Схемы микрофонных усилителей с регулированием. Высококачественный усилитель без ООС: The End Millennium. Использование защиты от постоянного напряжения на выходе

The End Millenium это усилитель мощности высокого класса в диапазоне мощностей от 99 до 300 ватт (на нагрузке 8 Ом). Применение высококачественных усилителей класса А/В достигается рядом схемотехнических решений. В первую очередь обращает на себя внимание отсутствие каких-либо цепей обратной связи, т.к. если она и корректирует ошибку сигнала, поступившего на вход, после неё это уже необратимо. Простое схемотехническое решение совместно с высоким качеством компонентов обеспечивает короткий путь прохождения сигнала с входа на выход. Использование высокотехнологичных компонентов можно отметить применением полипропиленовых конденсаторов, многоэмиттерных биполярных транзисторов и миниатюрных резисторов на стеклянной подложке.

Высшие частоты диапазона с лёгкостью воспроизводятся ультрабыстрым усилителем (линейность до > 500 000Гц), а использование четырёхступенчатого туннеля на выходе даёт фирменную быструю передачу низких частот. Общая сцена получается хорошо детализированной и прозрачной.

Принципиальная схема построения усилителя The End Millennium:

На принципиальной схеме видно насколько просто реализована идея усилителя. Отсутствие цепей обратной связи (100% без ОС) , отсутствие конденсаторов и других вносящих в сигнал искажения компонентов в цепях прохождения сигнала. Частотная характеристика линейна от постоянного тока до максимально высокочастотного сигнала - 500 000 Гц. Это, возможно, самый быстрый усилитель, который Вы только слышали! Любая часть музыкального сопровождения от глубочайшего баса до мельчайших переходов передаётся усилителем с лёгкостью.

Плата усилителя также содержит дополнительные функции, такие как защита от постоянного напряжения и защита от короткого замыкания на выходе. Защита отслеживает появление любой перегрузки на выходе и отключает усилитель на несколько секунд. Никаких ограничений по току или сигналу не используется. При обнаружении ошибки устройство автоматически выключается и ожидает нормализации ситуации. Затем оно включится и продолжит воспроизведение. Эта система настолько эффективна, что допускает короткое замыкание на выходе на протяжении нескольких дней!

Благодаря новой топологии усилителя, которая, по сути, в некоторых аспектах рушит общепринятые принципы, стало возможным построить усилитель с хорошо контролируемой звуковой картиной, подвижной сценой с высокой степенью детализации по очень доступной цене. Низкая стоимость достигается в основном тем, что Вы производите сборку сами.

Четырёхступенчатый туннельный выходной каскад позволяет точно передать усиленный от источника сигнал на мембрану звуковой головки. Не только начать движение мембраны, но и остановить его за микросекунду.

100% без ОС = 100% музыкальность

Мягкий, почти камерный звук, в основном, заслуга схемотехники усилителя, не содержащего обычной в таких случаях цепи обратной связи. Такой принцип построения обычно называют 100% без обратной связи и также используют в конструкциях других брендов усилителей высокого класса (как правило очень дорогостоящих).

В обычных усилителях (с цепью обратной связи) типичный подход - применение схем с большими коэффициентами усиления (Кус до 100 000) и большой же степенью искажения сигнала чтобы достичь необходимого усиления по напряжению. Путём сравнения формы выходного сигнала по отношению к входному, возможно корректировать ошибку в передаче и таким образом уменьшить измеренное гармоническое искажение. Однако, такая ошибка не может быть исправлена до того как обнаружена и уже воспроизведена звуковой головкой, которая тоже подключена к искажённому сигналу. Это можно сравнить с попыткой погасить волны в бассейне путём создания таких же волн в противофазе. Не практично, к тому же волны имеют слишком малую частоту, сравнимую с временем, необходимым для достижения корректирующих волн другой стороны бассейна.

Другая проблема возникает, когда Вы пытаетесь линеализировать сигнал, который был усилен нелинейным (искажающим сигнал) элементом. Возникает неизбежная модуляция, ранее называемая интермодуляционными искажениями сигнала. Это досадное недоразумение можно охарактеризовать, как-будто поют одновременно два вокалиста, а Вы слышите третий не гармоничный, раздражающий тон. В лучшем случае от этого можно избавиться за счёт потери частотного диапазона, но это всё же потеря. Другой способ услышать интермодуляционные искажения в обычном усилителе, при увеличении или уменьшении громкости сигнала.

Миллениум же воспроизводит сигнал независимо от уровня громкости и динамического диапазона. Он использует совершенно другой принцип исправления искажений. В схемах без ОС невозможно избавиться от искажений, если они уже возникли, поэтому предпринимаются все меры для предотвращения их возникновения. Ультра линейные полупроводники, высокостабильные резисторы, отсутствие конденсаторов и закольцованные дорожки печатной платы для всех цепей аудио сигнала. Все компоненты, используемые в конструкции, высочайшего класса признанных лидеров рынка производителей, которые можно также обнаружить только в высококачественных усилителях запредельного ценового диапазона.

В результате - не перегруженная сложностью схема и чистый звук без модуляций, но с хорошей детализацией и музыкальной динамикой.

Z-транзистор английского производства - это биполярный вертикальный транзистор, созданный по технологии, обычно применяемой к производству MOSFET-транзисторов. Однако, он имеет значительно меньшее сопротивление перехода (Re или Rs) чем FET или MOSFET и благодаря этому вносит меньшие искажения в сигнал.

Незначительная ёмкость перехода (6 пФ) и очень маленький коэффициент шума - также является преимуществом.

Высоковольтные цепи Миллениума

Изначально Миллениум был задуман как усилитель мощностью 120 Ватт на нагрузке 8 Ом или 240 Ватт на нагрузке 4 Ома при трансформаторном питании 33-0-33 Вольта. Но добавлением дополнительных модулей выходного каскада Вы можете использовать его при более высоких мощностях или более низких сопротивлениях нагрузки (вплоть до 1 Ома). При питании усилителя 40-0-40: один дополнительный модуль обеспечивает 180 Ватт на 8 Ом нагрузки, два модуля 350 Ватт на 4 Ома. При питании 50-0-50 Вольт: три модуля - 250 Ватт на 8 Ом, 500 Ватт на 4 Ома.

Детали дополнительного модуля размещаются на отдельной плате, которая также содержит эмиттерные резисторы и соответствующие блокировочные конденсаторы для обеспечения стабильности каскада.

Увеличение выходной мощности также возможно за счёт уменьшения сопротивления нагрузки при питании 33-0-33 Вольт, более 800 Ватт при нагрузке 1 Ом.

Во избежание потери качества, не рекомендуется применять дополнительные модули на выходе устройств, которые будут предназначены для воспроизведения ВЧ и СЧ диапазона. Параллельный модуль будет неизбежно иметь отличия в характеристиках транзисторов, что приведёт к появлению высших гармоник в сигнале, проявляющихся как агрессивный звук на высоких громкостях сигнала. Решением может быть использование раздельных выходов для НЧ и СЧ/ВЧ каналов. Несмотря на то, что это потребует применения АС с раздельными каналами, большинство современных громкоговорителей имеют эту опцию. В этом случае один выходной канал будет нагружен на СЧ/ВЧ звено, а ряд дополнительных модулей - на более мощный басовый выход, где высшие гармоники будут срезаны входным фильтром АС.

Отдельные выходные разъёмы это стандартное решение для наших наборов 180 Ватт и более.(За исключением версий с балансным входом, где параллельные выходные каскады не используются в любом случае)

Плата дополнительного выходного модуля с эмиттерными резисторами и блокирующими конденсаторами - до трёх плат одновременно. Соединяются с основной платой проводами питания и входных/выходных сигналов.

«The End» - самая удачная аудио конструкция в Скандинавии!

Любой скандинавский радиолюбитель знает предшествующую конструкцию версии 3.1. Более 3600 этих наборов для самостоятельной сборки было продано за период с 1995 по 1999 год, пока не наступил Миллениум. Почти все они в настоящее время работают в сотнях различных аудиосистемах, подтверждая необычайно высокое качество воспроизведения.

В версии "Миллениум" он улучшен во всех аспектах:

Четырёхкаскадная выходная тоннельная накачка басов

Резисторы на стеклянной подложке для лучшей линейности и однородности

Усиление сигнала специально разработанными Z-транзисторами с очень низким Re и выходной ёмкостью (Сс=6 пФ).

Низкое искажение сигнала благодаря ультра линейной топологии ядра.

Детализация высоких частот за счёт применения блокировочных конденсаторов 4,7 мФ с полипропиленовым сепаратором на шинах питания.

Все дорожки печатной платы, относящиеся к аудиосигналу, имеют скруглённые переходы. Это препятствует возникновению стоячих волн и способствует более точному и правильному воспроизведению.

Кроме того, несколько дополнительных функций было добавлено на компактную, изготовленную из высококачественного Fr4 стеклотекстолита плату. Отключаемая функция защиты среагирует на появление постоянного напряжения на выходе 5 мВ, а эффективная защита от короткого замыкания сохранит Ваш усилитель даже при экстремальных перегрузках.

Система смещения при условии соблюдения температурных режимов для напряжений питания +/- 100 Вольт обеспечивает длительную работу при любом применении. Миллениум также стабилен при заниженном питании до +/- 10 Вольт.

Соображения по питанию

Питание усилителя очень критично для качества воспроизведения!

Если Вы задумали построить совершенный источник питания для усилителя, наиболее привлекательным будет использовать батарею (Шведских) конденсаторов RIFA от 100 000 мкФ каждый. Добавьте к ним блокировочные индуктивности, чтобы уменьшить зарядные токи, и Вы получите лучший источник питания для аудио системы.

Однако цена и размер установки при таком подходе делают её менее привлекательной. Это слишком дорого и займёт примерно столько же места, сколько занимает небольшой холодильник. Поэтому мы разработали "Супер-Пупер" Блок Питания более рационального построения, чем громоздкое, но простое решение от RIFA.

120 000 мкФ американских низкоимпедансных конденсаторов от ChemiCon распределены для отдельного питания мощных и чувствительных сигнальных каскадов, таким образом, любые провалы питания, вызванные перегрузкой мощных каскадов, не отразятся на входных и драйверных цепях.

Кроме того, набор поликарбонатных конденсаторов способствует уменьшению высокочастотных шумов от выпрямителя.

Эти два 4,7 мФ конденсатора отмечены на плате, но теперь устанавливаются на плате усилителя, а не БП.

Выход AUX, используется для питания усилителя напряжения и драйверов.

Запас емкостей в 120 000 мкФ обеспечивает полную стабильность и достаточную мощность для питания даже при критических нагрузках. Марка ChemiCon ранее была известна как Sprague.

Полная схема усилителя The End Millenium

Масштаб не 1:1

Размер платы: 107х54мм

Фото платы усилителя

"Hatsink placed here" - Место установки радиатора

"BIAS Testpoint" - Контрольная точка установки смещения

Инструкция по сборке

Сборка Миллениума не отличается сложностью и занимает не много времени.

Начните с того, что высыпите все детали из пакета на стол.

Нагрейте паяльник.

Начните с установки низкопрофильных компонентов, таких как резисторы и триммеры. Проверяйте нумерацию элементов на схеме с написанной на самой плате и сравнивайте с цветовым кодом, напечатанным в таблице на предыдущей странице. Если Вы уверены, что всё установлено правильно, приступайте к пайке. После этого установите конденсаторы, сначала маленькие, затем по больше. Запаяйте.

Два электролита на 470 мФ устанавливаются с обратной стороны, не перепутайте полярность, полоса, обозначающая минус, на обоих обращена к ближнему краю платы.

Установите их на плату, перед тем как обрезать выводы и припаяйте.

Теперь установите Т9 и драйверы, (внимательнее, они устанавливаются каждый со своей стороны) так высоко, как позволяет длина выводов. Они должны стоять под правильным углом по отношению к плате.

После этого прикрутите драйверы на радиатор, используя короткие 3мм винты и маленькие прокладки. Не допускается наличие на них смазки и они должны плотно прилегать к прокладке без воздушного зазора. На картинке видно, что 4м7 конденсаторы также уже установлены, но будет немного проще, если с этим подождать.

Положите термопрокладку на место крепления выходного транзистора и установите картонные шайбы под винты его крепления. Не допускается применение смазки!

Закрепите каждый Sanken на ПРАВИЛЬНОЕ место на плате, металлической подложкой к прокладке. Следите, чтобы под прокладкой не было посторонних включений (стружка, грязь). Используйте прокладку и винты большего размера. Закрутите винты насколько возможно крепче, но так чтобы их не сорвать.

Затем припаяйте их к плате и подрежьте выводы.

Теперь установите конденсаторы 4,7 мФ с обратной стороны платы. Подпаяйте входные и выходные проводники как показано на рисунках.

ВНИМАНИЕ!

Если Вы используете "Супер-Пупер" БП с раздельными трансформаторами для входных каскадов и драйвера (рекомендуется), не забудьте разрезать проводники на печатной плате между + и Aux+, а также - и Aux-

Подключение входных разъемов (небалансный и балансный соответственно)

Соединение дополнительных модулей с основной платой

Настройка

Подключите мультиметр (mV) между двумя контрольными точками на плате, см. стр.10.

Подайте напряжение питания на усилитель, НЕ подключайте пока нагрузку.

Выставьте подстроечным резистором регулировки смещения (501) напряжение 10 mV если Вы будете использовать усилитель с нагрузкой 8 Ом или 20mV при 4 Омах.

Подключите мультиметр к выходным клеммам усилителя. Выставьте подстроечным резистором регулировки постоянной составляющей (103) возможно близко к нулю. Отклонения +/- 50 mV находятся в пределах допуска при использовании любых АС.

Проверьте ещё раз напряжение смещения, возможно, его придётся подкорректировать. Уход параметра +/- 20% от значения находится в пределах допуска.

Повторите процедуры для другого канала. Если напряжения отличаются от указанных, пожалуйста, свяжитесь с LC Audio, прежде чем продолжить.

Подключите Ваши громкоговорители к усилителю и начните воспроизведение! Надо понимать, что для входа в рабочий режим требуется 1-2 недели обкатки усилителя.

Использование защиты от постоянного напряжения на выходе

В Миллениуме имеется встроенная защита от постоянного напряжения на выходе, которую вы можете использовать на своё усмотрение. Вы можете отключить её или вообще исключить из схемы, если желаете. Некоторые рекомендации по этому поводу:

Некоторые эксперты склоняются к тому, что схема защиты влияет на передачу низких частот. И в некоторых случаях они правы. Бас становится более мягким и размытым. Это происходит, потому что защита в некоторых усилителях работает на частотах среза входного фильтра гораздо более высоких, чем это необходимо, скажем 10-20Гц.

Защита Миллениума, благодаря нашим усилиям, не оказывает влияния на басовую секцию, т.к. частота среза фильтра ниже 0,5 Гц и установлен фильтр второго порядка вместо обычного для таких случаев первого. Это означает что характеристика среза фильтра более крутая, и влияние на аудио сигнал практически отсутствует (на 20 Гц влияние фильтра близко к нулю)

Конденсаторы фильтров С12 и С14 изготовлены в пластиковых корпусах и с не магнитными выводами, так что если весь частотный диапазон сигнала пройдёт через них, они выдержат любой, самый притязательный аудио тест. Однако, через них не проходит сигнал выше 0,5 Гц.

Необходимо использовать систему защиты если вы используете электростатические акустические системы, поскольку их сопротивление постоянному току близко к нулю.

Вы можете НЕ использовать систему защиты, если Вы используете обычные динамические системы, поскольку некоторые из них допускают постоянное напряжение на входе до 200mV без ущерба для себя.

*Название темы на форуме должно соответствовать виду: Заголовок статьи [обсуждение статьи]

Не секрет, что знания (в широком смысле) есть субъективный образ реальности. В более узком смысле знания трактуются как обладание некоей объективной (проверенной) информацией, позволяющей решить конкретную задачу.
Насколько объективен ваш образ реальности?
Попробуйте проанализировать, какая часть ваших знаний получена истинным путём, т.е. либо из вашего непосредственного опыта, либо как результат вашего мышления, опирающегося на основополагающие истины и научно обоснованные понятия.
Это и будет то непреложное, на что вы можете полагаться при выборе аппаратуры. Остальные примерно 80-99% всех чужих пара-квази-анти-лже-псевдо-как-бы знаний, полученных из сфабрикованных статей, обильно снабжённых потрясающей красоты картинками, шестизначными ценниками и крайне субъективными словоизвержениями экспертов – одиночек я предлагаю вам незамедлительно забыть.
Но навсегда запомнить, что Научные объяснения направлены на сознание. А реклама всяких дорогих аудиофильских штучек действует на подсознание. Гораздо более эффективно действует, человеку трудно идти против своей веры. В общем, берегите, люди, голову!
В сущности, почти все, что мы считаем своим знанием почерпнуто из того, что под руку или прямо в уши из эфира попало. Мы сызмала и самым примитивным образом становимся жертвами маркетинга, паствой профессиональных и хорошо оплачиваемых "гуру". Нам много рассказали о тонкостях звучания того или иного кабеля, о всевозможных влияниях помех из сети, об ошибках при чтении лазерных дисков, джиттере……..о великом множестве процессов, которые должны влиять на звук.

Мы теперь точно знаем, чтО именно должно влиять! Но каковы эти влияния в численном выражении , и самое главное, можем ли мы это услышать?! Об этом нам как-то не сообщили.
Напомню, что влияния, схожие по результату, складываются как корень из суммы квадратов. 5% и 1% дадут не 6%, а всего 5.099%. Говоря иначе, при анализе каких бы то ни было влияний нужно знать хотя бы порядок их малости. Иначе мы просто обречены быть Дон Кихотами! Страшилок и ветряных мельниц Адепты Тайного Знания понапридумывали очень много…

Я не против эзотерики и даже некоторых суеверий, поскольку (как и все мы в этом мире) не обладаю всеобъемлющей полнотой картины! Напротив, я стараюсь во всём найти рациональное зерно; однако некоторые вещи я знаю очень хорошо.

Итак, Страшилки, простите, наши типичные заблуждения

Заблуждение Заблуждений , №000
О "мёртвости" и "скучности" неокрашенного звучания
Существует расхожее мнение, что точная аппаратура быстро надоедает своим однообразным и идеализированным звучанием.
Это безусловно было бы так, если бы со студий звукозаписи выходил всегда одинаково "стерильный", и "стандартный" звук. Конечно, никакого стандартного звука не существует ! Все без исключения музыканты стремятся придать звучанию "свой", желательно легко узнаваемый почерк и окраску, многие из них используют только любимые, затёртые до дыр примочки, положение ручек на которых хранят в строжайшем секрете и не показывают даже жёнам! Звукорежиссёры от них не отстают, ибо никому не хочется быть незаметным роботом.
Но увы, всегда находятся желающие утверждать, что все потуги вышеперечисленных людей пустая трата времени без их чудесного "тёплого" звука! Неясно только, с чего это они решили, что звук изначально "холодный".
Право же, не стоит обменивать великое разнообразие и индивидуальность возможных звучаний на единственный, пусть даже приятный для слуха звук!

Заблуждение №00
О "огрехах" звукорежиссуры
Часто пишут, что высокое разрешение аппаратуры позволяет услышать много того, чего слышать не стоит , например огрехи звукорежиссуры или скрип стульев в концертном зале; и что вместо музыки получается урок анатомии.
Как говорится, волков бояться - в лес не ходить... По своему опыту могу сказать, что слышать недостатки записи мне не очень приятно, однако не слышать её достоинств неприятно вдвойне!!!
Достоинства же случаются самые разные, мне например в некоторых моментах очень приятны сильнейшие искажения и другие фишечки от того же Alana Parsonsa, хотя кто-то назовёт их отвратительными. А его ремастированные 24-х битные записи - это вообще что-то, эти фишечки образуют замечательнейшее звуковое полотно и начинают жить своей жизнью. И особенно важно, чтобы фишки дошли до вашего слуха "как есть", потому что у окрашенных ещё и в вашей аппаратуре у них есть шанс стать просто мусором.
То, что на аппаратуре не очень качественной слышится как мусор, на самом деле часто оказывается очень даже живыми, стильными и необычными звуковыми событиями. И бесполезно спорить, действительно ли это огрехи или специально так записано, для красоты.
Ну а если нам всё это надоест, всегда можно послушать МР3 битрэйт 64 или net-радио, там-то уж точно никаких огрех звукорежиссёра не услышим, всё однозначно, ноль от единицы отличим!

Заблуждение №3.1
Повторюсь, не бывает усилителей вообще без обратной связи; например, в схеме эмиттерного (истокового, катодного) повторителя, по которой собрано 99,5% всех выходных каскадов присутствует 100%-я местная ООС по току. Проще говоря, местная ОС является неотъемлемым свойством любого усилительного каскада, и говорить о её вредности просто глупо.

Самое время разобраться, чем же общая ОС отличается от местной.
1. И в том, и в другом случае часть напряжения (тока) с выхода усилителя подаётся в противофазе на его вход.

2. И в том, и в другом случае используются схожие схемотехнические решения, обычно разница только в номиналах резисторов, которые и определяют глубину местных ОС.

3. Местная ОС лианеризует каскад усиления, но лишь до определённого предела, около 0.05 – 0.2% общих гармонических искажений. Ограничения накладывают физические свойства активных элементов. Общая ООС свободна от этого принципиального ограничения .

4. Сдвиг фазы в схеме без ОООС совершенно неопасен, поскольку не может превышать 90 градусов для каждого каскада, и условие устойчивости соблюдается автоматически. В схеме с ОООС, состоящей из нескольких каскадов этот фазовый сдвиг "накапливается", и это является единственным ограничением на глубину ОООС. .

И, если верить эзотерикам, звук "убивает" только общая ОС, но никак не местная, что позволяет локализовать проблему именно в сдвиге фазы.
Интересно, что фазовый сдвиг в усилителе понятие в некотором смысле виртуальное и для звуковых частот никак не связано с задержкой распространения сигнала во времени, от которой на самом деле очень зависит качество работы ОООС. Задержка, эквивалентная сдвигу фазы 90 градусов на частоте 20кГц – примерно 12 мксек , и никакой, даже самый медленный усилитель такой задержкой не обладает. Для сравнения, в ES6.2 задержка от входа до выхода составляет 60 нсек , т.е. в 200 раз меньше. Соответственно, общая ООС в нём работает совершенно так же, как и любая местная.

Итак, общая ООС ничем принципиальным от местной не отличается, за исключением количества охватываемых каскадов, и фазового сдвига, который "накапливается". Различие и вовсе исчезает , если построить усилитель так, чтобы сдвиг фазы от входа до выхода в звуковой полосе частот был невелик.

Но вернёмся к качеству усилителей без ООС.
С входным каскадом
всё хорошо, вносимые им нелинейности малы, поскольку мала амплитуда входного и выходного сигнала.
С каскадом усиления напряжения всё уже совсем не так здорово, его усиление обычно достаточно велико, а амплитуда на выходе сравнима с напряжением питания, и в полной мере сказываются нелинейные ёмкости и нелинейная зависимость усиления и выходного сопротивления от напряжения. Искажения, вносимые этим каскадом, составляют 0.05 – 0.5%, и вопреки широкораспространённому мнению, не очень сильно зависят от архитектуры усилителя.
Полностью (якобы) симметричные усилители показывают почти такие же результаты, как и любые другие. Происходит это по той причине, что основной вклад вносят всего два транзистора (на схеме ниже Q4 и Q7), но в хороших усилителях их всегда два, независимо от того, «симметричный» усилитель или нет. К тому же полностью комплементарных транзисторов попросту не существует, ёмкости и кривизна транзисторов разной структуры в силу технологических причин существенно отличаются.
На рисунке ниже приведены результаты моделирования "симметричного" и нашумевшего когда-то усилителя без ООС «The end Millennium »
, схема взята отсюда , простая и красивая.

Из результатов моделирования нетрудно видеть, что искажения усилителя the End Millenium без нагрузки (и даже без выходного каскада!!!) примерно 0.07% THD и 0.1% IMD. Выходкой каскад, даже тщательно отстроенный, добавит (как будет показано ниже) ещё примерно столько же, но фокус в том, что в результате перемножения спектров искажений итоговый спектр будет содержать массу гармоник и интермодуляций высогоко порядка. Видимо, этот самый мусор и объявлен "неповторимым" качеством.
О каких 0.0017% THD заявляли авторы, неясно. Достаточно смелое утверждение даже для хорошего усилителя с ОООС. Ошибочка почти в 50 раз, однако!Но, спасибо авторам, теперь нам известно, какие циферки они считают "референсными".

Выходной каскад. Самый лучший и тщательно отстроенный (в том числе в классе "А") обладает выходным сопротивлением 0.05 - 0.2 Ом и искажениями на большом сигнале порядка 0.05 - 0.2%, и до 0.4% на средне-малом сигнале
(). Результирующие искажения (в особенности на большом и сложном сигнале, где они будут хаотично меняться в зависимости от частоты, поскольку импеданс нагрузки непостоянен и на резистор не очень похож) могут быть до 0.5%. Такую «точность» можно проверять любым китайским тестером!

Итак, на что вы можете расчитывать, становясь владельцем усилителя с гордой надписью "усилитель без ООС"

Проблема, параметры Признаки Как решается Цена вопроса

Недостаточное подавление пульсаций источника питания,

0.1-1% гармоник сети на большом уровне НЧ

Небольшой фон, резко усиливающийся в присутствии сигнала, на слух проявляется как плотный, немного бубнящий и совершенно неразобранный низ
На некоторых композициях и, особенно , на АС невысокого качества может, тем не немее, произвести очень хорошее впечатление.

Огромное количество супер- конденсаторов, встроенный стабилизатор или
выносной источник питания

от 2000р
до 10000$

Значительные гармонические искажения

0.05-0.1% на большом сигнале; для выходных каскадов в классе
"АВ" 0.1-0.4%
на небольшой громкости

Нижние частоты гадят на средние, средние в свою очередь на высокие.
На слух проявляется как общая мутность, замазанная реверберационная картина и неразборчивость на насыщенных музыкальных фрагментах. Нет
деликатности и воздуха.

Непомерное усложнение выходного каскада и увеличение тока покоя, вплоть до класса "А". Мега-трансформаторы, радиаторы, и транзисторы.
Из пассивных средств - стараются маскировать искажения, дополнительно окрашивая звук.
Применяются не технические (маркетинговые) способы, "настройки" слушателя,
но по сути - никак.

от 2000р
до
5000$

Значительные интермодуляционные
искажения

0.05-0.2% на большом сигнале; для выходных каскадов в классе
"АВ" на средней
громкости 0.1-0.4%

В присутствии высоких частот средние теряют прозрачность, а высокие как-бы "отделяются". Высокие частоты с металлическим оттенком, "стоят стеной", не детальны и не воздушны. Мелкие детали и нюансы отсутствуют.

Большое выходное сопротивление.

сильная зависимость звучания от типа АС, поскольку искажения зависят от частоты в той же степени, что и импеданс.

пожизненный
поиск
"хорошей
связки "

Заблуждение №4
О необходимости длительного «прогрева» аппаратуры

Я не вижу практического смысла в длительном (более получаса) прогреве устройств, не содержащих движущихся частей или частей с очень большой теплоёмкостью. Ну не верю я в возможность сверхтонких состояний вещества в обыкновенном транзисторе или конденсаторе!
Другое дело слуховой аппарат человека! Его можно и нужно прогревать годами, в особенности, когда он начинает слышать новые синтетические звуки. На то, чтобы убедить себя что что-либо есть хорошо, требуется время.
К тому же, если изделие неделю «прогревается», то есть имеет место быстрый дрейф параметров, то за месяц оно может и «состарится», а за два месяца – умереть.

Заблуждение №5
О «неважности» гармонических искажений.

Гармонические искажения всегда считались одной из основных характеристик звукоусилительного тракта. Но, как и всё в этом мире, их правильное понимание имеет свои тонкости. Одна тонкость – при численно равных Кг усилители могут звучать совершенно по – разному из – за разного спектрального состава гармоник. Вторая тонкость – неодинаковость Кг на разных частотах. Ниже показано, что неверно рассуждать об искажениях, рассматривая только гармонические, безотносительно интермодуляционных.
Дело в том, что те же нелинейности в усилительном тракте, которые порождают гармоники, с абсолютной неизбежностью порождают и интермодуляции. И это не предмет для обсуждения, это математически доказанный факт. На самом деле гармонические искажения это всего лишь частный случай интермодуляционных, когда одна из тестовых частот отсутствует . Интермодуляции высокочастотных составляющих попадают в том числе на средние частоты, в зону наибольшей чувствительности слуха, и не маскируются ВЧ составляющими. Порог слышимости на средних частотах составляет около 0 дБ, и важно, чтобы интермодуляции были ниже этого порога. Интермодуляции первого порядка в лучшем случае равны гармоникам по амплитуде, отсюда однозначное требование: уровень гармонических искажений на высоких частотах всего тракта (в особенности этого трудно добиться в УМ) не должен превышать порога слышимости на средних частотах. Таким образом, для звукового давления, например, 96 дБ уровень гармонических искажений на ВЧ не должен быть более 0.0016% . Усилитель с настолько малыми искажениями на ВЧ демонстрирует необыкновенно тонкое, воздушно - невесомое звучание.
Это, как говорится, довод За малость искажений.
Довод Против в том, что якобы искажения более тихие, чем шумовой фон помещения, не слышны.
Предположение, что искажения менее уровня шума не будут замечены, являются, на мой взгляд, непростительным и некорректным упрощением. Для примера, мы можем прекрасно слышать тихое пение птиц за окном, но если мы возьмем микрофон, запишем, взвесим с помощью эквалайзера по кривой чувствительности слуха и на полученной, адекватной с точки зрения слуха шумовой картине помещения попытаемся найти пики сигнала, отвечающие пению, то ничего не увидим! Так произошло потому, что измеренный уровень шумовой дорожки несет в себе информацию об интегральном значении сигнала, грубо говоря это корень из суммы квадратов всех частот, каждая из которых значительно меньше по амплитуде. На спектрограмме мы бы увидели его с лёгкостью, потому что пение птиц это узкополосный сигнал, превышающий шум на наблюдаемом частотном интервале.
Существуют ещё как минимум две особенности человеческого слуха , которые не стоит игнорировать и «упрощать», и которые помогли нам услышать пение птиц на фоне урчания холодильника и храпа соседа по квартире. Это избирательность по направлению и способность «накапливать» информацию о повторяющемся сигнале, достаточно продолжительном во времени. Согласно мнению некоторых исследователей ( Стереофония . - Ковалгин Ю.А.), первая из них составляет 12-15дБ (!), информации по второй, к сожалению, найти не удалось. Переоценивать её не хочется, так же как игнорировать, поэтому возьмём какую-нибудь среднюю, например 6дБ.
В сумме получается примерно 20 дБ.
В итоге, если мы слушаем музыку в тихом помещении (20-30 дБА) мы приходим приблизительно к тем же цифрам: интермодуляционные и гармонические искажения усилительного тракта во всей полосе частот должны быть менее порога слышимости, около 0.003% и 0.002% соответственно. Естественно, предпочтительно иметь запас, просто для гарантии.

Микрофонные усилители своими руками.

Усилитель для компьютерного микрофона с фантомным питанием.

Завел я себе на компьютере такую программку как Skype. Но вот одна незадача: микрофон нужно держать около самого рта, что бы собеседник мог тебя хорошо слышать. Я решил, что не хватает чувствительности микрофона. И решил сделать усилитель усилитель.

Поиск в интернете дал десятки схем усилителей. Но всем им требовался отдельный источник питания. Мне же хотелось сделать усилитель без дополнительного источника, с питанием от самой звуковой карты. Что бы не нужно было менять батарейки или тянуть дополнительные провода.
Прежде чем бороться с врагом, нужно знать его в лицо. Поэтому я накопал информации в интернете об устройстве микрофона: https://oldoctober.com/ru/microphone. Статья рассказывает, как сделать компьютерный микрофон своими руками. Заодно я позаимствовал и саму идею: незачем ломать готовое устройство для своих экспериментов, если можно сделать самому. Краткий пересказ статьи сводится к тому, что компьютерный микрофон - это электретный капсюль. Электретный капсюль - это, с электрической точки зрения, полевой транзистор с открытым истоком. Этот транзистор запитывается от звуковой карты через резистор, который одновременно является и преобразователем сигнального тока в напряжение. Два уточнения к статье. Во-первых, нет в капсюле резистора в стоковой цепи, сам видел, когда разобрал. Во-вторых, соединение резистора и конденсатора выполняется в кабеле, а не в звуковой карте. То есть один вывод служит для питания микрофона, а второй - для приема сигнала. То есть получается примерно вот такая схема

Здесь левая часть рисунка - это электретный капсюль (микрофон), правая - звуковая карта компьютера.
Во многих источниках пишут, что питание микрофона осуществляется от напряжения 5В. Это неверно. В моей звуковой карте это напряжение было 2,65В. При замыкании вывода питания микрофона на землю ток составил около 1,5мА. То есть резистор имеет сопротивление около 1,7кОм. Вот от такого источника и требовалось питать усилитель.
В результате экспериментов с microcap родилась вот такая схема.

Через резисторы R1, R2 осуществляется питание капсюля. Для предотвращения отрицательной обратной связи на частотах сигнала используется конденсатор C1. На капсюль подается напряжение питания равное падению напряжения на p-n переходе. Сигнал с капсюля выделяется на резисторе R1 и подается на базу транзистора VT1 для усиления. Транзистор включен по схеме с общим эмиттером с нагрузкой на резисторы R2 и резистор в звуковой карте. Отрицательная обратная связь по постоянному току через R1, R2 обеспечивает относительное постоянство тока через транзистор.

Вся конструкция была собрана навесным монтажом прямо на микрофонном капсюле. По сравнению с микрофоном без усилителя сигнал увеличился примерно раз в 10 (22дБ).

Вся конструкция была обмотана сначала бумагой для изоляции, а потом фольгой для экранирования. Фольга имеет контакт с корпусом капсюля.

Микрофонный усилитель с однопроводным питанием.

Микрофон, с размещенным в корпусе предусилителем, требуют для подключения к устройству проводов питания (помимо экранированного сигнального провода). С конструктивной точки зрения это не очень удобно. Число соединительных проводов можно уменьшить, подавая напряжение питания через тот же провод, по которому передается сигнал, т. е. центральный проводник кабеля. Именно такой способ подачи питания применен в предлагаемом вниманию читателей усилителе. Его принципиальная схема приведена на рисунке.

Усилитель рассчитан на работу от электретного микрофона любого типа (например, МКЭ-3). Питание на микрофон подается через резистор R1. Звуковой сигнал с микрофона подводится к базе транзистора VT1 через разделительный конденсатор С1. Необходимое смещение на базе этого транзистора (около 0, 5 В) задается делителем напряжения R2R3. Усиленное напряжение звуковой частоты выделяется на нагрузочном резистор R5 и поступает далее на базу транзистора VT2, входящего в составной эмиттерный повторитель, собранный на транзисторах VT2 и VT3. Эмиттер последнего соединен с верхним контактом разъема ХР1 (выходом усилителя), к которому подключен центральный проводник соединительного экранированного кабеля, оплетка которого соединена с общим проводом. Заметим, что наличие на выходе предусилителя эмиттерного повторителя заметно снижает уровень наводок на микрофонный вход.

Около входного разъема устройства, к которому подключается микрофон, смонтированы еще две детали: нагрузочный резистор R6, через который подается питание, и разделительный конденсатор СЗ, служащий для отделения звукового сигнала от постоянной составляющей напряжения питания.
Примененное в данном усилителе схемотехническое решение обеспечивает автоматическую установку и стабилизацию режима его работы. Рассмотрим, как это происходит. После включения питания напряжение на верхнем выводе разъема ХР1 возрастает примерно до 6 В. При этом напряжение на базе транзистора VT1 достигает порога его открывания 0, 5 В и через транзистор начинает протекать ток. Падение напряжения, возникающее в этом случае на резисторе R5, заставляет открыться транзистор составного эмиттерного повторителя. В результате общий ток усилителя возрастает, а вместе с ним увеличивается и падение напряжения на резисторе R6, после чего режим стабилизируется.

Поскольку коэффициент усиления составного эмиттерного повторителя по току (он равен произведению коэффициентов усиления по току транзисторов VT2 и VT3) может достигать нескольких тысяч, стабилизация режима получается очень жесткой. Усилитель в целом работает подобно стабилитрону, фиксирующему выходное напряжение на уровне 6 В независимо от напряжения питания. Тем не менее при использовании источника питания с другим напряжением надо подобрать резисторы делителя R2R3 так, чтобы напряжение на верхнем контакте разъема ХР1 было равно половине напряжения питания. Любопытно, что режим практически нельзя изменить, регулируя сопротивление нагрузочного резистора R5. Падение напряжения на нем всегда равно суммарному напряжению открывания транзисторов составного эмиттерного повторителя (около 1 В), а изменения его сопротивления приводят только к изменению тока через транзистор VT1. То же относится и к резистору R6.

Еще интереснее работа усилителя в режиме усиления переменного тока. Напряжение звуковой частоты с нижнего вывода резистора R5 передается эмиттерным повторителем с очень небольшим ослаблением на верхний вывод - выход усилителя. При этом ток через резистор постоянен и почти не подвержен колебаниям со звуковой частотой. Иными словами, единственный усилительный каскад оказывается нагруженным на генератор тока, т.е. на очень большое сопротивление. Входное сопротивление повторителя тоже очень велико, и в результате коэффициент усиления оказывается очень большим. При негромком разговоре перед микрофоном амплитуда выходного напряжения может достигать нескольких вольт. Цепочка R4C2 не пропускает переменную составляющую сигнала звуковой частоты к цепи питания микрофона и делителя напряжения.

Однокаскадный усилитель совершенно не склонен к самовозбуждению, поэтому и расположение деталей на плате особого значения не имеет, желательно только вход и выход разместить с разных концов платы.

Налаживание сводится к подбору резисторов делителя R2R3 до получения на выходе половины напряжения питания. Полезно еще подобрать и резистор R1, ориентируясь по наилучшему звучанию сигнала, снимаемого с микрофона. Если входное сопротивление радиоаппарата, с которым используется данный усилитель, менее 100 кОм, емкость конденсатора СЗ следует соответственно увеличить.

Подключение динамического микрофона в микрофонный вход звуковой карты компьютера.

Микрофонный вход звуковой карты предназначен для подключения электретного микрофона. Назначение контактов разъёма микрофонного входа показано на Рис. 1. Звуковой сигнал поступает на вход звуковой карты через контакт TIP. Питание электретного микрофона подаётся через резистор R на контакт RING. Контакты TIP и RING соединяются вместе в микрофонном кабеле.


Рис. 1

Практически все мультимедийные микрофоны стоимостью 2-4$ годятся только для распознавания речи, телефонии и т. п. Хотя данные микрофоны, как правило обладают высокой чувствительностью, они имеют высокий уровень нелинейных искажений, недостаточную перегрузочную способность, а так же - круговую диаграмму направленности (то есть одинаково хорошо воспринимают сигналы с любой стороны). Поэтому для записи вокала в домашних условиях необходимо использовать остронаправленный динамический микрофон, позволяющий свести к минимуму посторонние шумы от вентилятора системного блока и других источников.

Динамический микрофон можно подключить непосредственно на микрофонный вход звуковой карты. Сигнальный провод микрофонного кабеля нужно припаять к контакту TIP, экран - к контакту GND, контакт RING нужно оставить свободным. Если у микрофона два сигнальных контакта - HOT и COLD, то контакт HOT подать на контакт TIP, а контакт COLD соединить с GND. Поскольку чувствительность динамического микрофона низкая, по сравнению с электретным, достаточный уровень записи получается только при расположении микрофона на расстоянии 3-5 сантиметров от губ исполнителя. Это не всегда допустимо, поскольку микрофоны некоторых типов будут "заплёвываться", несмотря на встроенную ветрозащиту. Такие микрофоны необходимо располагать дальше от исполнителя, а для получения достаточного уровня записи - воспользоваться предусилителем. Схема простейшего предусилителя с питанием от разъёма микрофонного входа показана на Рис. 2.


Рис. 2

Данная схема у меня прилично работает при следующих номиналах: R1,R3 - 100 кОм, R2 - 470 кОм, C1,C2 - 47мкФ, VT1 - кт3102ам (можно заменить на кт368, кт312, кт315).
В основу схемы положен классический транзисторный каскад с общим эмиттером. Нагрузкой каскада служит резистор R звуковой карты (Рис. 1). Коэффициент усиления зависит от параметров транзистора VT1, величины резистора обратной связи R2 и величины резистора R звуковой карты. Конденсатор C1 необходим для развязки по постоянному току. Резистор R1 служит для устранения щелчков при подключении микрофона "на ходу", при желании можно его исключить.

При более детальном рассмотрении оказалось, что на контакте TIP микрофонного входа моего SB LIVE 5.1 присутствует постоянное напряжение около 2 В. Исследовать причину, и характерно ли это только для моего экземпляра звуковой карты или для всех, возможности не было. Но абсолютно точно, что работоспособность схемы практически не изменяется при исключении элементов C2, R3.

Достоинством данной схемы является простота. К недостаткам следует отнести большие нелинейные искажения - около 1%(1 кГц) при 1 мВ на входе. Уменьшить нелинейные искажения до 0,1% можно с помощью дополнительного резистора 100 Ом, включаемого между эмиттером транзистора VT1 и шиной GND, при этом коэффициент усиления уменьшается с 40 дБ до 30 дБ. Изменения показаны на Рис. 3.


Рис. 3

Более высокие параметры можно получить, используя внешний микрофонный усилитель с автономным питанием, подключаемый к линейному входу звуковой карты. Например - собранный по схеме с симметричным входом.

Микрофонный усилитель своими руками.

Наверное, у многих из вас, возникала необходимость записи звука на компьютере, например, при озвучивании роликов или создании клипов.Применение китайского недорогого ширпотреба абсолютно нежелательно, во-первых,из-за довольно низкой чувствительности, во-вторых, качество звукозаписи
получается *грязным*, иногда, становится неузнаваем даже свой собственный голос.
Высокие частоты, имеют значительный и неоправданный завал, ну и долговечность их, оставляет желать лучшего.
Высококачественный же микрофон, - увы, нам с вами не по карману!

Но, выход есть! У многих имеются старые, еще советские динамические микрофоны, например МД-52 либо, ему подобные. Да и при их отсутствии, эти экземпляры можно купить, за *сущие копейки*.Подключать подобные микрофоны, непосредственно к звуковой карте напрямую не пытайтесь, - слишком мало напряжение ЗЧ на выходе. Поэтому, применим простейший микрофонный усилитель, на широко распространенной микросхеме К538УН3, стоимость ее, менее 50руб. Но мы, использовали старую микросхему, выпаянную из древнего кассетного магнитофона. Непосредственно, сама микросхема, включена по типовой,распространенной схеме включения, с максимальным коэффициентом усиления. Питается усилитель, непосредственно от компьютера, напряжение питания - 12 В, хотя работоспособность сохраняется и при - 5В, в этом случае, питание можно взять с разъема USB.

Микрофонный усилитель. Схема.

Электролитические конденсаторы – любые, на напряжение 16В. Величину ёмкости конденсаторов, возможно изменять в небольших пределах. Устройство, можно собрать, используя простой, навесной монтаж.

Никакой настройки, усилитель не требует и не нуждается в экранировании конструкции. Но, использование экранированных кабелей – желательно и не слишком длинных. Испытания образцов, показали относительно низкий уровень собственных шумов, довольно высокую чувствительность и очень даже приличное качество звука, даже на встроенных компьютерных звуковых картах, типаАС97. Динамический диапазон – около 40 ДБ. Для записи звука на компьютер, использовали программу Sound Forge.

Ну и еще несколько схем к статьям в довесок.

Чистого Вам звука!!!

Для эстрадных оркестров, школьных радиоузлов или переговорных устройств часто нужен предварительный усилитель к низкоомному микрофону или используемой в той же роли динамической головке. Схемы таких усилителей предлагает журнал «Функаматер» (ГДР) .

Первый, наиболее простой, применяют, когда микрофон удален от основного усилителя на значительное расстояние. Напряжение питания 7.5-12 В поступает к предусилителю по «звуковому» кабелю с заземленной оплеткой. Транзисторы (V1 и V2) дают большое усиление сигнала. Конденсатор С2 устраняет самовозбуждение. Режим работы устанавливают с помощью подстроечного резистора R3 таким образом, чтобы на коллекторе V2 было «половинное» напряжение питания. Потребляемый ток = 1.5 мА.

Второй усилитель предназначен для совместной работы с высококачественной аппаратурой. При увеличении сопротивления R5 = 100 ком усиление устройства максимально (51 дБ) . Чувствительность 3-8 мВ, оптимальное сопротивление микрофона = 200 ом. В верхней точке R2 напряжение = + 6 В, а на коллекторе V1 напряжение примерно + 2 В.

Оба усилителя собраны из малогабаритных деталей и помещены в жестяные футляры размерами со спичечный коробок и заземлены. В устройствах применены кремниевые транзисторы малой мощности: V1 малошумящий, например КТ312Б, V2 - КТ306 , КТ315 , КТ342 с любым буквенным индексом. Журнал «М-К» № 2 , 1985г.

Нестандартное включение микрофона.

Размещение микрофонного усилителя в непосредственной близости от микрофона ослабляет требования к экранировке соединительных проводов и улучшает отношение сигнал / фон. Однако при этом возникает новая проблема, связанная с питанием микрофонного усиливстроенная батарея требует частой замены, а использовать дополнительный провод питания не всегда удобно.

На рисунке приведена схема двухкаскадного микрофонного усилителя питание которого осуществляется по сигнальному проводу. В основной усилитель при этом нужно добавить лишь один резистор R4 , служащий нагрузкой микрофонного усилителя и разделительный конденсатор С2 .

https://pandia.ru/text/78/153/images/image004_83.jpg" width="380" height="339 src=">

Он недорогой, стоит примерно 120 руб.

А вот его схема:

https://pandia.ru/text/78/153/images/image006_61.jpg" width="623" height="389">

Pис. 4 . Электрическая схема микрофонного усилителя.

Ещё разные микроусилители на микросхемах

Эти усилители используются для усиления сигналов, имеющих малую величину (0.2-2 мВ) . Входное сопротивление микрофонного усилителя, при котором обеспечивается максимальное отношение сигнал / шум, выбирается в 3 раза больше внутреннее сопротивление.

Достаточно простой получается схемная реализация микрофонного усилителя при использовании операционного усилителя. Операционный усилитель следует выбирать по минимальному значению шума, приведенному ко входу. Из отечественных операционных усилителей больше других подходят КМ551УД2А (Uвх. шума = 1 мкВ) или К157УД2 (Uвх. шума = 1.6 мкВ) . Из зарубежных операционных усилителей можно рекомендовать NE5532 .


Входное напряжение 1 мв,
Номинальное выходное напряжение 100 мв,
Отношение сигнал / шум = 56 дб,
Рабочий диапазон частот гц,
Коэффициент гармоник 0.05 %

Операционный усилитель включен по схеме инвертирующего усилителя. Коэффициент усиления определяется отношением резисторов R1 / R2 и равен 100 . При замене операционного усилителя К157УД2 на КМ551УД2А отношение сигнал / шум возрастет до 60 дБ.

https://pandia.ru/text/78/153/images/image009_117.gif" width="644 height=370" height="370">

На рис.3 приведена схема микрофонного усилителя с симметричным входом, в котором функции трансформатора выполняет дифференциальный усилитель на операционном усилителе DА1 .

На DА2 собран сумматор двух сигналов. Подавление помех будет тем больше, чем выше степень согласования резисторов RЗ и R4 , R6 и R7 , R8 и R9 , R10 и R12 , R11 и R13 .

Микрофонный усилитель имеет следующие параметры:
Номинальное входное напряжение = 2 мв,
Номинальное выходное напряжение = 100 мв,
Отношение сигнал/шум 60 дб,
Коэффициент гармоник 0.5 % ,
Диапазон воспроизводимых частот гц,
Минимальное сопротивление нагрузки = 10 ком.

Коэффициент усиления микрофонного усилителя зависит от положения переключателя S1 .

При разомкнутом переключателе К = 50 , при замкнутом = 100 .

Предусилитель для микрофона , он же предварительный усилитель или усилитель для микрофона — это такой вид усилителя, назначение которого — усиление слабого сигнала до величины линейного уровня (порядка 0,5-1,5 вольт), то есть до приемлемой величины, при которой работают обычные усилители звуковой мощности.

Входным источником акустических сигналов для предварительного усилителя обычно являются звукосниматели виниловых пластинок, микрофоны, звукосниматели различных музыкальных инструментов. Ниже приводится три схемы микрофонных усилителей на транзисторах, а так же вариант усилителя микрофона на микросхеме 4558. Все их без труда можно собрать своими руками.

Схема простого микрофонного предусилителя на одном транзисторе

Данная схема микрофонного предусилителя работает как с динамическим, так и с электретными микрофонами.

Динамические микрофоны по конструкции схожи с громкоговорителями. Акустическая волна оказывает воздействие на мембрану и на прикрепленную к ней акустическую катушку. В момент колебания мембраны, в катушке, находящейся под воздействием магнитного поля постоянного магнита, образуется электрический ток.

Работа электретных микрофонов базируется на возможности определенных видов материалов с повышенной диэлектрической проницаемостью (электретов) менять поверхностный заряд под воздействием акустической волны. Данный тип микрофонов отличается от динамического высоким входным сопротивлением.

При использовании электретного микрофона, для смещения напряжения на микрофоне, необходимо установить сопротивление R1


микрофонный усилитель на одном транзисторе

Поскольку эта схема микрофонного усилителя для динамического микрофона, то при использовании электродинамического микрофона его сопротивление должно быть в диапазоне от 200 до 600 Ом. При этом C1 необходимо поставить до 10 мкф. Если это будет электролитический конденсатор, то его плюсовой вывод необходимо подключить в сторону транзистора.

Питание осуществляется от батареи крона или же от стабилизированного источника питания. Хотя лучше от батареи, чтобы исключить шумы. можно заменить на отечественный . Конденсаторы электролитические на напряжение 16 вольт. Для предотвращения помех, подключать предусилитель к источнику сигнала и к входу усилителя необходимо экранированным проводом. Если необходимо дальнейшее мощное усиление звука, то можно собрать усилитель на микросхеме .

Микрофонный предварительный усилитель на 2-х транзисторах

Структура построения любого предусилителя очень сильно влияет на его шумовые характеристики. Если брать во внимание тот факт, что используемые в схеме предусилителя качественные радиодетали все равно в той или иной мере приводят к искажениям (шумам), то очевидно, что единственный выход получить более-менее качественный микрофонный усилитель — это сократить число радиокомпонентов схемы. Примером может послужить следующая схема двухкаскадного предварительного .

С данном варианте количество разделительных конденсаторов сведено к минимуму, поскольку транзисторы включены по схеме с общим эмиттером. Так же между каскадами существует непосредственная связь. Для стабилизации режима работы схемы, при изменении внешней температуры и напряжения питания, в схему добавлена ООС по постоянному току.

Предусилитель для электретного микрофона на трех транзисторах

Это еще один вариант . Особенность данной схемы усилителя для микрофона в том, что подача питания на схему предусилителя осуществляется по тому же проводнику (фантомное питание) по которому идет входной сигнал.

Данный микрофонный предусилитель предназначен для совместной работы с , например, МКЭ-3. Напряжение питания на микрофон идет через сопротивление R1. Аудио сигнал с выхода микрофона поступает на базу VT1 через конденсатор С1. , состоящим из сопротивлений R2, R3 создается необходимое смещение на базе VT1 (примерно 0,6 В). Усиленный сигнал с резистора R5, выступающий в роли нагрузки, идет на базу VT2 который является частью эмиттерного повторителя на VT2 и VT3.

Возле разъема на выходе, установлены дополнительно два элемента: нагрузочное сопротивление R6, через которое идет питание, и разделительный конденсатор СЗ, отделяющий выходной аудио сигнал от напряжения питания.

Предварительный микрофонный усилитель на микросхеме 4558

Операционный усилитель 4558 выпускается фирмой ROHM. Он характеризуется как маломощный и малошумящий усилитель. Применяется данная микросхема в усилителе микрофона, звуковых усилителях, активных фильтрах, генераторах управляемых напряжением. Микросхема 4558 имеет внутреннюю фазовую компенсацию, увеличенный порог входного напряжения, большой коэффициент усиления и малый уровень шума. Также у данного операционного усилителя имеется защита от короткого замыкания.

(140,5 Kb, скачано: 2 161)



предусилитель микрофона на 4558

Это хороший вариант для постройки микрофонного предусилителя на микросхеме. Схема предусилителя для микрофона отличается высоким качеством усиления, простотой и не требует большой обвязки. Этот микрофонный усилитель для динамического микрофона также хорошо работает и с электретными микрофонами.

При безошибочной сборке, схема не требует настройки и начинает работать сразу. Наибольший ток потребления – 9 мА, а в состоянии покоя потребляемый ток в районе 3 мА.



Что еще почитать