно крупные животные, доминирующие в стабильных местообитаниях и сложившихся сообществах, например - слоны) размножаются медленно и производят немного, но крупных потомков, которых окружают вниманием и заботой. Напротив, R-стратеги (в целом мелкие животные нарушенных местообитаний, например, крысы) плодятся быстро и помногу, но слабо заботятся о потомстве, что сопровождается высокой детской смертностью (взрослая смертность у них также высока). K-стратегия более выгодна в условиях, когда благополучие популяции определяется в основном конкуренцией, а R-стратегия - при сильном влиянии жестких . У человека различные стратегии проявляются даже в пределах вида: в городских популяциях (особенно в экономически развитых странах) люди размножаются медленно (едва обеспечивая воспроизводство), но вкладывают массу средств в содержание, воспитание и образование детей. Напротив, в бедных аграрных странах тропиков люди размножаются быстро и активно, не имея средств прилично одеть, обуть, обучить и иногда даже накормить детей, что нередко приводит к высокой детской смертности, но может и сопровождаться резкими вспышками численности (которые, кстати, отчасти и удерживают низкий уровень жизни в этих странах).

Вся эта теория, впрочем, разработана преимущественно для наземных позвоночных животных (и отчасти для наземных высших растений). В среде водных беспозвоночных действуют несколько иные закономерности. Чаще всего (особенно в море) происходит наоборот - крупные и массовые организмы выбрасывают миллионы микроскопических расселительных яиц или личинок; мелкие же гидробионты расселяются сами, а потомков производят гораздо меньше. Поясним это на примерах.

Сравнительный обзор размножения разных таксонов

Одноклеточные водоросли. В каждой группе одноклеточных водорослей существует два типа размножение - вегетативное и половое. Вегетативное - деление клеток в результате митоза. При обеспеченности ресурсами клетки одноклеточных водорослей размножаются преимущественно вегетативно, и численность популяции возрастает по экспоненте. При неблагоприятных для вегетативного деления условиях или в результате других причин у водорослей происходит половое размножение (мейоз), при котором образуются мужские и женские гаметы, после слияния которых формируется клетка с «новым» генотипом. Жизненные циклы одноклеточных водорослей, принадлежащих к разным филогенетическим группам, различаются. Циклы многих водорослей включают покоящиеся стадии - (покоящиеся клетки, споры, цисты и др.) для переживания неблагоприятных условий.

Беспозвоночные. Исходный (для водных, в первую очередь морских беспозвоночных) тип размножения, как считается, выглядит следующим образом. Примерно в одно время все взрослые мужские и женские особи в большом количестве выметывают прямо в воду свои половые продукты (яйцеклетки и сперматозоиды), которые сами (если повезет) находят друг друга в толще воды и спариваются. Это называется наружним оплодотворением. Сам организм при этом может быть малоподвижным или сидячим. Из оплодотворенной зиготы вырастает микроскопическая планктонная личинка, которая довольно длительное время плавает в толще воды, расселяясь с течениями, претерпевая разнообразные превращения и со временем переходя на внешнее питание (чаще всего фитопланктоном - так называемая планктотрофная личинка). Подрастая и готовясь переходить ко взрослому образу жизни, личинка оседает на подходящий донный субстрат и приобретает признаки взрослой особи, достигает макроскопических размеров и в дальнейшем еще долго растет. Этот тип размножения и развития позволяет решать все проблемы расселения и внутривидовой конкуренции именно за счет личинок (а взрослые особи могут быть даже сидячими - им не нужно непосредственно встречаться друг с другом). С другой стороны, такой подход сопровождается огромной смертностью как среди гамет, так и среди личинок, что требует массового их накопления и выброса, причем крайне важна синхронизация созревания и выброса половых клеток у разных особей популяции. Это достигается выбросом в воду сигнальных веществ, стимулирующим у особей выброс в воду всех накопленных заранее гамет. Обычно массовый нерест происходит один раз в год, причем у многих организмов - один раз в жизни. Как легко понять, такая стратегия удобна для относительно крупных, массовых, массивных и малоподвижных организмов: полипов, губок, моллюсков, крупных полихет, иглокожих и ракообразных. В общем, в море этот вариант считается самым типичным.

А также мелкие и подвижные беспозвоночные (ветвистоусые и веслоногие ракообразные, некоторые мелкие полихеты, олигохеты, улитки) не могут позволить себе массовый выброс гамет в воду (просто не имея достаточно массы), и применяют внутреннее оплодотворение: находят друг друга и спариваются сами, после чего самка, как правило, еще некоторое время вынашивает развивающиеся яйца внутри себя (уменьшая их смертность). Рождаются либо защищенные специальной оболочкой пассивные яйца, либо уже активные личинки. Личинки чаще всего ведут образ жизни, сходный со взрослыми; но нередко более подвижны, что обеспечивает популяции лучшее расселение в пространстве. Иногда и в этом случае личинки бентосных организмов на некоторое время становятся планктонными. Часто (например, у олигохет), личинок вообще нет, а молодь по строению и образу жизни сходна со взрослыми (прямое развитие). Все это позволяет генерировать на несколько порядков меньше половых продуктов, снижая репродуктивные затраты, и при этом размножаться круглый год, не заботясь о синхронизации нереста. Часто личинка при рождении снабжается запасом питательных веществ, достаточным для прохождения всей ее личиночной расселительной жизни, и вообще не питается (лецитотрофная личинка).

В пресных водах размножение по первому типу (с наружним оплодотворением и длительной стадией планктонной личинки) затруднено осмотическими проблемами: осморегулировать плавающие гаметы и планктонных личинок оказалось крайне неудобным, и большинство даже низших беспозвоночных применяют внутреннее оплодотворение - и никаких дополнительных планктонных личинок. Как правило, откладываются достаточно крупные яйца - в небольшом количестве, но с приличным запасом питательных веществ, что позволяет организму быть в большой степени лецитотрофным и вылупляться, будучи уже вполне макроскопическим и с развитой системой осморегуляции. Это путь пресноводных червей, улиток и большинства ракообразных. Веслоногие рачки (вроде циклопов) все же имеют планктонную личинку (науплиуса), но относительно короткоживущую, в серии последовательных линек быстро достигающую дефинитивного (взрослого) облика.

Насекомые, как группа в целом наземная, причем высокоподвижная именно на стадии взрослой особи (имаго), при освоении водной среды выработали свою стратегию размножения и жизненного цикла. Они оставили на долю взрослых особей именно расселительную функцию (а также спаривание и откладку яиц), а личинки, обитающие в воде (причем обычно гораздо дольше, чем имаго) отвечают за питание, рост (и накопление питательных веществ в теле), а также переживание в воде сезонов, неблагоприятных для жизни на суше (главным образом зимы). Личинки насекомых уже при вылуплении из яиц макроскопичны, способны к самостоятельному питанию и имеют вполне совершенную систему пресноводной (а иногда и солоноватоводной) осморегуляции. Интересно, что имаго у некоторых групп (поденки, ручейники, хирономиды, часть веснянок) вообще не питаются и живут очень недолго, и для успешного размножения применяется их синхронизированный вылет из водоемов. Таким образом, взрослые насекомые у несекомых приравниваются, функционально, к половым продуктам (гаметам) у многих морских беспозвоночных.

В некоторых группах беспозвоночных (чаще в пресных водах, чем в морских) распространен гермафродитизм - когда в каждой особи формируются и мужские, и женские половые органы и гаметы. Например, гермафродиты все легочные улитки (Pulmonata), олигохеты, усоногие ракообразные. При спаривании организм может выступать и самцом, и самкой, а часто - обоими сразу (тогда наблюдается взаимное оплодотворение). Биологический смысл гермафродитизма (то есть выращивания в каждом теле двойного набора органов) не вполне ясен. Иногда (но, видимо, редко) происходит самооплодотворение - это отчасти нарушает саму идею полового размножения (поскольку организм скрещивается сам с собой), зато позволяет единичной особи породить на новом месте новую популяцию.

Еще реже, чем гермафродитизм, у животных наблюдается бесполое размножение, при котором материнские особи фактически клонируют себя, порождая генетически точно такие же женские особи. Такая ситуация особенно характерна для периодов вспышек численности мелких пресноводных беспозвоночных - в частности, дафний и коловраток в летний период. В любом случае - это временная мера, рано или поздно (обычно осенью) сменяющаяся нормальным половым размножением. Впрочем, у одноклеточных простейших (как и у растений) бесполое размножение - самая обычная вещь, именно за счет его происходит основное воспроизведение видов.

Рыбы. Как правило, рыбы имеют наружнее оплодотворение, однако осуществляемое при личной встрече родительских особей (самка откладывает свои яйцеклетки, а самец тут же поливает ее молоками). Соответственно, рыбы мечут икру, обычно довольно мелкую и в больших количествах. Число икринок в среднем составляет несколько тысяч, но сильно варьирует у разных видов: от 10-30 штук (у колюшек) до 10-100 миллионов (у тунцов, трески и многих других крупных морских рыб). При этом икринки несут некоторый запас питательных веществ, что позволяет вылупляться из икры уже вполне сформировавшимся малькам, способным к плаванию и питанию. Никаких новых сред мальки рыб не осваивают, зато перехватывают спектры питания, обычно недоступные взрослым рыбам: они могут питаться зоопланктоном и мейобентосом. Правда, не ясно, сильно ли выигрывают от этого обстоятельства рыбы в целом или это вынужденная мера (поскольку ничем другим мальки рыб питаться не в состоянии за малостью размеров).

Отдельные виды рыб, тем не менее, имеют довольно причудливые формы размножения и защиты потомства. Наиболее известны проходные рыбы, меняющие ради размножения среду обитания. Лососевые и осетровые во взрослом состоянии живут в морях, а нерестятся в реках (где и произошли), и молодь их, приспособленная к пресноводной осморегуляции, некоторое время держится в реках и лишь потом спускается в море. При этом лососи показывают чудеса героизма, преодолевая пороги горно-таежных рек; а вскоре после нереста отмирают - прямо в реках, резко увеличивая их сапробность . Получается, что это такой своеобразный способ насытить органикой местообитание молоди. Другой вопрос, насколько он эффективен.

Угорь, напротив, плывет на размножение из рек в Саргассово море, причем его европейская популяция ради этого преодолевает (по течению) почти весь Атлантический океан. Молодь (опять же по течению, но уже по другому) возвращается к европейским рекам. Большого смысла в этом, кажется, нет. Считается, что сверхдлинные миграции угря отражают дрейф континентов, в ходе которого Атлантика постепенно расширяется, и угрям с каждым миллионом лет приходится плавать в родное море все дальше и дальше.

Некоторые группы рыб перешли к явной K-стратегии, главным образом путем живорождения. При этом оплодотворение внутреннее, число потомков гораздо меньше, но сами они в момент выхода в воду крупнее и жизнеспособнее. Наиболее известный пример - живородящие аквариумные рыбки Peciliidae (гуппи и прочие пецилии). Все аквариумисты знают, что развести их гораздо проще, чем любых других рыб. Сходным образом поступают, к примеру, акулы - они откладывают очень мало икринок (обычно 5-30), но очень крупных - у китовой акулы до 60 см (!) в диаметре, что позволяет вылупляться из них уже весьма крупным рыбам.

Земноводные . Амфибии имеют внутреннее оплодотворение и откладывают довольно крупную икру - причем обязательно в воду. Подобно насекомым, большинство земноводных амфибиотичны - то есть размножаются именно в воде и имеют водных рыбообразных личинок (головастиков), хотя взрослые животные большую часть жизни обитают на суше. В общем, здесь также можно говорить о перехвате головастиками новой среды обитания и пищевых ресурсов - это в общем верно, но на самом деле отражает глобальную неполноценность всего класса - земноводные просто не умеют иначе.

Крабы и забота о женщине . У многих ракообразных, особенно высших, взрослые особи столь надежно защищены хитиновым панцирем, что не могут спариваться, кроме как сразу после линьки у самки. Поэтому готовый к спариванию самец должен не просто найти самку своего вида, но и дождаться ее линьки, что может произойти, например, через несколько недель. Причем нужно именно ждать рядом, а не искать линяющую самку - поскольку при линьке и после нее животные становятся крайне уязвимы и стараются линять в надежных убежищах (где их трудно найти). Поэтому, например, у камчатских крабов взрослые самцы собирают вокруг себя несколько самок (гарем) и «пасут» их, спариваясь с теми, кто полинял, и их же обороняя от поедания (в первую очередь другими самками своего же гарема). Такая жизненно необходимая забота о самке имеет мало общего с легкомысленным «ухаживанием» позвоночных. Ситуация осложняется еще и тем, что в случае линьки самого самца он также может быть немедленно съеден своими самками, поэтому для линьки он вынужден покидать свой гарем и тщательно прятаться.

Гарпактициды и педофилия . Эти мелкие веслоногие рачки обладают слабым половым диморфизмом, да и межвидовые различия у них невелики; и возрастные изменения (от копеподитных стадий молоди к половозрелым) слабо заметны. Зато инстинкт спаривания у самцов весьма силен. Поэтому готовый к спариванию самец, роясь в донном наилке в поисках полового партнера, не проявляет разборчивости и спаривается практически с кем угодно - с самкой своего вида (если повезет!), или с самцом, или с копеподитом (то есть молодой особью), или с рачком совсем другого вида. Иногда их подобную активность принимают за попытку съесть партнера, но это попытка копуляции. В состоянии спаривания рачки плавают довольно долго, причем если в позиции самки также оказывается самец, он может тем временем также ловить себе партнера для спаривания; иногда таким образом получаются довольно длинные цепочки особей, лишь немногие из которых действительно спариваются.

Улитки и групповое спаривание . Легочные пресноводные улитки - гермафродиты, причем у некоторых из них определение пола при спаривании прямо определяется позицией самого животного - приблизительно по принципу «кто сверху, тот и самец». Например, речные чашечки (Ancylus fluviatilis ) для спаривания просто наползают одна на другую, а затем свешивают вниз совокупительные органы. Эта ситуация не мешает еще одной чашечке заползти сверху и копулировать с нижесидящей, и так далее. В итоге может образоваться стопка копулирующих особей, из которых самая нижняя выступает лишь как самка, а самая верхняя - как самец, а все остальные работают обоими системами органов (в отличие от глупых гарпактицид, которые могут лишь имитировать подобную ситуацию). Потом все расползаются и дружно откладывают яйца.

Бонеллия и определение пола судьбой . У сидячей морской эхиуриды бонеллии планктонная личинка, выходя в открытое плавание, еще не имеет определенного пола, но уже имеет не только расселительную, но и половую задачу - поиск самки. Если личинке удается найти взрослую самку бонеллии, она проникает в нее и развивается в самца (который всю жизнь потом живет внутри самки, оплодотворяя ее). Если же найти самку так и не удается, личинка в конце концов оседает на дно и сама становится самкой.

Обобщенное описание эволюционных и экологических механизмов выживания видов в условиях пространственно-временной неоднородности среды обитания дает концепция жизненных стратегий, или стратегий жизненных циклов. Под стратегией понимают наиболее общие пути перераспределения энергии между процессами поддержания жизнедеятельности, роста и размножения у разнообразных групп организмов. Интенсивность энергетического потока, направленного по тому или иному пути может быть закреплена генетически с различной широтой нормы реакции, что приводит к ограничениям (физиологическим, филогенетическим и др.) на возможности перераспределения энергии. Механизмы перераспределения энергии, являясь сутью адаптивных реакций, обусловливают возможность сосуществования или конкурентного вытеснения популяций, т.е. в конечном счете определяют положение популяции в сообществе.

Стратегию определяют параметры самого высокого ранга, общие даже для сильно различающихся видов и популяций. Таковыми являются генеральные характеристики выживания и размножения . Взаимодействия между этими характеристиками и производными от них параметрами определяют их оптимальное (с позиций естественного отбора) сочетание в конкретных условиях.

Существующие классификационные схемы жизненных стратегий представляют собой совокупность эмпирических обобщений и базируются на определениях «первичных», основных типов стратегий, реализуемых при экстремальных значениях факторов. Многообразие классификаций жизненных стратегий может быть сведено к двум основным схемам, различающихся по количеству выделяемых детерминирующих факторов и, соответственно, количеству первичных стратегий.

Теоретическую основу концепции двух первичных стратегии, соответствующих результатам r- и K- отбора, составляет логистическая модель роста. Детерминирующим фактором выступает плотность популяции. Логистическая модель предсказывает отбор на более высокую равновесную плотность популяции в насыщенных биоценозах или на высокую максимальную скорость роста в разреженных. В сложных сообществах, насыщенных видами-конкурентами, основным фактором отбора выступает низкая концентрация необходимых ресурсов, за которые и происходит конкуренция. Отбор на выживание в условиях постоянного дефицита ресурсов стимулирует увеличение вклада энергии на повышение выживаемости в условиях острой конкуренции и продуцирование более конкурентноспособных потомков (К-стратегия). Высокая «цена» каждого потомка ограничивает их количество, произведенное каждой половозрелой особью, что снижает максимальную скорость популяционного роста ( потенциал). В системах, где конкурентное давление в силу пресса хищников, сезонности, природных катаклизмов временно ослабевает и происходит высвобождение лимитирующих ресурсов, преимущество получают популяции с высокой скоростью роста, вкладывающие максимум энергии в размножение и производящие большое количество «малоценных» потомков (r-стратегия). Между двумя первичными стратегиями существует континуум переходных форм, и каждая популяция воплощает компромисс между обеими стратегиями. Основным фактором, определяющим положение популяции на оси r - K-стратегий, является напряженность межвидовой ко-нкуренции и связанная с ней степень доступности лимитирующего ресурса.

Среди концепций жизненных стратегий, выделяющих трипервичных типа стратегий, наибольшее распространение получила классификация Раменского-Грайма, или C-S-R классификация. Исходно созданная для анализа наземных сообществ высших растений, эта схема базировалась на умозрительной связи между ростовыми характеристиками растений (относительная скорость вегетативного роста), их размерами (развитие надземной части растения) и конкурентноспособностью (способность подавлять развитие партнеров по сообществу полнотой использования ресурсов). В качестве детерминантов первичных стратегий рассматриваются два основных фактора: стресс и нарушения. Стресс ограничивает накопление биомассы популяций через лимитирование ресурсами или воздействие субоптимальных физических условий. Нарушения связаны с частичным изъятием биомассы популяции ее потребителями или с полной деструкцией биомассы в результате действия экстремальных физических факторов. Сочетание интенсивного стресса и слабых нарушений определяет S-стратегию, слабого стресса и слабых нарушений - С-стратегию, слабого стресса и сильных нарушений - R-стратегию. Сочетание сильных стресса и нарушений рассматривается как несовместимое с выживанием любой популяции. Патиенты, или стресс-толеранты (S-стратегия), характеризуются низкой скоростью роста и доминируют в условиях острого дефицита ресурсов или действия субоптимальных физических факторов. Виоленты, или конкуренты (С-стратегия), характеризуются высокой скоростью роста, подавляют развитие партнеров по сообществу быстрым и полным изъятием минеральных ресурсов и затенением. Эксплеренты, или рудералы (R-стратегия) характеризуются высокой скоростью роста и низкой конкурентной способностью, развиваются в условиях ослабленной конкуренции.

По аналогии с r-K-континуумом каждая популяция может быть соотнесена с точкой в треугольном поле первичных C-S-R стратегий, т.е. каждая популяция совмещает в себе в определенных соотношениях свойства патиентности, виолентности и эксплерентности.

История развития понятия «экологическая стратегия » у растений .

В - первые, термин «стратегия» означал совокупность свойств, помогающих организмам выживать в данных условиях, и применялся только по отношению к животным организмам.

Выделялись R- и К-стратегии по соотношению затрат на размножение и поддержание потомства.

К-стратеги отличаются заботой о немногочисленном потомстве, это наблюдается, например, у слонов. R-стратеги характеризуются максимальной плодовитостью и отсутствием заботы о потомстве, например, аскариды.

Свойства К- и R -стратегий у животных.

R -стратегия К-стратегия
Характерно быстрое развитие особей Характерно медленное развитие особей
Высокая плодовитость Низкая плодовитость
Мелкие размеры особей Крупные размеры особей
Короткая продолжительность жизни Значительная продолжительность жизни
Более ранние акты размножения Позднее размножение
Все признаки направлены на более высокую продуктивность Все признаки направлены на болнн эффективное использование ресурсов
Характерна для катастрофических изменений среды, при заселении незаполненных биотопов. Наиболее эффективна в конкурентной среде.

Позже термин «экологическая стратегия» стал использоваться и применительно к растительным организмам. (20).

Для отечественной литературы термин « стратегия» применительно к растениям достаточно нов и первым его использовал Т.А. Работнов (1975 г.), назвавший так выделенные Л.Г. Раменским (1936 г.) «ценобиотические типы».

Под стратегией вида Работнов предложил понимать «совокупность приспособлений, обеспечивающих ему возможность обитать совместно с другими организмами и занимать определенное место в соответствующем биогеоценозе». (10)

Первым на наличие предпосылок у растений, определяющих их статус в сообществе, еще в 1894 г. обратил внимание Мак Леод, который разделил все виды на « капиталистов» и «пролетариев».

Однако малоудачной была как сама аналогия с обществом, так и основной критерий различения типов_ перекрестное опыление и самоопыление, хотя ученый пытался сделать оценки комплексным и писал о том, что «капиталистам» свойственны наличие запаса питательных веществ, поликарпичность, нетерпимость к затенению и т.д.

Блестящую разработку этот вопрос получил в работах Раменского, опубликованных в 30-ых годах, где он писал о 3-х типах растений, которые назвал виолентами, патиентами и эксплерентами и уподобил их львам, верблюдам и шакалам.

Спустя 40 лет в Англии вышла монография Дж. Грайма «Стратегии растений и процессы в растительности.» , в которой автор, не зная работ Раменского, заново описывал те же три типа стратегий под названием конкурентов, стресс-толерантов и рудералов.

Для понимания типа стратегий многое было сделано также Э. Пианкой, Р. Уиттекером и Т.А. Работновым. (11)


Основные системы эколого-ценотических стратегий .

Система Э. Пианки .

Система Пианки, получившая самое широкое распространение в экологии, включает два типа стратегий, связанных с К-отборами и r-отборами (по соотношению долей энергетических затрат на поддержание взрослых особей и на процессы размножения).

К- отбор – это отбор в постоянной (предсказуемой) среде, где основная часть энергии популяции затрачивается на конкуренцию, а при r –отборе- основной статьей расхода энергии является размножение.

Система явилась результатом развития представлений, которые были сформулированы ранее Р.Х. Макартуром и Е.О. Уилсоном, однако именно Э. Пианка всесторонне проанализировал те следствия, которые возникают в результате реализации двух типов отбора.

Два типа стратегии Пианки имеют в мире растений самое широкое распространение. И даже возникновение разноспоровости у плаунов или папоротников можно рассматривать в конечном итоге как замену r-стратегии изоспор на К-стратегию женского гаметофита, которая гарантирует лучшее выживание потомства и заменяет огромное количество мелких изоспор ограниченным числом мегаспор, обеспечивающих необходимые условия развития женского заростка.

К-стратеги приурочены к более или менее стабильным условиям среды, обладают равновесными популяциями, где смертность регулируется плотностью, приспособлены к условиям острой конкуренции. Они, как правило, поликарпики с медленным развитием и жизненной формой от трав до деревьев. В сукцессионных сериях эти виды увеличивают свое участие по мере приближения сукцессионной стадии к климаксу.

r-стратеги, напротив, предпочитают нестабильные местообитания, характеризующиеся неравновесными популяциями, смертность которых не зависит или зависит в слабой степени от плотности. Конкуренция между такими растениями слабая, это малолетники-монокарпики, как правило, травы, реже - кустарники. В сукцессионном ряду они связаны с пионерными стадиями и не играют существенной роли в зрелых сообществах, предваряющих климакс.

Таким образом, система типов Э. Пианки проста – одномерна, однако она полностью соответствует континуальному восприятию типов.

Он отмечает относительность разделения всех видов на 2 типа стратегий, подчеркивая, что мир не окрашен только в черное и белое, и крайние варианты, как правило, связаны целой гаммой переходов (Э. Пианка, 1981 г., стр. 138). (13)

Система Р. Уиттекера .

Р. Уиттекер (1980) различал не 2, а три типа стратегий, обозначаемые буквами К,r и L. В основу его системы положены закономерности колебания численности популяций между двумя пределами: К-верхний предел, соответствующий максимальной плотности насыщения и L- нижний предел, означающий некий « популяционный ноль», соответствующий численности, которая не способна обеспечить выживание популяции.

К-стратеги стремятся к достижению уровня К, добиваясь этого, во-первых, за счет предельной дифференциации ниш. К-отбор воздействует на механизмы, с помощью которых сохраняют свою популяцию в процессе конкуренции и других взаимодействий в границах занятой ими среды. Численность популяций существенно снижается, однако общей тенденцией таких популяций является колебания вокруг уровня К.

Вторая группа популяций_r-стратеги. Они характеризуются резкими флюктуациями между уровнями К и L. Такие популяции нестабильны и выживают лишь благодаря высокой скорости продуцирования диаспор, они слабо адоптированы как к условиям обостренной конкуренции, так и к неблагоприятным условиям, вызывающим стресс.

Третья группа популяций-L-стратеги, которые флюктуцируют около нижнего предела численности L, хотя могут временами взрывообразно увеличивать свою численность. У таких популяций отбор имеет тенденцию к совершенствованию механизма для переживания неблагоприятных периодов, а скорость размножения может быть или не быть высокой.

Различая три типа отбора с их результатом – тремя первичными типами в то же время Уиттекер, как и Пианка, не абсолютировал своей системы.

Если сравнивать системы Уиттекера и Пианки, очевидно, что его типы К и r соответствуют К и r Пианки и действительно дифференциация ниш идет под действием К-отбора. Это в основном многолетние виды, часто размножающиеся вегетативно, и расходующие в генеративной сфере сравнительно мало энергии.

Рудеральные растения, напротив, отличаются укороченностью жизненного цикла и высокой семенной продуктивностью, и поэтому затраты на размножение здесь больше. Это является следствием r-отбора.

Группа L занимает переходное положение, так как пустынные однолетники относятся к числу эфемеров с очень быстрым циклом развития и высокой семенной продуктивностью (результат r-отбора), но кустарнички, а также некоторые травянистые дерновинные растения переживают стресс в вегетативном состоянии и потому представляют результат действия К-отбора. (10)


Система Раменского-Грайма.

Раменский предложил систему из трех типов. Он различал три «ценобиотических типа».

Первый тип, который он называл виолентами или «львами», характеризуется способностью к энергичному захвату территории, полнотой используемых ресурсов, мощным конкурентным подавлением соперников.

Второй тип - патиенты или «верблюды» отличаются способностью к перенесению экстремальных условий среды, то есть выносливостью.

Третий тип – эксплеренты или шакалы не отличаются ни устойчивостью к стрессовым ситуациям, ни высокой конкурентной мощностью, но способны к быстрому захвату промежутков между более сильными растениями, и при их смыкании также легко вытесняются. (13)

В дальнейшем представления и классификация Л.Г. Раменского (1935-38 гг.) развивались Работновым Т.А. (1966, 1975, 1978, 1980 гг.). Им показан сложный характер патиентности (стресс-толерантности) у растений и выделены экологические и фитоценотические патиенты.

Первые способны существовать в неблагоприятных условиях за счет экологической специализации (на засоленных, кислых, сухих или каменистых субстратах и т.д.) и в наибольшей степени соответствуют патиентам Л.Г. Раменского. У них совпадают и аутэкологические и синэкологические оптимумы.

Вторые способны длительно выживать под прессом виолентов в экологически оптимальных условиях при помощи максимального снижения процессов жизнедеятельности. Синэкологические и аутэкологические оптимумы у них обычно не совпадают. (6 )

Дальнейшее развитие представлений о типах стратегий мы находим в многочисленных работах Дж. Грайма (J.Grime, 1974, 1978, 1979).

Он предлагает, по существу, 3, таких же как и у Л.Г. Раменского, типа эколого-ценотических стратегий, назвав эти типы: конкурентами, стресс толерантами и рудералами (соответственно К, S и R).

Как определить ценность особи для популяции?

«Естественный отбор признает только один вид «валюты» - благополучное потомство » (Э. Пианка, 1981).

Мы говорили, что популяция - потенциально бессмертная сущность, состоящая из смертных особей. Чтобы поддержать существование популяции, особь должна выжить сама и оставить потомков, которые тоже смогут выжить. Обратите внимание на двойственность этой задачи. Вероятно, наибольшие шансы на выживание будет иметь та особь, которая вообще не будет тратить ресурсы и полученную из них энергию на производство потомства. Но пройдет немного времени - и такая особь без следа исчезнет из популяции. На противоположном «полюсе» находится гипотетическая особь, которая сразу после своего появления начинает всю свою энергию направлять на производство потомков. Такое существо погибнет само и, если его потомки унаследуют столь же неэффективный способ распределения ресурсов, произведет потомков, которые не будут иметь шансов на выживание.

Значит, наибольшую ценность для популяции должна иметь особь, сочетающая затраты на собственное выживание и на производство потомков в оптимальном сочетании. Оценить, насколько это сочетание оптимально, можно. Для этого нужно высчитать, при каком сочетании в данных условиях особь оставит наибольший возможный вклад в будущее поколение. Мера, которая используется для этого в математической популяционной биологии, называется репродуктивной ценностью . Репродуктивная ценность - обобщенная мера выживаемости и плодовитости, учитывающая относительный вклад организма в будущие поколения.

«Легко описать гипотетический организм, имеющий все признаки, необходимые для достижения высокой репродуктивной ценности. Он размножается почти сразу же после рождения, дает многочисленное, крупное, защищенное потомство, о котором заботится; он размножается многократно и часто на протяжении долгой жизни; он побеждает в конкурентной борьбе, избегает хищников и легко добывает пищу. Описать такое существо легко, но представить трудно ...» (Бигон и др., 1989).

Вы понимаете, что такая невозможность вытекает из противоречивости задач самоподдержания и размножения (рис. 4.15.1). Одним из первых это осознал в 1870 г. английский философ Герберт Спенсер, говоривший об альтернативности поддержания организмом собственного существования и продолжения себя в потомках. На современном языке можно сказать, что эти параметры связаны отрицательными корреляциями, отношением, при котором улучшение системы по одному параметру должно сопровождаться ее ухудшением по другому.

Рис. 4.15.1. У коловратки Asplanchna шансы на выживание уменьшаются по мере роста плодовитости (Пианка, 1981)

Разные виды (и разные популяции) по-разному перераспределяют энергию между самоподдержанием и размножением. Можно говорить о видовой стратегии, выражающейся в том, как представители вида добывают ресурсы и как они их тратят. Успешной может быть только та стратегия, при которой особи получают достаточное количество энергии, чтобы они могли расти, размножаться и компенсировать все потери на активность хищников и разнообразные несчастья.

Признаки, относящиеся к разным адаптивным стратегиям, могут быть связаны отношением трейдоффа , то есть непреодолимыми отрицательными корреляциями (отношением или-или). Так, отношением трейдоффа связаны число потомков и их выживаемость, скорость роста и устойчивость к стрессу и т.д. Американские экологи Р. Мак-Артур и Е. Уилсон описали в 1967 году два типа видовых стратегий, которые являются результатом двух разных типов отбора и связаны отношением трейдоффа. Принятые обозначения этих стратегий (r- и K-) взяты из логистического уравнения.

Согласно логистической модели, в росте популяции можно выделить две фазы: с ускоряющимся и с замедляющимся ростом (рис. 4.15.2). Пока N невелико, на прирост популяции основное влияние оказывает сомножитель rN и рост популяции является ускоряющимся. На этой фазе (r-фазе ) рост популяции ускоряющийся, и ее численность тем выше, чем выше способность особей к размножению. Когда N становится достаточно высоким, на численность популяции начинает оказывать основное влияние сомножитель (K-N)/K . На этой фазе (К-фазе ) рост популяции замедляющийся. Когда N=K , (K-N)/K =0 и рост численности популяции прекращается. На K-фазе численность популяции тем выше, чем выше параметр K . Он тем выше, чем более конкурентоспособны особи.

Рис. 4.15.2. r- и K-фазы популяционного роста в соответствии с логистической моделью

Можно предположить, что популяции некоторых видов подавляющую часть времени находятся на r-фазе. У таких видов максимальную репродуктивную ценность имеют особи, способные быстро размножаться и захватывать пустующую среду своими потомками. Иными словами, на этой фазе отбор будет способствовать повышению параметра r - р епродуктивного потенциала. Такой отбор называется r-отбором , а возникающие в его результате виды -г-стратегами .

У видов, популяции которых подавляющую часть времени находятся на K-фазе, ситуация совсем иная. Максимальная репродуктивная ценность в этих популяциях будет присуща особям, которые окажутся настолько конкурентоспособными, что смогут заполучить свою долю ресурса даже в условиях его недостатка; только в этом случае они смогут размножиться и сделать свой вклад в следующее поколение. Популяция, состоящая из таких особей, будет иметь более высокое значение параметра K - емкости среды, чем такая, которая состоит из особей, не «умеющих» бороться за недостающие ресурсы. На этой стадии на популяцию действует К-отбор, результатом которого является появление видов - К-стратегов . K-отбор направлен на увеличение затрат на развитие каждой особи и повышение ее конкурентоспособности.

Между этими стратегиями возможны переходы, но они носят промежуточный характер, а не объединяют типичные выражения двух форм.

«Нельзя быть одновременно салатом и кактусом » (Э. Пианка).

Важное значение для определения того, какой отбор (r- или K-) будет действовать на вид, имеет динамика изменения количества доступного ресурса и острота конкуренции за него. При резком неизбирательном сокращении численности популяций, вызванным обусловленным внешними причинами недостатком ресурса, преимущество получают r-стратеги, а при конкурентной борьбе за недостающий ресурс - K-стратеги.

Выбор между r-стратегией (повышением плодовитости) и K-стратегией (повышением конкурентоспособности) представляется достаточно простым, однако он затрагивает множество параметров организмов и их жизненных циклов. Сравним эти стратегии в их типичной форме (табл. 4.15.1).

Таблица 4.15.1. Особенности r- и K- отбора и стратегий

Характеристики

r-отбор и r-стратеги

K-отбор и K-стратеги

Изменчивый, непредсказуемый

Постоянный, предсказуемый

Смертность

Катастрофическая, независимая от плотности популяции

Вызванная конкуренцией, зависящая от плотности популяции

Кривая смертности

Обычно типа III

Обычно типа I или II

Размер популяций

Изменчивый, неравновесный

Постоянный, близкий к предельной емкости среды

Свободные ресурсы

Появление свободных ресурсов, за¬полнение «экологического вакуума»

Свободных ресурсов почти не бывает, они заняты конкурентами

Внутри- и межвидовая конкуренция

Размер тела

Относительно мелкий

Относительно крупный

Развитие

Медленное

Половозрелость

Скорость размножения

Размножение в течение жизни

Часто однократное

Неоднократное

Потомков в выводке

Мало, часто один

Количество ресурса на одного потомка

Продолжительность жизни

Короткая

Приспособления

Примитивные

Совершенные

Оптимизируется

Продуктивность

Эффективность

Может удивить, почему для r-стратегов характерно однократное размножение, а для K-стратегов - неоднократное. Эту особенность проще пояснить примером. Представьте себе мышей, заселяющих амбар с зерном (ресурса вдоволь, конкуренции никакой). Рассмотрим стратегии двух видов.

Вид № 1. Половозрелость в 3 месяца, количество потомков в выводке - 10, самка живет год и способна размножаться каждые три месяца.

Вид № 2. Половозрелость в 3 месяца, количество потомков в выводке - 15, выкормив их, самка гибнет от истощения.

В первом случае через три месяца к размножению приступит 10 потомков и их родители (всего 12 голов), а во втором - целых 15 потомков. Более высокую скорость захвата свободных ресурсов сможет обеспечить второй вид. Типичная r-стратегия заставляет особей выкладываться в размножении как можно раньше и как можно сильнее, и поэтому r-стратеги зачастую ограничены одним-единственным сезоном размножения.

С другой стороны, легко понять, почему типичные K-стратеги размножаются много раз. В конкурентной среде выживет только тот потомок, на развитие которого потрачено много ресурса. С другой стороны, чтобы выжить и размножаться, взрослая особь должна тратить значительное количество энергии на собственное поддержание и развитие. Поэтому в предельном случае K-стратеги приносят по одному потомку за один раз (как, например, слоны и киты, а также, в большинстве случаев, и люди). Но как бы ни были совершенны эти животные, пара родителей со временем погибнет. Чтобы популяция не пресеклась, пара родителей должна оставить пару выживших потомков, а родить, следовательно, должна более двух. Раз так, необходимым условием выживания K-стратегов оказывается многократность размножения составляющих их особей.

В 1935 г. советский ботаник Л.Г. Раменский выделил три группы растений, которые он назвал ценотипами (понятие о стратегиях еще не было сформировано): виоленты, патиенты и эксплеренты. В 1979 году их эти же группы (под другими названиями) открыл заново английский эколог Дж. Грайм (рис. 4.15.3). Эти стратегии таковы.

Рис. 4.15.3. «Треугольник Грайма» - классификация видовых стратегий

- Тип C (competitor , конкурент), виолент по Раменскому; затрачивает большую часть энергии на поддержание жизни взрослых организмов, доминирует в устойчивых сообществах. Среди растений к этому типу чаще всего относятся деревья, кустарники или мощные травы (например, дуб, тростник).

- Тип S (stress-tolerant , стресс-толерант); патиент по Раменскому; благодаря специальным адаптациям выносит неблагоприятные условия; использует ресурсы там, где с ним за них почти никто не конкурирует. Обычно это медленно растущие организмы (например, сфагнум, лишайники).

- Тип R (от лат. ruderis , рудерал), эксплерент по Раменскому; замещает виолентов в разрушенных сообществах или использует временно невостребованные другими видами ресурсы. Среди растений это однолетники или двухлетники, которые производят множество семян. Такие семена образуют банк семян в почве или способны эффективно распространяться на значительное расстояние (например, одуванчик, иван-чай). Это позволяет таким растениям дожидаться момента высвобождения ресурсов или вовремя захватывать свободные участки.

Многие виды способны совмещать разные типы стратегий. Сосна относится к категории CS, так как она хорошо растет на бедных песчаных почвах. Крапива - CR стратег, так как она доминирует на нарушенных местообитаниях.

Стратегия вида может быть пластичной. Черешчатый дуб - виолент в зоне широколиственных лесов и патиент в южной степи. Японская технология бонсай (выращивание карликовых деревьев в горшках) может быть представлена как способ превращения виолентов в патиенты.

Интересной задачей оказывается сравнение стратегий по Мак-Артуру–Уилсону и по Раменскому–Грайму. Понятно, что r-стратегам соответствуют организмы R-типа, эксплеренты. А вот K-стратегам соответствуют не только организмы C-типа, виоленты, но и те, кто относятся к S-типу, патиентам. Виоленты максимизируют свою конкурентоспособность (и емкость среды) в условиях острой конкуренции за благоприятные для потребления ресурсы, а патиенты - в условиях затрудненного потребления ресурсов. Иными словами, в задачах, которые решает дуб, конкурирующий за свет в условиях густого леса, и папоротник, выживающий при тусклом освещении в глубине пещеры, есть много общего: необходимость оптимизировать потребление ресурса, совершенствовать индивидуальную приспособленность особи.

  • 6.Антропогенное влияние на круговороты основных биогенных элементов в биосфере.
  • 7.Основные этапы изменения взаимоотношений человека с природой в ходе его исторического развития.
  • 8.Проблема глобального изменения климата на планете: возможные причины, последствия, пути решения.
  • 9.Опустынивание земель как глобальная экологическая проблема.
  • 10.Проблема обеспечения пресной водой как глобальная экологическая проблема.
  • 11.Проблема деградации почв: причины и последствия в глобальном масштабе.
  • 12.Экологическая оценка глобальной демографической ситуации.
  • 13.Глобальная экологическая проблема загрязнения Мирового океана. В чем причины и экологическая опасность этого процесса?
  • 14.Проблема сокращения биологического разнообразия: причины, экологические последствия, возможные пути решения проблемы.
  • 15.Экологические факторы: понятие и классификация. Основные механизмы действия экологических факторов на живые организмы.
  • 16.Адаптация: понятие адаптации, ее экологическая роль.
  • 17.Основные закономерности действия экологических факторов на живые организмы.
  • 18.Типы биотических взаимоотношений в природе, их экологическая роль.
  • 19.Понятия – стенобионтность и эврибионтность.
  • 20.Понятие популяции, ее биологический и экологический смысл.
  • 21.Численность, плотность, прирост популяции. Регуляция численности.
  • 22.Рождаемость и смертность в популяции: теоретическая и экологическая. Факторы их определяющие.
  • 23.Половая структура популяции и факторы ее определяющие.
  • 24.Возрастная структура популяции, основные типы популяций в зависимости от соотношения возрастов.
  • 25.Пространственная структура популяции и факторы ее определяющие.
  • 26.Этологическая (поведенческая) структура популяции и факторы ее определяющие.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.
  • 28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.
  • 29. Кривые роста популяций, экологическая значимость каждой из стадий роста.
  • 30.Понятие экосистемы, ее основные компоненты, типы экосистем.
  • 31. Пирамиды численности, биомассы, энергии в экосистемах, их экологический смысл.
  • 32.Поток энергии в экосистеме. Правило 10 % энергии.
  • 33.Поток вещества в экосистеме. Принципиальная разница потока вещества и энергии.
  • 34.Пищевые цепи. Эффект накопления токсикантов в пищевых цепях.
  • 35.Продуктивность экологических систем. Наиболее продуктивные экосистемы Земного шара, их экологические проблемы.
  • 36.Экологическая сукцессия, виды сукцессии.
  • 37.Продуценты, консументы и редуценты, их место в цепи питания и экологическая роль в экосистемах.
  • 38.Место и роль человека в экологической системе.
  • 39.Естественные и искусственные экосистемы, их экологическая устойчивость.
  • 40.Понятие загрязнения окружающей среды, естественное и антропогенное загрязнение.
  • 41.Основные виды антропогенного воздействия на окружающую среду: химическое, энергетическое, биологическое загрязнение среды.
  • 42.Экологическая ситуация и здоровье человека. Адаптации человека к действию экстремальных факторов среды.
  • 43.Нормирование качества окружающей среды: цели нормирования, виды нормативов.
  • 44. Принципы, лежащие в основе выработки пдк.
  • 45.Мониторинг среды обитания: понятие, цели и виды мониторинга.
  • 46. Экологические проблемы Дальнего Востока.
  • 27.Экологические стратегии популяций (r- и k- жизненные стратегии). Их экологический смысл.

    Приспособления особей в популяции в конечном счете направлены на повышение вероятности выживания и оставление потомства. Среди приспособлений выделяется комплекс, называемый экологической стратегией. Экологическая стратегия популяции - это ее общая характеристика роста и размножения. Сюда входят темпы роста ее особей, время достижения поло-возрелости, плодовитость, периодичность размножения и т. д.

    Существует две стратегии выживания - это р стратегия и к стратегия выживания.

    Экологические стратегии популяций отличаются большим разнообразием. Так, при изложении материала роста популяций и кривых роста были использованы символы г и К. Быстроразмножаю-щиеся виды имеют высокое значение г и называются г-видами. Это, как правило, пионерные (нередко их называют «оппортунистическими») виды нарушенных местообитаний. Данные местообитания называют r-отбирающими, так как они благоприятствуют росту численности r-видов.

    Виды с относительно низким значением r называют К-видами. Скорость их размножения чувствительна к плотности популяции и остается близкой к уровню равновесия, определяемому величиной К. Об этих двух типах видов говорят, что они используют соответственно r-стратегию и К-стратегию.

    Эти две стратегии, по существу, представляют два различных решения одной задачи - длительного выживания вида. Виды с г-стратегией быстрее заселяют нарушенные местообитания (обнаженная горная порода, лесные вырубки, выгоревшие участки и т. д.), чем виды с К-стратегией, т. к. они легче распространяются и быстрее размножаются. Виды с К-стратегией более конкурентоспособны, и обычно они вытесняют r-виды, которые тем временем перемещаются в другие нарушенные местообитания. Высокий репродуктивный потенциал г-видов свидетельствует, что, оставшись в каком-либо местообитаний, они быстро использовали бы доступные ресурсы и превысили поддерживающую емкость среды, а затем популяция погибла бы. Виды с r-стратегией занимают данное местообитание в течение жизни одного или, самое большее, нескольких поколений. В дальнейшем они переселяются на новое место. Отдельные популяции могут регулярно вымирать, но вид при этом перемещается и выживает. В целом эту стратегию можно охарактеризовать как стратегию «борьбы и бегства».

    Следует отметить, что одну и ту же среду обитания разные популяции могут использовать по-разному, поэтому в одном и том же местообитаний могут сосуществовать виды с r- и К-стратегией. Между этими крайними стратегиями существуют переходы. Ни один из видов не подвержен только r- или только К-отбору. В целом же r- и К-стратегии объясняют связь между разнокачественными характеристиками популяции и условиями среды.

    28.Выживаемость и кривые выживания организмов в популяции, экологический смысл кривых выживания.

    Продолжительность жизни – длительность существования особи. Она зависит от генотипических и фенотипических факторов. Различают физиологическую, максимальную и среднюю продолжительность жизни. Физиологическая продолжительность жизни (ФПЖ) – это продолжительность жизни, которая могла бы быть у особи данного вида, если бы в период всей жизни на нее не оказывали влияние лимитирующие факторы. Она зависит только от физиологических (генетических) возможностей организма и возможна только теоретически. Максимальная продолжительность жизни (МПЖ) – это продолжительность жизни, до которой может дожить лишь малая доля особей в реальных условиях среды. Она варьирует в широких пределах: от нескольких минут у бактерий до нескольких тысячелетий у древесных растений (секвойя). Обычно, чем крупнее растение или животное, тем больше их продолжительность жизни, хотя бывают и исключения (летучие мыши доживают до 30 лет, это дольше, например, жизни медведя). Средняя продолжительность жизни (СПЖ) – это среднее арифметическое продолжительности жизни всех особей популяции. Она значительно колеблется в зависимости от внешних условий, поэтому для сравнения продолжительности жизни разных видов чаще используют генетически детерминированную МПЖ.

    Выживаемость – абсолютное число особей (или процент от исходного числа особей), сохранившихся в популяции за определенный промежуток времени.

    Z = п / N 100%,

    где Z– выживаемость, %; п – число выживших; N – исходная численность популяции.

    Выживаемость зависит от ряда причин: возрастного и полового состава популяции, действия тех или иных факторов среды и др. Выживаемость можно выразить в виде таблиц и кривых выживания. Таблицы выживания (демографические таблицы) и кривые выживания отражают, как по мере старения снижается численность особей одного возраста в популяции. Кривые выживания строятся по данным таблиц выживания.

    Различают три основных типа кривых выживания. Кривая I типа свойственна организмам, смертность которых на протяжении всей жизни мала, но резко возрастает в ее конце (например, насекомые, погибающие после кладки яиц, люди в развитых странах, некоторые крупные млекопитающие). Кривая II типа характерна для видов, у которых смертность остается примерно постоянной в течение всей жизни (например, птицы, пресмыкающиеся). Кривая III типа отражает массовую гибель особей в начальный период жизни (например, многие рыбы, беспозвоночные, растения и другие организмы, не заботящиеся о потомстве и выживающие за счет огромного количества икринок, личинок, семян и т. п.). Встречаются кривые, сочетающие черты основных типов (например, у людей, живущих в отсталых странах, и некоторых крупных млекопитающих, кривая I вначале имеет резкое падение в связи с большой смертностью сразу после рождения).

    Комплекс свойств популяции, направленных на повышение вероятности выживания и оставление потомства, называется экологической стратегией выживания. Это общая характеристика роста и размножения. Сюда входят темпы роста особей, время достижения половозрелости, плодовитость, периодичность размножения и т.д.

    Так, А. Г. Раменский (1938) различал основные типы стратегий выживания среди растений: виоленты, патиенты и эксплеренты. Виоленты (силовики) – подавляют всех конкурентов, например, деревья, образующие коренные леса. Патиенты – виды, способные выжить в неблагоприятных условиях («тенелюбивые», «солелюбивые» и т. п.). Эксплеренты (наполняющие) – виды, способные быстро появляться там, где нарушены коренные сообщества, – на вырубках и гарях, на отмелях и т.д.

    Более подробные классификации выделяют и другие, промежуточные типы. В частности, можно различать еще группу пионерных видов, которые быстро занимают вновь возникающие территории, на которых еще не было никакой растительности. Пионерные виды частично обладают свойствами эксплерентов – низкой конкурентной способностью, но, как и патиенты, обладают высокой выносливостью к физическим условиям среды.



    Что еще почитать