Медицинские и биологические исследования в космосе. Космическая биология. Современные методы биологических исследований. Что делать во время полета

Вся космическая отрасль и РОСКОСМОС работают над внедрением в медицину космических технологий. Какие изобретения и наработки из космоса помогают спасать жизни и поправлять здоровье после тяжелейших недугов, разбиралась «Лента.ру».

Быстрый результат

Входящие в состав РОСКОСМОСА предприятия решают в том числе и медицинские задачи. Так, например, в Научно-исследовательском институте космического приборостроения создали уникальный анализатор «БИОФОТ-311»: с его помощью можно в кратчайшие сроки проводить экспресс-тесты крови как в космосе, так и на земле. В целом, он предназначен для оперативного проведения биохимических исследований сыворотки и плазмы крови, мочи, а также других биохимических жидкостей и ориентирован на широкое применение.

Кроме того, в НИИ КП разработали внешне похожее на пистолет биопсийное устройство, которое предназначено для диагностики (биопсии) внутренних органов путем забора образца ткани для ее гистологического анализа и, в частности, выявления причин патологических образований в структуре органа, оценки эффективности лечебных мероприятий. Раньше такие технологии использовались исключительно в космической медицине, однако сейчас успешно и эффективно интегрируются в медицину земную.

Орбитальная печать

Передовые технологии, в том числе медицинские, зачастую апробируются именно в космосе. Так, недавно входящая в РОСКОСМОС Объединенная ракетно-космическая корпорация, подписала соглашение с компанией «3Д Биопринтинг Солюшенс» (резидентом Сколково) о создании уникального биопринтера для магнитной биофабрикации тканей и органных конструктов в условиях невесомости на Международной космической станции (МКС).

Создание магнитного биопринтера позволит печатать в космосе тканевые и органные конструкты, сверхчувствительные к воздействию космической радиации - сентинел-органы (например, щитовидную железу) для биомониторинга отрицательного действия космической радиации в условиях длительного пребывания в космосе и разработки профилактических контрмер. В перспективе технология трехмерной магнитной биопечати может быть использована для коррекции повреждений тканей и органов космонавтов при длительных космических полетах. На Земле такая технология может быть применена для более быстрой биопечати человеческих тканей и органов. Планируется, что биопринтер для отправки на борт Международной космической станции будет готов к 2018 году. Все работы по подготовке и проведению эксперимента будут проводиться в тесном сотрудничестве с ПАО «РКК «Энергия» и ГНЦ ИМПБ РАН.

Не просто экзоскелет

Еще до запуска в космос Юрия Гагарина было очевидно, что во время полета человек испытывает колоссальные нагрузки. А по возвращении на Землю космонавту будет необходима реабилитация с привлечением специальных разработок. Дело в том, что из-за нахождения в условиях невесомости у космонавтов более всего подвергается деградации двигательная функция. Причина - отсутствие гравитации, ведь именно она и является тем фактором, благодаря которому у нас с вами появился мощный скелет, развитая мышечная система и опорно-двигательный аппарат.

Более того, так как внеземные экспедиции становились все более продолжительными, период восстановления надо было продумывать все более тщательно. Все началось с технологий, использовать которые экипаж мог бы в условиях невесомости и ограниченного пространства. Одной из первых подобных разработок стал костюм «Пингвин», который предназначался для создания осевой нагрузки на скелетно-мышечный аппарат и компенсации недостатка опорной и проприоцептивной функций космонавтов. Специалисты ИМБП РАН создали костюм еще в конце 1960-х годов, а впервые испытали его в условиях космоса уже в 1971 году.

В начале 1990-х годов российские исследователи решили модифицировать «Пингвин» для лечения и реабилитации больных с двигательными нарушениями, например с ДЦП. Первый созданный прототип получил название «Адель» и использовался для лечения детей с церебральным параличом. Костюм до сих пор позволяет выработать навыки правильной ходьбы и закрепить новый моторный стереотип, восстанавливая функциональные связи и повышая трофику соответствующих тканей.

Помимо этого довольно быстро встал вопрос о создании костюма, который помогал бы восстанавливать двигательные функции людям, перенесшим инсульт или черепно-мозговую травму и страдающим в результате этого от параличей и пареза. Для этого на основе предыдущих наработок и с привлечением нового ноу-хау был создан лечебный костюм аксиального нагружения «Регент».

Система работает так: костюм создает или увеличивает продольную нагрузку на структуры скелета и повышает мышечную нагрузку при выполнении движений, что, в свою очередь, способствует улучшению регуляции обменных процессов. Кроме того, «Регент» компенсирует недостаток проприоцептивной функций, тем самым способствуя полной или частичной реабилитации больных.

Костюм прошел масштабные испытания на сотнях пациентов в подведомственных РАН и Минздраву учреждениях. В результате этого исследователи выяснили, что «Регент» положительно влияет не только на двигательные, но и на высшие психические функции! Так, у многих пациентов после его регулярного применения гораздо быстрее восстанавливались речь и концентрация.

Фото: Управление делами Президента РФ ФГБУ «Клиническая больница №1»

Но на этом в Центре космической медицины не остановились - там же для реабилитации космонавтов был создан аппарат «Корвит», который имитирует опорную реакцию стоп человека. Уникальность прибора в том, что он позволяет имитировать показатели физического воздействия на стопу при ходьбе: величину давления, временные характеристики. Метод опорной стимуляции, на основе которого создан «Корвит», оказался полезен не только космонавтам, но и целым группам пациентов. В частности, его используют для комплексной реабилитации больных с ДЦП, поскольку «Корвит» позволяет максимально нормализовать стояние и ходьбу, улучшить координацию и восстановить баланс мышц-сгибателей и разгибателей.

Также в распоряжении врачей и их пациентов множество тренажеров и других устройств, способствующих их реабилитацию и возвращению к нормальной жизни.

Полная стимуляция

Еще одна интересная технология, которая прежде использовалась исключительно в космической медицине, - низкочастотная электростимуляция. Первоначально этот способ был разработан, чтобы проводить профилактику негативного воздействия нахождения в космосе на организм человека. В частности, речь идет о восстановлении и сохранении функциональных возможностей мышц человека в условиях гипокинезии и микрогравитации.

Для решения соответствующей проблемы ученые разработали полноценный костюм и портативный электростимулятор. Самые первые испытания прошли еще на станции «Мир», впоследствии метод себя полностью зарекомендовал и соответствующие устройства до сих пор применяются РОСКОСМОСОМ на МКС.

Кроме того, низкочастотная электростимуляция успешно применяется на Земле для лечения больных с травматическими заболеваниями, а также тех, кто страдает от различных проблем с опорно-двигательной системой. Особенно актуальна в свете этого возможность посредством метода сохранять и восстанавливать свойства мышц у частично или полностью иммобилизованных пациентов. Эти технологии активно применяются и в спортивной медицине.

Полетаем!

Еще при подготовке первых космонавтов исследователи столкнулись с необходимостью имитировать невесомость на Земле. Одним из плодов этой деятельности стала разработка метода сухой иммерсии, который активно используется для подготовки и последующей реабилитации космонавтов. В частности особо популярно применение так называемых иммерсионных ванн.

Их применение способствует расслаблению мышц, помогает избавиться от спазмов и восстановить мышечный тонус. Кроме того, иммерсионные ванны полезны для избавления от депрессивного, отечного и болевого синдрома, а также оказывают эффект на разгрузку сердца и снижение кровяного давления.

В последнее время подобные комплексы используют для реабилитации и сохранения недоношенных детей. Но еще раньше иммерсионные ванны начали применять для восстановительного лечения в рамках психоневрологии, травматологии, ортопедии и других сферах.

Опасности и не только

Российские ученые при поддержке РОСКОСМОСА разрабатывали медицинский адсорбционный концентратор кислорода для того, чтобы создавать обогащенную кислородом атмосферу непосредственно из окружающего воздуха, например в помещении. Сегодня этот аппарат часто применяют спасатели и сотрудники других экстренных служб при анестезии и реанимации.

Также в распоряжении представителей экстремальной медицины теперь есть термохимические генераторы кислорода, которые изначально создавались как резервный источник кислорода на пилотируемых миссиях в случае отказа основных систем его получения. Сейчас этими генераторами пользуются Министерство обороны, МЧС и МВД России.

Для резервного обеспечения кислородом космических станций был разработан и комплекс «Курьер», который сейчас активно применяется в медицине катастроф для получения кислорода из окружающего воздуха. При этом комплекс способен производить кислород непосредственно на месте потребления и не требует запасов расходуемых материалов.

Наконец, российские исследователи создали аппарат «Малыш» для спасения человека в обитаемом герметичном объекте, например в кабине космического корабля. В основе аппарата - концепция формирования искусственной газовой среды, а теперь он внедряется и для применения экстремальными службами.

Так что космос гораздо ближе, чем кажется: он помогает лечить людей и спасать их жизни. А РОСКОСМОС и его союзники в этой благородной миссии не останавливаются на достигнутом и шагают вперед.

Муниципальное бюджетное общеобразовательное учреждение

основная общеобразовательная школа №8

Областной конкурс «Космонавтика»

Номинация «Космическая биология и медицина»

«Человек и космос: биологические и медицинские исследования в космосе»

Работу выполнила

Виниченко Наталья Васильевна

учитель математики и физики

город Донецк Ростовской области

2016 год.

Введение Космическая биология и медицина - комплексная наука, изучающая особенности жизнедеятельности человека и других организмов в условиях космического полета. Основной задачей исследований в области космической биологии и медицины является разработка средств и методов жизнеобеспечения, сохранения здоровья и работоспособности членов экипажей космических кораблей и станций в полетах различной продолжительности и степени сложности. Космическая биология и медицина неразрывно связана с космонавтикой, астрономией, астрофизикой, геофизикой, биологией, авиационной медициной и многими другими науками.

Актуальность темы довольно большая в наш современный и стремительный XXI век.

Тема «Медицинские и биологические исследований в космосе» нас заинтересовала и мы решили сделать исследовательскую работу на эту тему.

2016 год является юбилейным – 55 лет со дня первого человеческого полета в космос. С глубокой древности человека манило и привлекало к себе звёздное небо. Мечта о создании летательных аппаратов нашла своё отражение в мифах, легендах и сказаниях практически всех народов мира. Человеку очень хотелось летать. Сначала он решил сделать себе крылья, как у птицы. Забирался повыше в горы и прыгал с такими крыльями вниз. Но в результате только ломал руки, ноги, однако это не заставило человека отказаться от своей мечты. И он придумал металлическую птицу с неподвижными крыльями и назвал её самолёт. Прошли годы, развивалась современная авиация. Её развитие - целая история с множеством прекрасных и очень интересных страниц науки. Во все концы Земли идут экспедиции. Учёные ищут, находят и вновь исследуют неведомое, чтобы отдать его людям. Проникнув в космос, люди открыли не просто новое пространство, открыт огромный, необычный мир, подобный неизведанному материку. Уникальные условия - вакуум, невесомость, низкие температуры - создали новые отрасли науки и производства.

Наш замечательный учёный К. Э. Циолковский говорил:

«…Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе всё околосолнечное пространство».

Сейчас мы являемся свидетелями того, как сбываются пророческие слова учёного. Бурное развитие науки и техники сделало возможным выведение на околоземную орбиту в октябре 1957 года первого искусственного спутника Земли. В 1961 году человек впервые шагнул из своей «колыбели» в бескрайние просторы вселенной. А спустя четыре года вышел за порог космического корабля и взглянул на Землю, со стороны, через тонкое стекло скафандра. Так началась космическая эра человечества, началось освоение космоса, началось становление новой особой профессии - космонавт. Начало этой профессии было положено полётом первого космонавта планеты Ю. А. Гагарина.

Космонавт-это человек, который испытывает космическую технику и работает на ней в космосе.

Космонавт-это исследователь. Каждый день на орбите - это экспериментальная работа в космической лаборатории.

Космонавт исполняет роль биолога, проводя наблюдения за живыми организмами.

Космонавт-это медик, когда участвуют в медицинских исследованиях здоровья членов экипажа.

Космонавт-это строитель, монтажник.

Учёные убедились, что живые существа могут жить в невесомости. Путь в космос был открыт. А полёт Гагарина доказал, что человек может подняться в космос и невредимым вернуться на Землю.
Начало. Медико-биологические исследования в середине XX века.

Отправными в становлении космической биологии и медицины считаются следующие вехи: 1949 г. - впервые появилась возможность проведения биологических исследований при полетах ракет; 1957 г. - впервые живое существо (собаку Лайку) отправили в околоземный орбитальный полет на втором искусственном спутнике Земли; 1961 г. - первый пилотируемый полет в космос, совершенный Ю. А. Гагариным. С целью научного обоснования возможности безопасного в медицинском отношении полета человека в космос исследовалась переносимость воздействий, характерных для старта, орбитального полета, спуска и посадки на Землю космических летательных аппаратов, а также испытывалась работа биотелеметрической аппаратуры и систем обеспечения жизнедеятельности космонавтов. Основное внимание уделялось изучению влияния на организм невесомости и космического излучения. Лайка (собака-космонавт) 1957 г. Р езультаты, полученные при проведении биологических экспериментов на ракетах, втором искусственном спутнике (1957 г.), вращаемых космических кораблях-спутниках (1960-1961 гг.), в совокупности с данными наземных клинических, физиологических, психологических, гигиенических и других исследований фактически открыли путь человеку в космос. Кроме этого, биологические эксперименты в космосе на этапе подготовки первого космического полета человека позволили выявить ряд функциональных изменений, возникающих в организме при действии факторов полета, что явилось основанием для планирования последующих экспериментов на животных и растительных организмах в полетах пилотируемых космических кораблей, орбитальных станций и биоспутников. Первый в мире биологический спутник с подопытным животным - собакой «Лайкой». Выведен на орбиту 03.11.1957 г. И находился там 5 месяцев. Спутник просуществовал на орбите до 14.04.1958 г. На спутнике имелось два радиопередатчика, телеметрическая система, программное устройство, научные приборы для исследования излучения Солнца и космических лучей, системы регенерации и терморегулирования для поддержания в кабине условий, необходимых для существования животного. Получены первые научные сведения о состоянии живого организма в условиях космического полета .


Мало кто знает, что перед тем как отправить в космос человека, проводились многочисленные эксперименты на животных с целью выявления воздействия на живой организм невесомости, радиации, длительного полета и других факторов. Первые полёты животные совершили в стратосферу. В первый полет на воздушном шаре человек отправил барана, петуха и утку. С 1951 г. по 1960 г. были проведены серии экспериментов по изучению реакции живого организма на перегрузки, вибрации и невесомость во время запусков геофизических ракет. Во второй серии запусков в 1954-1956 гг. на высоту 110 км целью экспериментов было опробование скафандров для животных в условиях разгерметизации кабины. Были проведены катапультирования животных в скафандрах: одной собаки – с высоты 75-86 км, второй – с высоты 39-46 км. Полёты с животными не прекращены и сегодня. Полеты в космос животных и сейчас дают массу полезной информации. Так, полет спутника «Бион-М» с разными живыми организмами на борту, длившийся один месяц, дал много материала для изучения воздействия радиации и длительной невесомости на жизнедеятельность организма.

Ес ли раньше учёных интересовало воздействие перегрузок и космической радиации на живые организмы, то теперь основное внимание уделяется работе нервной и иммунной систем. Не менее важно изучение влияния факторов космического полета на регенеративные и репродуктивные функции организма. Особенно интересна задача воссоздания полного цикла биологического воспроизводства в условиях невесомости. Почему? Рано или поздно, нас ждут поселения в космосе и сверхдальние полеты к другим звездам.

Но до того, как полеты в космос удались, 18 собак погибли при испытаниях. Их смерть не была бесполезной. Только благодаря животным полеты в космос стали возможны и человеку. А то, что космос необходим людям, сегодня не сомневается никто. Перед первым длительным полетом на 18 суток Николаева и Севастьянова в космос отправили собак Ветерка и Уголька на 22 дня. Интересно, что в космос всегда отправляли только дворняжек. Причина? Более сообразительны и выносливы, чем их породистые собратья. Вернулись из космоса Ветерок и Уголек совершенно голые. То есть без шерсти, которая осталась в плохо подогнанных скафандрах, о которые собаки все эти нескончаемые дни терлись. Показано, что основным экологическим фактором наблюдаемых в организме сдвигов в космических полетах является невесомость. Однако она не вызывает генных и хромосомных мутаций, механизм клеточного деления, как правило, не нарушается естествознания.

22 марта 1990 года перепеленок, пробивший скорлупу пестренького серо-коричневого яичка в специальном космическом инкубаторе, был первым живым существом, родившимся в космосе. Это была сенсация! Конечная цель опытов с японскими перепелами в невесомости - создание системы жизнеобеспечения экипажей космических кораблей во время сверх длительных межпланетных космических полетов. С грузовым кораблем на орбитальную станцию «Мир» отправился контейнер с 48 яичками перепела, который космонавты аккуратно поместили в космическое «гнездо». Ожидание было напряженным, но точно на 17-й день лопнуло на орбите первое пятнистое яичко. Новый космический житель массой всего 6 граммов проклюнул скорлупку. К радости биологов, то же произошло и в контрольном инкубаторе на Земле. За первым цыпленком появился второй, третий... Здоровенькие, шустрые, они хорошо реагировали на звук и свет, обладали клевательным рефлексом. Однако в космосе мало родиться, нужно приспособиться к его жестким условиям. Увы...

Перепелята не смогли адаптироваться к невесомости. Они, как пушинки, хаотически летали внутри каюты, не умея зацепиться за решетку. Из-за отсутствия фиксации тела в пространстве они не смогли самостоятельно кормиться и впоследствии погибли. Впрочем, 3 птенца вернулись на Землю, пережив еще и перелет обратно. Но, по словам биологов, в этом эксперименте было доказано главное - невесомость не оказалась непреодолимым препятствием для развития организма.

До полёта людей в космос в целях изучения биологического воздействия космических путешествий в орбитальные и суборбитальные полёты в космическое пространство запускали некоторых животных, в том числе наиболее близких к человеку по физиологии многочисленных обезьян. В процессе подготовки к полетам ученые выяснили, что обезьянки для полета в космосе осваивают задание всего за 2 месяца и действительно кое в чем превосходят людей. Например, в скорости реакции. На выполнение упражнения «тушение мишеней» обезьянке требовалось 19 минут. А человеку на то же задание - час! Испытания в процессе полетов ракет и первых искусственных спутников Земли открыли путь человеку в космос и во многом предопределили развитие пилотируемой космонавтики. Были обнаружены следующие изменения: инактивация клеток; появление генных и хромосомных мутаций; возникновение потенциальных повреждений, которые лишь спустя некоторое время реализуются в мутации; нарушения протекания митоза.

Все это указывает на то, что факторы космического полета способны вызывать весь объем генетических изменений в хромосомах. Достижения в области космической биологии и медицины внесли существенный вклад в решение проблем общей биологии и медицины. Большое влияние космическая биология оказала на экологию, в первую очередь экологию человека и изучение взаимосвязи процессов жизнедеятельности с абиотическими факторами окружающей среды. Работы по космической биологии ведутся на различных видах живых организмов, начиная с вирусов и кончая млекопитающими. Для исследований в космическом пространстве в СССР уже использовано свыше 56, а в США свыше 36 видов биологических объектов.

У этого биологического исследования долгая история, длившаяся последние 40 лет, где НАСА и Россия сотрудничают на протяжении всего этого времени, что довольно примечательно", сообщает Николь Рауль, руководитель части проекта НАСА. Пока проект находится в ведении Роскосмоса, международная группа ученых наблюдает за экспериментами миссии. Бион-М1 является первой миссией России, посвященной запуску животных в космос за 17 лет. Последняя миссия Бион отправила макак-резусов, гекконов и амфибий на орбиту на 15 дней в 1996 году.

Бион-М1 предназначен помочь ученым понять, как могут повлиять длительные полеты в космос на астронавтов. "Уникальная природа этой миссии в том, что это 30-дневная миссия. Большинство других миссий не отправляли на столь длительный срок животных в космос", сообщает Рауль. "Большое значение для нас является то, что мы получим данные для сравнения с уже имеющимися на сегодня» Один из экспериментов НАСА посвящен тому, как микрогравитация и излучение влияет на подвижность сперматозоидов у мышей. Если люди собираются посетить другие планеты во время длительных перелетов, важно понять, будут ли они в состоянии производить потомство в космосе. На некоторые миссии могут уйти десятилетия, поэтому космическое воспроизведение может быть необходимостью. Хотя один из ученых НАСА будет изучать подвижность сперматозоидов у мышей, нет никаких шансов, что животные будут спаривать во время полета, поэтому для этого путешествия были отобраны лишь самцы. Помимо научного аппарата «Бион-М» ракета «Союз-2.1а» выведет на орбиту шесть малых спутников, среди которых российский АИСТ, американский Dove-2, южнокорейский спутник G.O.D.Sat, немецкие BeeSat-2, Beesat-3 и SOMP.

В полете «Союза-13» исследовалось влияние факторов космического полета на развитие низших растений - хлореллы и ряски. Проводилось изучение особенностей развития двух видов микроорганизмов - водородных бактерий и уробактерий - в условиях невесомости и получение в результате эксперимента белковой массы для последующего анализа ее биохимического состава. Межпланетные перелеты могут стать реальностью, лишь когда будут созданы надежные системы жизнеобеспечения с замкнутым циклом. Выполненные эксперименты способствовали решению этой сложной проблемы. На борту «Союза-13» действовала замкнутая экологическая система «Оазис-2» - биолого-техническая система для культивирования некоторых видов микроорганизмов. Эта установка представляла собой два цилиндра, ферментеры для микроорганизмов, в которых находились жидкость и газ, переходивший из одного цилиндра в другой. В один из ферментеров помещались водородоокисляющие бактерии - микроорганизмы, использующиеся в качестве источника энергии для роста, в основном свободный водород, полученный в результате электролиза воды. В другом ферментере находились уробактерии, способные разлагать мочевину. Они поглощали кислород, образовавшийся в первом цилиндре, и выделяли углекислоту. В свою очередь, углекислота использовалась водородоокисляющими бактериями для синтеза биомассы. Таким образом действовала замкнутая система, происходило постоянное восстановление двух видов микроорганизмов Система полностью была изолирована от атмосферы корабля, но в принципе микроорганизмы с таким же успехом могли поглощать углекислоту из атмосферы кабины, а биомасса служить пищей для космонавтов. Пробы массы, отобранные членами экипажа, были доставлены на Землю для тщательного изучения. Биомасса микробной культуры в системе «Оазис-2» увеличилась за время полета более чем в 35 раз. Результаты этого эксперимента стали важным шагом для создания новых систем жизнеобеспечения.

1 этап биологических исследований .

В 1940-1950гг проводились полеты собак с целью изучения: Герметичности кабины. Методы катапультирования и парашютирования с большой высоты. Биологическое действие космического излучения

Вывод: Переносимость высокоорганизованных животных режимов ускорения при ракетном полете и в состоянии динамической невесомости до 20 минут

2 этап исследований. Длительный полет собаки Лайки на советском ИСЗ-2.

3 этап биологических исследований связан с созданием космических кораблей-спутников (ККС), позволивших резко расширить «экипаж» новых биологических объектов собаках, крысах, мышах, морских свинках, лягушках, мухах-дрозофилах, высших растениях (традесканция, семена пшеницы, гороха, лука, кукурузы, нигеллы, проростки растений в разных стадиях развития), на икре улитки, одноклеточных водорослях (хлорелла), культуре тканей человека и животных, бактериальных культурах, вирусах, фагах, некоторых ферментах.

программы исследований на трассе Земля - Луна - Земля

Исследования осуществлялись станций серии «3онд» с сентября 1968 по октябрь станций размещали черепах, дрозофил, лук репчатый, семена растений, разные штаммы хлореллы, кишечной палочки

Изучали влияние излучения ионизирующих излучений.

В результате большое число перестроек хромосом отмечалось у семян сосны, ячменя, увеличение числа мутантов - у хлореллы . Сальмонелла стала агрессивней. Комплекс экспериментов с различными биообъектами (семена, высшие растения, икра лягушек, микроорганизмы и т. д.) был проведён на советском ИСЗ «Космос-368» (1970).

В результате проведённых биологических исследований установлено, что человек может жить и работать в условиях космического полёта сравнительно продолжительное время.

Так как человечество собирается в относительно недалеком будущем все-таки начать колонизацию Луны и других космических тел нашей Солнечной системы, то, скорее всего, вы хотели бы узнать о тех рисках и проблемах со здоровьем, которые могут с определенной долей вероятности проявиться у космических колонистов?

Исследования показали 10 самых вероятных проблем со здоровьем, с которыми придется столкнуться (если мы их не решим до этого момента) пионерам эры человеческих космических колонизаций.

Проблемы с сердцем

Западное медицинское исследование и наблюдение за 12 астронавтами показало, что при продолжительном нахождении в условиях микрогравитации сердце человека на 9,4 процента сильнее приобретает сферическую форму, что в свою очередь может вызывать самые различные проблемы с его работой. Особенно актуальной эта проблема может стать при длительных космических путешествиях, например, к Марсу.

«Сердце в космосе работает совсем не так, как оно работает в условиях земной гравитации, что в свою очередь может привести к утрате его мышечной массы», - говорит доктор Джемс Томас из NASA.

«Все это повлечет за собой серьезные последствия после возвращения на Землю, поэтому в настоящий момент мы ищем возможные способы, которые позволят избежать или по крайней мере снизить эту потерю мышечной массы».

Специалисты отмечают, что после возвращения на Землю сердце обретает свою изначальную форму, однако никому не известно, как один из важнейших органов нашего организма поведет себя после долгих перелетов. Докторам уже известны случаи, когда вернувшиеся обратно астронавты испытывали головокружение и дезориентацию. В некоторых случаях отмечается резкое изменение в артериальном давлении (происходит его резкое снижение), особенно когда человек пытается встать на ноги. Помимо этого, у некоторых астронавтов во время миссий наблюдается аритмия (нарушение сердечного ритма).

Исследователи отмечают необходимость в разработке методов и правил, которые позволят путешественникам дальнего космоса избежать данные виды проблем. Как отмечается, такие методы и правила могли бы пригодиться не только космонавтам, но и обычным людям на Земле - испытывающим проблемы работы сердца, а также тем, кому прописан постельный режим.

В настоящий момент началась пятилетняя исследовательская программа, задачей которой будет определение уровня воздействия космоса на ускорение развития у космонавтов атеросклероза (болезнь кровеносных сосудов).

Недостаток сна и использование снотворных

Десятилетнее исследование показало, что последние недели перед запуском и во время начала космических миссий астронавты явно недосыпают. Среди опрошенных три из четырех признавались, что употребляли медицинские средства, которые помогали им уснуть, даже невзирая на то, что употребление подобных медикаментов могло быть опасным во время управления космическим аппаратом и при работе с другим оборудованием. Опаснее всего ситуация в таком случае могла бы оказаться тогда, когда астронавты принимали одно и то же лекарство и в одно и то же время. В таком случае в момент возникшей чрезвычайной ситуации, требующей экстренного решения, они могли бы ее просто проспать.

Несмотря на то, что NASA приписало каждому астронавту спать как минимум восемь с половиной часов в день, большинство из них каждодневно отдыхали всего около шести часов во время выполнения миссий. Серьезность такой нагрузки на организм усугублялась еще и тем, что в течение последних трех месяцев тренировок перед полетом люди ежедневно спали менее шести с половиной часов.

«Будущие миссии на Луну, Марс и дальше потребуют разработки более эффективных мер для решения вопросов нехватки сна и оптимизации производительности человека во время космического полета», - говорит старший исследователь данного вопроса доктор Чарльз Кзейлер.

«Эти меры могут включать изменения графика работ, которые будут выполняться с учетом воздействия на человека определенных световых волн, а также изменения в поведенческой стратегии экипажа для более комфортного входа в состояние сна, которое обязательно необходимо для восстановления здоровья, сил и хорошего настроения на следующий день».

Потеря слуха

Исследования показали, что еще со времен миссий космических шаттлов у некоторых астронавтов отмечались случаи временной значительной и менее значительной потери слуха. Отмечались они чаще всего при воздействии на людей высоких звуковых частот. У членов экипажа советской космической станции «Салют-7» и российского «Мира» также регистрировались незначительные или весьма значительные эффекты снижения слуха после возвращения на Землю. Опять же во всех этих случаях причиной частичной или полной временной потери слуха являлось воздействие высоких звуковых частот.

Экипажу Международной космической станции предписано каждодневное ношение беруш. Для снижения шума на борту МКС, помимо прочих мер, было предложено использование специальных звукоизоляционных прокладок внутри стен станции, а также установка более тихих вентиляторов.

Однако, помимо шумного фона, на потерю слуха могут влиять и другие факторы: например, состояние атмосферы внутри станции, повышение внутричерепного давления, а также повышенный уровень углекислого газа внутри станции.

В 2015 году NASA, с помощью экипажа МКС начал изучение возможных способов избегания эффектов потери слуха во время годичных миссий. Ученые хотят посмотреть, насколько долго можно избегать подобных эффектов, и выяснить приемлемый риск, связанный с потерей слуха. Ключевой задачей эксперимента будет определение того, как минимизировать потерю слуха полностью, а не только во время конкретно взятой космической миссии.

Камни в почках

У каждого десятого человека на Земле рано или поздно проявляется проблема камней в почках. Однако данный вопрос становится гораздо острее, когда речь заходит об астронавтах, потому как в условиях космоса кости организма начинают терять полезные вещества еще быстрее, чем на Земле. Внутрь организма выделяются соли (фосфат кальция), которые проникают через кровь и накапливаются в почках. Эти соли могут утрамбовываться и обретать форму камней. При этом размер этих камней может варьироваться от микроскопического до вполне себе серьезного - вплоть до размера с грецкий орех. Проблема заключается в том, что эти камни могут блокировать сосуды и другие потоки, которые питают орган или выводят из почек лишние вещества.

Для астронавтов риск развития почечных каменей опаснее тем, что в условия микрогравитации может снижаться объем крови внутри организма. Кроме того, многие астронавты не пьют по 2 литра жидкостей в день, которые, в свою очередь, могли бы обеспечить полную гидратацию их организма и не позволять камням застаиваться в почках, выводя их частички вместе с мочой.

Отмечается, что как минимум у 14 американских астронавтов развилась проблема с камнями в почках практически разу же после завершения их космических миссий. В 1982 году был зафиксирован случай острой боли у члена экипажа на борту советской станции «Салют-7». Космонавт в течение двух дней мучился от сильнейших болей, в то время как его товарищу ничего не оставалось, как беспомощно наблюдать за страданиями своего коллеги. Сначала все подумали на острый аппендицит, однако через время вместе с мочой у космонавта вышел небольшой почечный камень.

Ученые весьма долгое время разрабатывали специальную ультразвуковую машину размером с настольный компьютер, которая позволяет обнаруживать камни в почках и выводить их с помощью импульсов звуковых волн. Думается, на борту корабля, следующего к Марсу, такая штука могла бы определенно пригодиться.

Заболевания легких

Несмотря на то, что мы пока с точностью не знаем, какие негативные эффекты для здоровья может вызывать пыль с других планет или астероидов, ученым все же известны некоторые весьма неприятные последствия, которые могут проявляться в результате воздействия лунной пыли.

Самый серьезный эффект вдыхания пыли, вероятнее всего, отразится на легких. Однако невероятно острые частицы лунной пыли могут нанести серьезные повреждения не только легким, но и сердцу, заодно вызвав целый букет различных недугов, начиная от сильнейшего воспаления органов и заканчивая раком. Аналогичные эффекты может вызывать, например, асбест.

Острые частицы пыли могут нанести вред не только внутренним органам, но и вызывать воспаление и ссадины на коже. Для защиты необходимо использование специальных многослойных кевлароподобых материалов. Лунная пыль может с легкостью повредить роговицы глаз, что в свою очередь может оказаться наиболее серьезной экстренной ситуацией для человека в космосе.

Ученые с сожалением отмечают, что неспособны смоделировать лунный грунт и провести полный набор тестов, необходимых для определения воздействия лунной пыли на организм. Одна из сложностей в решении этой задачи заключается в том, что на Земле частицы пыли не находятся в вакууме и не подвергаются постоянному воздействию радиации. Лишь дополнительные исследования пыли непосредственно на поверхности самой Луны, а не в лаборатории, смогут обеспечить ученых необходимыми данными для разработки эффективных методов защиты от этих крошечных токсичных убийц.

Сбой иммунной системы

Наша иммунная система меняется и отвечает на любые, даже самые малейшие изменения в нашем организме. Недостаток сна, недостаточный прием питательных веществ или даже обычный стресс - все это ослабляет нашу иммунную систему. Но это на Земле. Изменение же иммунной системы в космосе может в конечном итоге обернуться обычной простудой либо нести потенциальную опасность в развитии куда более серьезных заболеваний.
В космосе распределение иммунных клеток в организме изменяется не сильно. Куда большую угрозу для здоровья могут повлечь за собой изменения в функционировании этих клеток. Когда функционирование клетки снижается, уже подавленные вирусы, находящиеся в человеческом организме, могут заново пробудиться. И сделать это фактически скрытно, без проявления симптомов болезни. При повышении активности иммунных клеток иммунная система слишком остро реагирует на раздражители, вызывая аллергические реакции и другие побочные эффекты вроде сыпи на коже.

«Такие вещи, как радиация, микробы, стресс, микрогравитация, нарушение сна и даже изоляция - все они могут повлиять на изменение работы иммунной системы членов экипажа», - говорит иммунолог NASA Брайан Крушин.

«В рамках долгих космических миссий будет повышаться риск развития инфекций, гиперчувствительности, а также аутоиммунных проблем у астронавтов».

Для решения проблем с иммунной системой NASA планирует использовать новые методы антирадиационной защиты, новый подход к сбалансированному питанию и лекарствам.

Радиационные угрозы

Нынешнее очень необычное и весьма продолжительное отсутствие солнечной активности может способствовать опасным изменениям уровня радиации в космосе. Ничего подобного не происходило почти в течение последних 100 лет.

«Несмотря на то, что подобные события необязательно являются останавливающим фактором для долгих миссий к Луне, астероидам и даже к Марсу, галактическая космическая радиация сама по себе является тем фактором, который может ограничить запланированное время проведения этих миссий», - говорит Нэйтан Швадрон из Института земных, океанических и космических исследований.

Последствия такого рода воздействия могут быть самыми разными, начиная от лучевой болезни и заканчивая развитием рака или поражением внутренних органов. Кроме того, опасные уровни радиационного фона сокращают эффективность антирадиационной защиты космического корабля примерно на 20 процентов.

В рамках всего лишь одной миссии на Марс астронавт может подвергнуться 2/3 той безопасной дозы излучения, которой человек может подвергнуться в худшем случае в течение всей своей жизни. Это излучение может вызвать изменения в ДНК и увеличить риск развития рака.

«Если говорить о накопительной дозе, то это тоже самое, что проводить полное КТ-сканирование организма каждые 5-6 дней», - говорит ученый Кэри Цейтлин.

Когнитивные проблемы

При симуляции состояния нахождения в космосе ученые обнаружили, что воздействие высоко заряженных частиц даже в малых дозах заставляет лабораторных крыс реагировать на окружение гораздо медленнее, и при этом грызуны становятся более раздражительными. Наблюдение за крысами также показало изменение в составе белка в их мозге.

Однако ученые спешат отметить, что не на всех крысах проявлялись одинаковые эффекты. Если это правило действительно и в случае с астронавтами, то, по мнению исследователей, они смогли бы определить биологический маркер, указывающий и предсказывающий скорое проявление этих эффектов у астронавтов. Возможно, этот маркер даже позволил бы найти способ снизить негативные последствия от воздействия радиации.

Более серьезную проблему представляет болезнь Альцгеймера.

«Воздействие уровня радиации, эквивалентного тому, которое придется испытать человеку во время полета на Марс, может способствовать развитию когнитивных проблем и ускорять изменения в работе мозга, которые чаще всего ассоциируют с болезнью Альцгеймера», - говорит невролог Керри О’Бэнион.

«Чем дольше находишься в космосе, тем больше риск развития заболевания».

Один из утешительных фактов заключается в том, что ученые уже успели исследовать один из самых неудачных сценариев воздействия излучения. Они за один раз подвергли лабораторных мышей такому уровню излучения, которое являлось бы характерным для всего времени в рамках миссии на Марс. В свою очередь, люди при полете на Марс будут подвергаться излучению дозированно, в течение трех лет полета. Ученые считают, что человеческий организм может адаптироваться к таким небольшим дозам.

Помимо этого, отмечается, что пластик и легковесные материалы могут обеспечить людям более эффективную защиту от излучения, по сравнению с используемым сейчас алюминием.

Потеря зрения

У некоторых астронавтов отмечается развитие серьезных проблем со зрением после пребывания в космосе. Чем дольше длится космическая миссия, тем вероятнее шанс подобных печальных последствий.

По крайней мере среди 300 американских астронавтов, проходивших медицинскую проверку с 1989 года, проблемы со зрением наблюдались у 29 процентов людей, находившихся в космосе в течение двухнедельных космических миссий, и у 60 процентов людей, которые в течение нескольких месяцев работали на борту Международной космической станции.

Врачи из Техасского университета провели сканирование мозга у 27 астронавтов, проведших в космосе более месяца. У 25 процентов из них наблюдалось уменьшение объема передне-задней оси одного или сразу двух глазных яблок. Такое изменение приводит к дальнозоркости зрения. Опять же отмечалось, чем дольше человек находится в космосе, тем вероятнее данное изменение.

Ученые считают, что объясняться этот негативный эффект может подъемом жидкости к голове в условиях мигрогравитации. В данном случае в черепной коробке начинает накапливаться цереброспинальная жидкость, повышается внутричерепное давление. Просачиваться сквозь кость жидкость не может, поэтому начинает создавать давление на внутреннюю часть глаз. Исследователи пока не уверены, будет ли уменьшаться данный эффект у астронавтов, прибывающих в космосе более шести месяцев. Однако вполне очевидно, что выяснить это будет нужно до того момента, как засылать людей на Марс.

Если проблема вызвана исключительно внутричерепным давлением, то одним из возможных вариантов ее решения будет создание условий искусственной гравитации, каждый день по восемь часов, во время сна астронавтов. Однако говорить о том, поможет ли данный метод или нет - пока рано.

«Эта проблема требует решения, потому что в противном случае она может оказаться главной причиной невозможности длительных космических путешествий», - говорит ученый Марк Шелхамер.

Медицинские исследования костей проведены в космосе

В 2011 году с Байконура в МСК стартовал второй российский цифровой корабль "Союз" с интернациональным экипажем МКС-28/29 в составе россиянина Сергея Волкова, астронавта японского космического агентства Сатоси Фурукава и астронавта НАСА Майкла Фоссума. В программу пребывания в космосе были включены медицинские исследования. Известно, что для проведения экспериментов, в числе которых опыты по изучению воздействия космической радиации на организмы, космонавты доставят на орбиту фрагменты человеческих костей для проведения изысканий. Цель научной работы - выяснить причину и отследить динамику процесса вымывания кальция из костной ткани. С данной проблемой сталкиваются все специалисты, работающие в космосе. Врачи не могли детально изучить эту проблему, ведь они не в состоянии брать на анализ фрагменты костей живых космонавтов, вернувшихся с МКС. Поэтому в арсенале медиков был лишь анализ мочи, который не дает возможность широко посмотреть на данный вопрос.

Также известно, что космонавт Волков вывел на орбиту новые штаммы бактерий. В его пенале содержатся различные виды клеток растений для проведения биотехнологического эксперимента "Женьшень-2". Ученые планируют использовать их биомассу для приготовления медицинских препаратов и в косметологии.

Волков принял участие и в эксперименте "Матрешка", направленном на определение степени воздействия космической радиации на критически важные органы человека. Это позволило создать эффективные способы защиты. В частности, продолжить испытания так называемой защитной шторки. Согласно информации, в зависимости от удаленности шторки от внешней стенки станции доза радиации уменьшается на 20-60%.

Заключение.

Достижения в области космической биологии и медицины внесли существенный вклад в решение проблем общей биологии и медицины. Расширились представления о границах жизни в пределах биосферы, а созданные экспериментальные модели искусственных биогеоценозов - относительно замкнутым круговоротом веществ позволили дать определенную количественную оценку антропогенных воздействий на биосферу. Большое влияние космическая биология оказала на экологию, в первую очередь экологию человека и изучение взаимосвязи процессов жизнедеятельности с абиотическими факторами окружающей среды. Проведенные исследования позволили лучше познать биологию человека и животных, механизмы регуляции и функционирования многих систем организма.

Исследования в области космической биологии и медицины будут и впредь особенно нужны для решения ряда вопросов, в частности для биологической разведки новых космических трасс. Чрезвычайно важную роль космическая биология и медицины сыграет и в разработке необходимых для длительных полётов биокомплексов, или замкнутых экологических систем. Космос в настоящее время становится ареной международного сотрудничества. Подписано в 1972 году соглашение между правительствами СССР и США о сотрудничестве в исследовании и использовании космического пространства в мирных целях, предусматривает, в частности, сотрудничество в области космической биологии.

Таким образом, в ближайшие десятилетия будет реализован ряд сложных космических программ, направленных на улучшение жизни в космосе и на Земле. Станут серьезнее требования сохранения здоровья космонавтов, обеспечения эффективной профессиональной деятельности и высокой работоспособности космонавтов, обусловленные увеличением длительности космических экспедиций, объема вне корабельной деятельности и монтажных работ, усложнением исследовательской деятельности. При осуществлении экспедиций на Луну и, особенно, на Марс, значительно возрастет риск по сравнению с пребыванием на околоземных орбитах. Поэтому многие медико-биологические проблемы будут решаться с учетом новых реалий. Приоритетное развитие "наук о жизни" позволит не только обеспечить успешное решение перспективных задач, стоящих перед космонавтикой, но и внесет неоценимый вклад в земное здравоохранение, на благо каждого человека .

Список использованной литературы:

1.Большая Детская Энциклопедия Вселенная: Научно-популярное издание. - Русское энциклопедическое товарищество, 1999.

2. Большая энциклопедия Вселенная. - М. : Изд-во «Астрель», 1999.

3.Сайт http://spacembi.nm.ru/

4. Энциклопедия Вселенная (“РОСМЭН”)

5. Сайт Wikipedia (картинки)

6.Космос на рубеже тысячелетий. Документы и материалы. М., Международные отношения (2000г.)

7. Циолковский К. Э., Путь к звёздам, М., 1960;

8.Газенко О. Г., Некоторые проблемы космической биологии, «Вестник АН СССР», 1962, №1;

9. Газенко О. Г., Космическая биология, в кн.: Развитие биологии в СССР, М., 1967; Газенко О. Г., Парфенов Г. П., Результаты и перспективы исследований в области космической генетики, «Космическая биология и медицина».

Содержание.

1. Введение

2. Начало. медико-биологических исследований в середине XX века.

Животные, проложившие путь человеку в космос.

3. Этапы биологических исследований.

4. Перспективы развития исследований.

10 медицинских проблем, способных помешать исследованию дальнего космоса

5. Заключение

6. Список использованных источников.

6 429

Человечество зародилось в Африке. Но не все мы остались там, более чем тысячи лет наши предки распространялись по всему континенту и затем покинули его. Когда они добрались до моря, они построили лодки и пересекли под парусом огромные расстояния до островов, о существовании которых они возможно и не знали. Почему?

Вероятно, по той же самой причине, почему мы и звезды и говорим: “Что происходит там? Мы могли туда добраться? Возможно, мы могли бы туда полететь”.

Космос, конечно, более враждебен к человеческой жизни, чем поверхность моря; возможность избежать силы тяжести Земли влечет за собой намного больше работы и расходов, чем отчаливать на лодке от берега. Но тогда лодки были передовой технологией своего времени. Путешественники тщательно планировали свои опасные поездки, и многие из них умерли, пытаясь узнать то, что было за горизонтом.

Покорение космоса с целью поиска новой среды обитания - это грандиозный, опасный, и, быть может, невозможный проект. Но это никогда не останавливало людей от попытки.

1. Взлет

Сопротивление гравитации

Мощные силы сговорились против вас - в частности, гравитация. Если объект над поверхностью Земли хочет летать свободно, он должен буквально выстрелить вверх со скоростью, превышающей 43 000 км в час. Это влечет большие денежные затраты.

Например, чтобы запустить марсоход “Любопытство” на Марс, потребовалось почти $200 миллионов. А если говорить о миссии с членами экипажа, то сумма значительно увеличится.

Сэкономить деньги поможет многоразовое использование летающих кораблей. Ракеты например, разрабатывались для многоразового использования, и как нам известно, уже есть попытки удачного приземления.

2. Полет

Наши корабли слишком медленные

Лететь сквозь космос легко. Это - вакуум, в конце концов; ничто не замедляет вас. Но при старте ракеты возникают сложности. Чем больше масса объекта, тем больше силы нужно, чтобы переместить его, и ракеты имеют огромную массу.

Химическое ракетное топливо отлично подходит для первоначального ускорения, но драгоценный керосин сгорает за считанные минуты. Импульсное ускорение позволит долететь до Юпитера за 5-7 лет. Это чертовски много фильмов в полете. Нам нужен радикальный новый метод для развития скорости полета.

Поздравляем! Вы успешно запустили ракету на орбиту. Но прежде чем вы вырветесь в космос, откуда не возьмись появится обломок старого спутника и врежется в ваш топливный бак. Все, ракеты больше нет.

Это проблема космического мусора, и это очень реально. “Американская Сеть Наблюдения” за космическим пространством обнаружила 17,000 объектов - каждый, размером с мяч - мчащийся вокруг Земли на скоростях больше чем 28 000 км в час; и еще почти 500,000 обломков размером менее 10 см. Адаптеры запуска, крышки для объективов, даже пятно краски могут пробить воронку в критических системах.

Щиты Уиппла - слои металла и кевлара - могут защитить от крохотных частей, но ничто не может спасти вас от целого спутника. Их насчитывается около 4000 на орбите Земли, большинство погибших в воздухе. Управление полетом помогает избежать опасных путей, но не идеально.

Вытолкнуть их из орбиты не реалистично - это займет целую миссию, чтобы избавиться лишь от одного мертвого спутника. Так что теперь все спутники будут падать с орбиты самостоятельно. Они будут выбрасывать за борт дополнительное топливо, а затем использовать ракетные ускорители или солнечный парус, чтобы направиться вниз к Земле и сгореть в атмосфере.

4. Навигация

Нет никакого GPS для космоса

“Сеть Открытого космоса”, антенны в Калифорнии, Австралии, и Испании, являются единственным навигационным инструментом для космоса. Все, что запускается в космос – от спутников студенческих проектов до зонда “Новые горизонты”, блуждающего через Пояс Копейра, зависит от них.

Но с большим количеством миссий, сеть становится переполненной. Коммутатор часто занят. Так что в ближайшем будущем, НАСА работает над тем, чтобы облегчить нагрузку. Атомные часы на самих кораблях сократят время передачи в половину, позволяя вычислять расстояния с единственной передачей информации из космоса. И увеличение пропускной способности лазеров будет обрабатывать большие пакеты данных, таких как фотографии или видео-сообщения.

Но чем дальше ракеты отдаляются от Земли, тем менее надежным становится этот метод. Конечно, радиоволны путешествуют со скоростью света, но передачи в глубокий космос по-прежнему занимают несколько часов. И звезды могут указать вам направление, но они слишком далеко, чтобы указать вам, где вы находитесь.

Эксперт по навигации открытого космоса Джозеф Гинн хочет проектировать автономную систему для будущих миссий, которая собрала бы изображения целей и соседних объектов и использовала бы их относительное местоположение, чтобы разбить на треугольники координат космического корабля, не требующее никакого наземного управления.

Это будет как GPS на Земле. Вы ставите GPS приемник на свое авто и проблема решена.

5. Радиация

Космос превратит вас в мешок с раком

Вне безопасного кокона атмосферы Земли и магнитного поля, вас ждет космическая радиация, и это смертельно. Кроме рака, это может также вызвать катаракту и возможно болезнь Альцгеймера.

Когда субатомные частицы стучат в атомы алюминия, из которого сделан корпус космического корабля, их ядра взрываются, испуская еще больше сверхбыстрых частиц, называемых вторичной радиацией.

Решение проблемы? Одно слово: пластик. Он легкий и крепкий, и он полон водородных атомов, маленькие ядра которых не производят много вторичной радиации. НАСА тестирует пластик, который сможет смягчить радиацию в космических кораблях или космических скафандрах.

Или как насчет этого слова: магниты. Ученые на космическом радиационном проекте “Щит Сверхпроводимости” работают над диборидом магния – сверхпроводник, который отклонил бы заряженные частицы далеко от судна.

6. Еда и вода

На Марсе нет супермаркетов

В августе прошлого года астронавты на ISS съели несколько листьев салата, который они вырастили в космосе, впервые. Но крупномасштабное озеленение в нулевой гравитации – это сложно. Вода плавает вокруг в пузырях вместо того, чтобы сочиться через почву, поэтому, инженеры изобрели керамические трубы, чтобы направлять воду вниз к корням растений.

Некоторые овощи уже довольно космически-эффективны, но ученые работают над генетически модифицированной карликовой сливой, высотой меньше метра. Белки, жиры и углеводы могут восполнятся за счет более разнообразного урожая - как картофель и арахис.

Но все это будет зря, если вы исчерпаете всю воду. (На ISS системе переработки мочи и воды необходим периодический ремонт, и межпланетные экипажи не смогут рассчитывать на доукомплектование новых частей.) ГМО здесь тоже могут помочь. Майкл Флинн, инженер научно-исследовательского центра НАСА, работает над водным фильтром, сделанным из генетически модифицированных бактерий. Он сравнил это с тем, как тонкий кишечник перерабатывает то, что вы пьете. В основном вы – система рециркуляции воды, со сроком полезного использования 75 или 80 лет.

7. Мышцы и кости

Невесомость преобразует вас в месиво

Невесомость разрушает тело: определенные иммунные клетки не в состоянии выполнять свою работу, а эритроциты взрываются. Это способствует появлению камней в почках и делает ваше сердце ленивым.

Астронавты на ISS тренируются, чтобы бороться с атрофией мышц и потерей костной массы, но они все еще теряют массу кости в космосе, и те циклы вращения невесомости не помогают другим проблемам. Искусственная гравитация исправила бы все это.

В своей лаборатории в массачусетском технологическом институте, бывший астронавт Лоуренс Янг проводит испытания на центрифуге: испытуемые лежат на боку на платформе и вращают ногами педали на стационарном колесе, а вся конструкция постепенно раскручивается вокруг своей оси. Результирующая сила воздействует на ноги космонавтов, отдалённо напоминая гравитационное воздействие.

Тренажёр Янга слишком ограничен, его можно использовать использовать больше часа или два в день, для постоянной гравитации, целый космический корабль должен будет стать центрифугой.

8. Психическое здоровье

Межпланетные путешествия - прямой путь к безумию

Когда у человека случается инсульт или сердечный приступ, врачи иногда понижают температуру пациента, замедляя их метаболизм, чтобы уменьшить повреждение от отсутствия кислорода. Это – уловка, которая могла бы работать и для астронавтов. Межпланетное путешествие в течение года (как минимум) , проживание в тесном космическом корабле с плохой едой и нулевой частной жизнью - рецепт для космического безумия.

Вот почему Джон Брэдфорд говорит, что мы должны спать во время космического путешествия. Президент проектной фирмы SpaceWorks и соавтор отчета для НАСА на длинных миссиях, Брэдфорд считает, что криогенная заморозка экипажа сократит расходы еды, воды, и сохранит команду от психического расстройства.

9. Посадка

Вероятность аварии

Планета, привет! Вы были в космосе в течение многих месяцев или даже несколько лет. Далекий мир наконец виднеется через ваш иллюминатор. Все, что вы должны сделать – приземлиться. Но вы кренитесь через лишенное трения пространство со скоростью 200,000 миль в час. О, да, и еще есть гравитация планеты.

Проблема приземления все еще одна из самых актуальных, которую предстоит решить инженерам. Вспомните неудачную на Марс.

10. Ресурсы

Вы не можете взять гору алюминиевой руды с собой

Когда космические корабли отправятся в долгое путешествие, они возьмут с собой запасы с Земли. Но вы не можете взять с собой все. Семена, кислородные генераторы, возможно несколько машин для строительства инфраструктуры. Но поселенцы должны будут сделать все остальное сами.

К счастью космос не совсем бесплоден. “У каждой планеты есть все химические элементы, хотя концентрации отличаются”, говорит Иэн Кроуфорд, планетарный ученый из Биркбека, Лондонского университета. У луны есть много алюминия. У Марса есть кварц и окись железа. Соседние астероиды – большой источник углеродных и платиновых руд - и воды, как только первопроходцы выяснят, как взорвать материю в космосе. Если взрыватели и бурильщики слишком тяжелы, чтоб взять их на корабль, они должны будут извлечь ископаемые другими методами: таяние, магниты или переваривающие металл микробы. И НАСА изучает процесс 3D печати, чтобы напечатать целые здания - и не будет никакой потребности импортировать специальное оборудование.

11. Исследование

Мы не можем сделать все сами

Собаки помогли людям колонизировать Землю, но они не выжили бы на . Чтобы распространиться в новом мире, нам будет нужен новый лучший друг: робот.

Колонизация планеты требует много трудной работы, и роботы могут весь день рыть, не имея необходимость есть или дышать. Текущие прототипы - большие и громоздкие, они с трудом передвигаются по земле. Таким образом, роботы должны быть не похожи на нас, это может быть лёгкий управляемый бот с клешнями в форме экскаваторного ковша, разработанный НАСА, чтобы вырыть лед на Марсе.

Однако, если работа требует ловкости и точности, то тут не обойтись без человеческих пальцев. Сегодняшний космический скафандр разработан для невесомости, а не для пеших прогулок по экзопланете. У прототипа НАСА Z-2 есть гибкие суставы и шлем, который дает четкое представление о любой тонкой фиксации потребностей проводки.

12. Космос огромен

Варп-двигатели все еще не существуют

Самой быстрой вещью, которую когда-либо строили люди, является зонд по имени Гелиос 2. Он уже не функционирует, но если бы в космосе был звук, то вы услышали бы его крик, поскольку он до сих пор вращается вокруг солнца на скоростях больше чем 157,000 миль в час. Это почти в 100 раз быстрее, чем пуля, но даже в при такой скорости потребовалось бы приблизительно 19,000 лет, чтобы достигнуть ближайшую к нам звезду – Альфа Центавра. Во время такого длительного полета сменилось бы тысячи поколений. И вряд ли кто-то мечтает умереть от старости в космическом корабле.

Чтобы победить время нам нужна энергия – очень много энергии. Возможно вы могли бы добыть на Юпитере достаточное количества гелия 3 для термоядерного синтеза (после того, как изобретем термоядерные двигатели, конечно же). Теоретически, околосветовых скоростей можно добиться с помощью энергии аннигиляции материи и антивещества, но заниматься подобным на Земле – опасно.

“Вы никогда не хотели бы делать это на Земле”, говорит Ле Джонсон, техник НАСА, который работает над сумасшедшими идеями звездолета. “Если вы сделаете это в открытом космосе, и что-то пойдет не так, вы не разрушаете континент”. Слишком сильно? Как насчет солнечной энергии? Все, что вам потребуется – это парус, размером с Техас.

Намного более изящное решение взломать исходный код вселенной - с помощью физики. Теоретический двигатель Мигеля Алькубьерре сжал бы пространство-время перед вашим кораблем и расширил бы позади него, так вы могли бы перемещаться скоростью, превышающую скорость света.

Человечеству будут нужны еще несколько Эйнштейнов, работающих в местах как Большой Адронный Коллайдер, чтобы распутать все теоретические узлы. Вполне возможно, что мы сделаем некоторое открытие, которое изменит все, но этот прорыв вряд ли спасет сложившуюся ситуацию. Если вы хотите больше открытий, вы должны вкладывать в них большие деньги.

13. Есть только одна Земля

Мы должны иметь смелость остаться

Пара десятилетий назад, научно-фантастический автор Ким Стэнли Робинсон изобразил схематически будущую утопию на Марсе, построенном учеными из перенаселенной, перенапрягшей Земли. Его “Марсианская трилогия” сделала мощный толчок для колонизации . Но, на самом деле, кроме науки, почему мы стремимся в космос?

Потребность исследовать заложена в наши гены, это единственный аргумент - первопроходческий дух и желание узнать свое предназначение. “Несколько лет назад мечты о покорении космоса занимали наше воображение, - вспоминает сотрудник NASA, астроном Хайди Хаммел. - Мы говорили на языке отважных покорителей космоса, но всё изменилось после того, как станция «Новые горизонты» в июле 2015 года. Перед нами открылось всё многообразие миров Солнечной системы».

А что же с судьбой и предназначением человечества? Историки знают лучше. Расширение Запада было захватом земли, и великие исследователи были главным образом в нем ради ресурсов или сокровищ. Человеческая охота к перемене мест выражается только в обслуживании политического или экономического желания.

Конечно, нависшее разрушение Земли может быть стимулом. Исчерпайте ресурсы планеты, измените климат, и космос станет единственной надеждой на выживание.

Но это опасный ход мыслей. Это создает моральную опасность. Люди думают, что если мы , то можем начать с чистого листа где-нибудь на Марсе. Это неправильное суждение.

Насколько нам известно, Земля – единственное пригодное для жилья место в известной нам Вселенной. И если мы собираемся покинуть эту планету, то это должно быть нашим желанием, а не следствием безвыходного положения.

Вторая половина XX в. ознаменовалась не только проведением теоретических исследований по изысканию путей освоения космического пространства, но и практическим созданием и запуском автоматических аппаратов на околоземные орбиты и на другие планеты, первым полетом человека в космос и длительными полетами на орбитальных станциях, высадкой человека на поверхность Луны. Теоретические исследования в области космической техники и конструирования управляемых летательных аппаратов резко стимулировали развитие многих наук, в том числе новой отрасли знаний - космической медицины.

Основными задачами космической медицины являются следующие:

исследование влияний условий космического полета на организм человека, включая изучение феноменологии и механизмов возникновения сдвигов физиологических показателей в космическом полете;

разработка методов отбора и подготовки космонавтов;

Космическая медицина в своем историческом развитии прошла путь от моделирования факторов космического полета в лабораторных условиях и при полетах животных на ракетах и спутниках до исследований, связанных с длительными полетами орбитальных станций и полетами международных экипажей.

В становлении и развитии космической биологии и медицины в СССР важное значение имели труды основоположников космонавтики К. Э. Циолковского, Ф. А. Цандера и других, сформулировавших ряд биологических проблем, разрешение которых должно было явиться необходимой предпосылкой для освоения человеком космического пространства. Теоретические аспекты космической биологии и медицины зиждется на классических положениях таких основоположников естествознания, как И. М. Сеченов, К. А. Тимирязев, И. П. Павлов, В. В. Докучаев, Л. А. Орбели и других, в трудах которых красной нитью отражено учение о взаимодействии организма и внешней среды, разработаны принципиальные вопросы приспособления организма к изменяющимся условиям внешней среды.

Большую роль для формирования ряда положений и разделов космической медицины сыграли работы, выполненные в области авиационной медицины, а также исследования, проведенные на биофизических ракетах и космических кораблях в 50-60-х годах.

Практическое освоение космического пространства с помощью пилотируемых полетов началось с исторического полета Ю. А. Гагарина, первого в мире космонавта, совершенного 12 апреля 1961 г. на корабле «Восток». Все мы помним его простую человеческую фразу. «Поехали», произнесенную во время старта космического корабля «Восток», В этой фразе лаконично и в то же время достаточно емко охарактеризовалось величайшее достижение человечества. Помимо всего прочего, полет Ю. А. Гагарина был экзаменом на зрелость как космонавтики в целом, так и космической медицины в частности.

Медико-биологические исследования, проведенные до этого полета, и разработанная на их основе система жизнеобеспечения обеспечили нормальные условия обитания в кабине космического корабля, необходимые космонавту для выполнения полета. Созданная к этому времени система отбора и подготовки космонавтов, система биотелеметрического контроля за состоянием и работоспособностью человека в полете и гигиеническими параметрами кабины определили возможность и безопасность полета.

Однако вся предшествующая работа, все многочисленные полеты животных на космических кораблях не могли ответить на некоторые вопросы, связанные с полетом человека. Так, например, до полета Ю. А. Гагарина не было известно, как условия невесомости влияют на чисто человеческие функции: мышление, память, координацию движений, восприятие окружающего мира и другое. Только полет первого человека в космос показал, что эти функции не претерпевают существенных изменений в невесомости. Вот почему Ю. А. Гагарина во всем мире называют первооткрывателем «звездных дорог», человеком, проложившим путь всем последующим пилотируемым полетам.

За 20 лет, прошедших с полета Ю. А. Гагарина, человечество неуклонно и всесторонне продолжало осваивать космическое пространство. И в связи с этим славным юбилеем представляется удобный случай не только проанализировать сегодняшние достижения космической медицины, но и сделать исторический экскурс в прошедшее и предшествующее ему десятилетия.

Космические полеты на всем своем развитии можно условно разделить на несколько этапов. Первый этап - это подготовка полета человека в космическое пространство, он охватывал значительный период времени. Его сопровождали такие исследования, как: 1) обобщение данных физиологии и авиационной медицины, изучавших влияние неблагоприятных факторов внешней среды на организм животных и человека; 2) проведение многочисленных лабораторных исследований, в которых имитировались некоторые факторы космического полета и исследовалось их влияние на человеческий организм; 3) специально подготовленные эксперименты на животных при полетах на ракетах в верхние слои атмосферы, а также во время орбитальных полетов на искусственных спутниках Земли.

Основные тогда задачи были направлены на изучение вопроса о принципиальной возможности полета человека в космос и решение проблемы создания систем, обеспечивающих пребывание человека в кабине космического корабля во время орбитального полета. Дело в том, что в то время существовало определенное мнение ряда достаточно авторитетных ученых о несовместимости жизни человека с условиями длительной невесомости, так как при этом могли якобы возникать значительные нарушения функции дыхания и кровообращения. Кроме того, опасались, что человек мог бы не выдержать психологическую напряженность полета.

причем продолжительность невесомости в зависимости от высоты полета составляла от 4 до 10 мин. Анализ результатов этих исследований показал, что при полете на ракетах наблюдались лишь умеренные изменения физиологических показателей, проявлявшиеся в учащении пульса и увеличении артериального давления при воздействии ускорений во время взлета и посадки ракеты (с тенденцией к нормализации или даже снижению этих показателей во время пребывания в невесомости).

В целом воздействие факторов полета на ракетах не вызывало существенных нарушений физиологических функций животных. Биологические эксперименты при вертикальных запусках ракет показали, что собаки удовлетворительно переносят достаточно большие перегрузки и кратковременную невесомость.

В 1957 г. в СССР был осуществлен запуск второго искусственного спутника Земли с собакой Лайкой. Это событие имело принципиальное значение для космической медицины, поскольку впервые позволяло высокоорганизованному животному достаточно длительное время находиться в условиях невесомости. В результате была установлена удовлетворительная переносимость животным условий космического полета. Последующие эксперименты с шестью собаками во время полетов второго, третьего, четвертого и пятого советских кораблей-спутников, возвращаемых на Землю, позволили получить большой материал о реакциях основных физиологических систем организма высокоорганизованных животных (как в полете, так и на Земле, включая послеполетный период).

небольшие консервированные участки кожи кролика и человека, насекомые, черные и белые лабораторные мыши и крысы, морские свинки. Все исследования, проведенные с помощью кораблей-спутников, дали обширный экспериментальный материал, твердо убедивший ученых в безопасности полета человека (с точки зрения здоровья) в космос.

В тот же период были решены и задачи по созданию систем жизнеобеспечения космонавтов - системы подачи кислорода в кабину, удаления углекислого газа и вредных примесей, а также питания, водообеспечения, врачебного контроля и утилизации продуктов жизнедеятельности человека. В этих работах принимали самое непосредственное участие специалисты космической медицины.

Второй этап, совпавший с первым десятилетием пилотируемых полетов (1961-1970 гг.), характеризовался кратковременными космическими полетами человека (от одного витка за 108 мин до 18 сут). Он начинается с исторического полета Ю. А. Гагарина.

Результаты медико-биологических исследований, выполненных за это время, надежно доказали не только возможность пребывания человека в условиях космического полета, но и сохранение у него достаточной работоспособности при выполнении различных заданий в ограниченной по объему кабине космического корабля и при работе в безопорном пространстве вне космического корабля. Однако при этом был выявлен ряд изменений со стороны двигательной сферы, сердечно-сосудистой системы, системы крови и других систем человеческого организма.

Было также установлено, что приспособление космонавтов к обычным условиям земного существования после космических полетов длительностью, начиная с 18 сут, протекает с известными трудностями и сопровождается более выраженным напряжением регуляторных механизмов, чем приспособление космонавта к невесомости. Таким образом, при дальнейшем увеличении времени полета требовалось создать системы соответствующих профилактических средств, усовершенствовать системы медицинского контроля и разработать методики прогноза состояния членов экипажей в полете и после его завершения.

Во время пилотируемых полетов по указанным программам, наряду с медицинскими исследованиями экипажей, проводились также и биологические эксперименты. Так, на борту кораблей «Восток-3», «Восток-6», «Восход», «Восход-2», «Союз» находились такие биологические объекты, как лизогенные бактерии, хлорелла, традесканция, клетки хелла; нормальные и раковые клетки человека, сухие семена растений, черепахи.

Третий этап пилотируемых космических полетов связан с длительными полетами космонавтов на борту орбитальных станций, он совпадает с истекшим десятилетием (1971 -1980 гг.). Отличительной особенностью пилотируемых полетов на данном этапе, кроме значительной продолжительности пребывания человека в полете, является увеличение объема свободного пространства жилых помещений - от кабины космического корабля до обширных зон обитания внутри орбитальной станции. Последнее обстоятельство имело двоякое значение для космической медицины: с одной стороны, стало возможным размещать на борту станции разнообразную аппаратуру для медико-биологических исследований и средства профилактики неблагоприятного воздействия невесомости, а с другой - значительно снизить влияние на человеческий организм со стороны факторов ограничения двигательной активности - гипокинезии (т. е. связанной с малыми размерами свободного пространства).

Следует сказать, что на орбитальных станциях могут быть созданы и более комфортные условия быта, личной гигиены и т. д. А применение комплекса профилактических средств может в значительной степени сгладить неблагоприятные реакции организма на невесомость, что имеет большой положительный эффект. Однако, с другой стороны, этим самым в определенной степени сглаживаются реакции человеческого организма на невесомость, что затрудняет анализ возникающих сдвигов для различных систем организма человека, характерных для условий невесомости.

Впервые долговременная орбитальная станция («Салют») была запущена в СССР в 1971 г. В последующие годы осуществлялись пилотируемые полеты на борту орбитальных станций «Салют-3, -4, -5, -6» (причем четвертая основная экспедиция станции «Салют-6» находилась в космосе 185 сут). Многочисленные медико-биологические исследования, выполненные во время полета орбитальных станций, показали, что с увеличением продолжительности пребывания человека в космосе прогрессирования выраженности реакций организма на условия полета в целом не наблюдалось.

Применявшиеся комплексы профилактических средств обеспечили поддержание хорошего состояния здоровья и работоспособности космонавтов в таких полетах, а также способствовали сглаживанию реакций и облегчали приспособление к земным условиям в послеполетном периоде. Важно отметить, что проведенные медицинские исследования не выявили каких-либо сдвигов в организме космонавтов, препятствующих планомерному увеличению продолжительности полетов. Вместе с тем со стороны, некоторых систем организма были обнаружены функциональные изменения, которые являются предметом дальнейшего рассмотрения.

К настоящему времени космические полеты совершили уже 99 человек различных стран на борту 78 космических кораблей и 6 долговременных орбитальных станций2. Суммарное время путешествий составило около 8 человеко-лет. В СССР на 1 января 1981 г. осуществлено 46 пилотируемых космических полетов, в которых участвовало 49 советских космонавтов и 7 космонавтов из социалистических стран. Таким образом, на протяжении двух десятилетий пилотируемых космических полетов темп и масштабы проникновения человека в космическое пространство стремительно возрастали.

Далее мы рассмотрим основные результаты исследований по космической медицине, выполненных за это время. Во время космических полетов человеческий организм может подвергаться действию различных неблагоприятных факторов, которые условно можно разделить на следующие группы: 1) характеризующие космическое пространство как своеобразную физическую среду (крайне низкое барометрическое давление, отсутствие кислорода, ионизирующее излучение и т. д.); 2) обусловленные динамикой летательного аппарата (ускорение, вибрация, невесомость); 3) связанные с пребыванием космонавтов в герметической кабине космического корабля (искусственная атмосфера, особенности питания; гипокинезия и т. д.); 4) психологические особенности космического полета (эмоциональная напряженность, изоляция и т. д.).

жизнеобеспечения создает необходимые условия для жизни и работы в пространстве кабины. Исключением в этой группе факторов является космическая радиация: при некоторых солнечных вспышках уровень космической радиации может настолько увеличиться, что стенки кабины не смогут защитить космонавта от действия космических лучей.

и в том, что ученые пока еще не научились моделировать полный спектр космической радиации в условиях Земли. Это естественно создает значительные сложности в изучении биологического действия космической радиации и в разработке мер защиты.

В этом направлении проводятся различные исследования по созданию электростатической защиты космического корабля, т. е. делаются попытки создать вокруг космического корабля электромагнитное поле, которое будет отклонять заряженные частицы, не пропуская их к кабине. Большой объем работ осуществляется и в области разработки фармакохимических средств профилактики и лечения лучевых поражений.

Большинство факторов второй группы с успехом моделируется в условиях земного эксперимента и изучается уже давно (вибрация, шумы, перегрузки). Их действие на человеческий организм вполне понятно, а, следовательно, ясны и меры профилактики возможных расстройств. Наиболее важным и специфичным при космическом полете является фактор невесомости. Следует отметить, что при длительном действии он может изучаться только в условиях реального полета, поскольку в этом случае моделирование его на Земле является весьма приближенным.

Наконец, третья и четвертая группы факторов полета не столько уж и являются космическими, однако условия космического полета вносят так много своего, присущего только этому виду деятельности, что исследование возникающих при этом психологических особенностей, а также режимов труда и отдыха, психологической совместимости и других факторов представляет собой самостоятельную и весьма сложную проблему.

Совершенно очевидно, что многогранность проблем космической медицины не позволяет исчерпывающе рассмотреть все из них, и здесь мы остановимся только на некоторых таких проблемах.

Медицинский контроль и медицинские исследования в полете

В комплексе мероприятий, обеспечивающих безопасность космонавтов в полете, важная роль принадлежит медицинскому контролю, задачей которого является оценка и прогнозирование состояния здоровья членов экипажа и выдача рекомендаций на проведение профилактических и лечебных мероприятий.

Особенность медицинского контроля в космическом полете состоит в том, что «пациентами» врачей являются здоровые, физически отлично подготовленные люди. В этом случае задача медицинского контроля состоит главным образом в выявлении функциональных приспособительных изменений, которые могут возникнуть в человеческом организме под влиянием факторов космического полета (в первую очередь невесомости), в оценке и анализе этих изменений, в определении показаний к применению профилактических средств, а также в; выборе наиболее оптимальных режимов их использования.

Обобщение результатов медицинских исследований в космических полетах и многочисленных исследований с моделированием факторов полета в условиях Земли позволяет получить данные о влиянии разнообразных нагрузок на человеческий организм, о допустимых пределах колебаний физиологических показателей и об особенностях реакций организма в этих условиях.

Следует подчеркнуть, что подобные исследования по космической медицине, уточняющие наши знания о нормальных проявлениях жизнедеятельности человеческого организма и более четко проводящие грань между его нормальными и измененными реакциями, имеют большое значение для выявления начальных признаков отклонений не только у экипажей космических кораблей в полете, но и в клинической практике, при анализе начальных и скрытых форм заболеваний и их профилактике.

качестве источников информации используются данные бесед врача с космонавтами, отчеты космонавтов о своем самочувствии и результаты само- и взаимоконтроля, анализ радиопереговоров (включая спектральный анализ речи). Важными источниками информации являются данные объективной регистрации физиологических параметров, показателей среды в кабине космического корабля (давление, содержание кислорода и углекислоты, влажность, температура и т. д.), а также анализ результатов выполнения наиболее сложных операций по управлению кораблем и научно-технических экспериментов.

Эта информация с помощью телеметрических систем поступает в центр управления полетом, где обрабатывается с помощью вычислительных машин и анализируется врачами. Физиологические параметры, подлежащие регистрации и передаче на Землю, определяются в соответствии с особенностью программы полета и спецификой деятельности экипажа. При оценке состояния здоровья космонавтов первостепенное значение имеет информация о состоянии наиболее жизненно важных систем человеческого организма (дыхание и кровообращение), а также об изменениях физической работоспособности космонавтов.

б необычной среде обитания, помогают выяснять механизмы изменения физиологических функций и приспособления организма к условиям невесомости. Все это необходимо для разработки средств профилактики и для планирования медицинского обеспечения последующих полетов.

Объем медицинской информации, передаваемой с помощью биотелеметрии на Землю, был в различных полетах неодинаковым. В первых полетах по программе «Восток» и «Восход», когда наши знания о действии факторов космического полета на человеческий организм были весьма ограничены, регистрировался достаточно широкий спектр физиологических параметров, поскольку необходимо было не только контролировать состояние здоровья космонавтов, но и широко изучать его физиологические реакции на условия полета. При полетах по программе «Союз» количество физиологических показателей, передаваемых на Землю, ограничено и было оптимальным для контроля за состоянием здоровья космонавтов.

который был и раньше, во время полетов на орбитальных станциях осуществлялись периодические углубленные медицинские обследования, проводимые раз в 7-10 сут. Последние включали в себя клинические электрокардиографические обследования (в покое и при функциональных пробах), регистрацию показателей артериального и венозного давлений, изучение фазовой структуры сердечного цикла по данным кинетокардиографии, исследования ударного и минутного объема сердца, пульсового кровенаполнения различных областей тела (методом реографии) и ряд других обследований.

В качестве функциональных проб использовалась дозированная физическая нагрузка организма космонавта на велоэргометре («космическом велосипеде»), а также проба с приложением отрицательного давления к нижней части тела. В последнем случае с помощью вакуумного комплекта «Чибис», представляющего собой гофрированные «брюки», создавалось отрицательное давление в области нижней части живота и нижних конечностей, что вызывало прилив крови к этим областям, подобный тому, который имеет место на Земле во время пребывания человека в вертикальном положении.

Такая имитация вертикальной позы позволяет получить дополнительную информацию об ожидаемом состоянии экипажа в послеполетном периоде. Указанное обстоятельство представляется чрезвычайно важным, поскольку, как это было установлено в предыдущих полетах, длительное пребывание в невесомости сопровождается снижением так называемой ортостатической устойчивости, которая проявляется выраженными сдвигами в показателях сердечно-сосудистой системы при нахождении человека в вертикальном положении.

На орбитальной станции «Салют-6» (см. таблицу) проводилось измерение массы тела человека, исследовался объем голени, а также изучалось состояние вестибулярного аппарата и функции внешнего дыхания. В ходе полета осуществлялся забор проб крови и других жидкостей организма, проводилось исследование микрофлоры внешних покровов, слизистых оболочек человека и поверхностей станции, а также осуществлялся анализ проб воздуха. Взятые в полете материалы для исследований доставлялись с экспедициями посещения на Землю для детального анализа.

Методы исследования в космических полетах

Космические корабли Годы запуска Методы физиологических измерений

«Востоки» 1961-1963 Электрокардиография (1-2 отведения, пнемография, сейсмокардиография и кинетокардиография (характеризуют механическую функцию сердца), электроокулография (регистрация движений глаз), электроэнцефалография (регистрация биотоков коры головного мозга), кожно-гальванический рефлекс.

«Восходы» 1964-1965 Электрокардиография, пневмография, сейсмокардиография, электроэнцефалография, регистрация двигательных актов письма.

одиночные 1967-1970 Электрокардиография, пневмография, сейсмокардиография, температура тела.

тахоосциллография (для измерения показателей артериального давления), флебография (для регистрации кривой пульса яремной вены и определения венозного давления, реграфия (для изучения ударного и минутного объема сердца и пульсового кровенаполнения различных областей тела), измерение массы тела, объема голени, забор крови, изучение внешнего дыхания, микробиологические исследования, а также исследования водно-солевого обмена и др.

Во время длительных полетов на орбитальных комплексах «Салют» - «Союз» важное значение придавалось медицинскому управлению. Медицинское управление является частью (подсистемой) более общей системы «экипаж - корабль - центр управления полетом», и его функции направлены на сохранение максимальной организованности всей системы в целом путем поддержания хорошего состояния здоровья экипажа и необходимой его работоспособности. С этой целью медицинская служба тесно взаимодействовала с экипажем и специалистами по планированию программы полета. Рабочим органом управления была группа медицинского обеспечения в центре управления полетом, вступавшая во взаимный контакт с экипажем, с консультативно-прогностической группой и с другими группами центра управления полетом.

Результаты обследований и формировавшиеся на их основе рекомендации по использованию профилактических средств, режиму труда и отдыха и другим медицинским мероприятиям систематически обсуждались с экипажем и принимались им к исполнению. Все это создавало атмосферу благожелательности и делового сотрудничества между группой медицинского обеспечения и экипажем в решении задачи сохранения здоровья экипажа в полете и в подготовке для встречи его с Землей.

Средства профилактики

предпосылкой для разработки профилактических средств и рациональной системы медицинского контроля в длительных космических полетах. Имеющиеся к настоящему времени данные позволяют сформулировать некоторые рабочие гипотезы, которые могут рассматриваться как схема для проведения дальнейших исследований.

Главным звеном в патогенезе действия фактора невесомости является, по-видимому, снижение функциональной нагрузки на ряд систем человеческого организма в связи с отсутствием веса и связанного с этим механического напряжения структур тела. Функциональная недогруженность человеческого организма в состоянии невесомости проявляется, вероятно, как изменение афферентации с механорецепторов, а также как изменение распределения жидких сред и снижение нагрузки »а опорно-двигательный аппарат космонавта и его тоническую мускулатуру.

всегда имеет место напряжение структур, обусловленное силой веса. При этом большое количество мышц, а также связки, некоторые суставы, противодействуя этой тенденции, постоянно находятся под нагрузкой независимо от положения тела человека. Под влиянием веса внутренние органы стремятся и к смещению по направлению к Земле, натягивая фиксирующие их связки.

Многочисленные нервные воспринимающие приборы (рецепторы), находящиеся в мышцах, связках, внутренних органах, сосудах и т. д., посылают импульсы в центральную нервную систему, сигнализируя о положении тела. Такие же сигналы поступают из вестибулярного аппарата, расположенного во внутреннем ухе, где кристаллики углекислых солей (столиты), смещая нервные окончания под влиянием своего веса, сигнализируют о перемещении тела.

Однако при длительном полете и непременном его атрибуте - невесомости - вес тела и отдельных его частей отсутствует. Рецепторы мышц, внутренних органов, связок, сосудов при нахождении в невесомости работают как бы «в другом ключе». Сведения о положении тела поступают главным образом из зрительного анализатора, и нарушается выработанное на протяжении всего развития человеческого организма взаимодействие анализаторов пространства (зрения, вестибулярного аппарата, мышечного чувства и др.). Мышечный, тонус и нагрузка на мышечную систему в целом уменьшаются, поскольку отсутствует необходимость противостоять им силе веса.

В результате в невесомости уменьшается общий объем импульсации с воспринимающих элементов (рецепторов), идущий в центральную нервную систему. Это приводит к снижению активности центральной нервной системы, что, в свою очередь, влияет на регуляцию внутренних органов и других функций человеческого организма. Однако организм человека - структура чрезвычайно пластичная, и через некоторое время пребывания человека в состоянии невесомости отмечается приспособление его организма к этим условиям, причем работа внутренних органов уже происходит на новом, ином (по сравнению с Землей) функциональном уровне взаимодействия между системами.

благодаря ее весу стремится в нижележащие части тела (ноги, нижняя часть живота). В связи с этим организм космонавта вырабатывает систему механизмов, препятствующих такому перемещению. В невесомости ведь нет силы, кроме энергии сердечного толчка, которая бы способствовала перемещению крови к нижним участкам тела. В результате наблюдается прилив крови к голове и органам грудной клетки.

вен и предсердий. Это является поводом к сигналу в центральную нервную систему о включении механизмов, способствующих уменьшению избытка жидкости в крови. В результате возникает ряд рефлекторных реакций, приводящих к увеличению выведения жидкости, а вместе с ней и солей из организма. В конечном итоге может снизиться вес тела и измениться содержание некоторых электролитов, в частности калия, а также измениться состояние сердечно-сосудистой системы.

Перераспределение крови играет, по-видимому, определенную роль в развитии вестибулярных нарушений (космическая форма укачивания) в начальном периоде пребывания в невесомости. Однако ведущая роль здесь все же принадлежит, вероятно, нарушению слаженной работы органов чувств в условиях невесомости, осуществляющих пространственную ориентировку.

к соответствующему изменению в так называемых антигравитационных мышцах, снижению их тонуса, атрофии. Снижение тонуса и силы мышц, в свою очередь, способствует ухудшению регуляции вертикальной позы и нарушению походки у космонавта в послеполетном периоде. Вместе с тем причиной этих явлений может быть и перестройка двигательного стереотипа в процессе.

Приведенные представления о механизме изменения некоторых функций человеческого организма в условиях невесомости, естественно, довольно схематичны, еще не во всех своих звеньях подтверждены экспериментально. Мы провели эти рассуждения лишь с целью показать взаимосвязанность всех функций организма космонавта, когда изменения в одном звене вызывают целую гамму реакций различных систем. С другой стороны, важно подчеркнуть обратимость изменений, широкие возможности приспособления человеческого организма к действию самых необычных факторов внешней среды.

Описанные изменения функций организма космонавта в состоянии невесомости могут рассматриваться как отражение приспособительных реакций человека к новым условиям существования - к отсутствию силы веса. Естественно, что эти изменения во многом определяют соответствующие реакции со стороны человеческого организма, которые имеют место при возвращении космонавта на Землю и при последующем приспособлении его организма к условиям Земли, или, как говорят врачи, при реадаптации.

Выявленные после кратковременных полетов в космос сдвиги в ряде функций организма космонавта, прогрессирующие с увеличением продолжительности полетов, поставили вопрос о разработке средств профилактики неблагоприятного влияния невесомости. Теоретически можно было предположить, что применение искусственной силы тяжести (ИСТ) явится наиболее радикальным средством защиты от невесомости. Однако создание ИСТ порождает ряд физиологических проблем, связанных с пребыванием во вращающейся системе, а также технических проблем, которые должны обеспечить создание ИСТ в космическом полете.

В связи с чем исследователи еще задолго до начала космических полетов начали поиски других путей для профилактики неблагоприятных изменений в человеческом организме в условиях космического полета. В ходе этих исследований испытывались многочисленные методы для профилактики неблагоприятного влияния невесомости, не связанные с применением ИСТ. К ним относятся, например, физические методы, направленные на уменьшение перераспределения крови в организме космонавта во время или после окончания полета, а также на стимуляцию нервно-рефлекторных механизмов, регулирующих кровообращение в вертикальном положении тела. Для этого используются приложение отрицательного давления к нижней части тела, накладываемые на руки и ноги надувные манжеты, костюмы для создания перепада положительного давления, вращение на центрифуге малого радиуса, инерционно-ударные воздействия, электростимуляция мышц нижних конечностей, эластичные и противоперегрузочные костюмы и т. д.

Среди других методов подобной профилактики отметим физические нагрузки, направленные на поддержание тренированности организма и стимуляцию некоторых групп рецепторов (физические тренировки, нагрузочные костюмы, нагрузка на скелет); воздействия, связанные с регуляцией питания (добавление солей, белков и витаминов в пищу, нормирование питания и водопотребления); целенаправленное воздействие с помощью так называемых медикаментозных средств и измененной газовой среды.

Профилактические средства против каких-либо неблагоприятных сдвигов в организме космонавта могут быть эффективны лишь в том случае, если они назначаются с учетом механизма этих нарушений. Применительно к невесомости профилактические средства должны быть направлены в первую очередь на восполнение дефицита мышечной активности, а также на воспроизведение эффектов, которые в условиях Земли обусловливаются весом крови и тканевой жидкости.

физических упражнений на беговой дорожке и велоэргометре, а также силовых упражнений с эспандерами; 2) создание постоянной нагрузки на опорно-двигательный аппарат и скелетную мускулатуру космонавта (ежесуточное пребывание в течение 10-16 ч в нагрузочных костюмах); 3) тренировки с приложением отрицательного давления к нижней части тела, проводимые в конце полета; 4) применение водно-солевых добавок в день окончания полета; 5) применение послеполетного противоперегрузочного костюма.

С помощью специальных костюмов и системы резиновых амортизаторов при выполнении «космической зарядки» создавалась нагрузка величиной 50 кг в направлении продольной оси тела, а также статическая нагрузка на основные группы антигравитационных мышц.

Физические тренировки проводились также и на велоэргометре - аппарате, аналогичном велосипеду, но стоящем на месте. На нем космонавты педалировали ногами или руками, создавая тем самым соответствующую нагрузку на соответствующие мышечные группы.

Нагрузочные костюмы воспроизводили постоянную статическую нагрузку на опорно-двигательный аппарат и скелетную мускулатуру космонавта, что в определенной степени компенсирует отсутствие земной силы тяжести. Конструктивно костюмы выполнены как полуприлегающие комбинезоны, включающие в себя эластичные элементы типа резиновых амортизаторов.

Для создания отрицательного давления на нижнюю часть тела применялся вакуумный комплект в виде брюк, представляющих собой герметический мешок на каркасе, в котором можно создавать разрежение. При уменьшении давления создаются условия оттока крови к ногам, что способствует такому ее распределению, которое характерно для человека, находящегося в вертикальной позе в условиях Земли.

Водно-солевые добавки предназначались для задержки воды в организме и увеличения объема плазмы крови. Послеполетный профилактический костюм, надеваемый под скафандр перед спуском, был предназначен для создания избыточного давления на ноги, что препятствует на Земле скоплению крови в нижних конечностях при вертикальном положении тела и благоприятствует сохранению нормального кровообращения при переходе из горизонтального положения в вертикальное.

Изменение основных функций человеческого организма в невесомости

Главным итогом изучения космического пространства (с медицинской точки зрения) стало доказательство возможности не только длительного пребывания человека в условиях космического полета, но и разносторонней его деятельности там. Это дает теперь право рассматривать космическое пространство как среду будущего обитания человека, а космический аппарат и сам полет в космос - как наиболее эффективный, непосредственный способ изучения реакций человеческого организма в этих условиях. К настоящему времени накопилась достаточно большая информация о реакциях различных физиологических систем организма космонавта в разные фазы полета и в послеполетном периоде.

Симптомокомплекс, внешне сходный с болезнью укачивания (снижение аппетита, головокружение, усиление слюноотделения, тошнота, а иногда и рвота, пространственные иллюзии), в той или иной степени выраженности наблюдается примерно у каждого третьего космонавта и проявляется в первые 3-6 сут полета. Важно отметить, что в настоящее время пока еще невозможно достоверно предсказывать степень выраженности этих явлений у космонавтов в полете. У некоторых космонавтов признаки укачивания проявлялись также и в первые сутки после возвращения на Землю. Развитие симптомокомплекса укачивания в полете в настоящее время объясняется изменением функционального состояния вестибулярного аппарата космонавта и нарушением взаимодействия его сенсорных систем, а также особенностями гемодинамики (перераспределением крови) в условиях невесомости.

Симптомокомплекс перераспределения крови в верхнюю часть тела имеет место почти у всех космонавтов в полете, возникает в первые сутки и затем в различные сроки, в среднем в течение недели, постепенно сглаживается (но не всегда полностью исчезает). Этот симптомокомплекс проявляется ощущением прилива крови и тяжести в голове, заложенностью носа, сглаженностью морщин и одутловатостью лица, увеличением кровенаполнения и давления в венах шеи и показателей кровенаполнения головы. Объем голени уменьшается. Описанные явления связаны с перераспределением крови вследствие отсутствия ее веса в невесомости, что приводит к уменьшению скопления крови в нижних конечностях и увеличению притока в верхнюю часть тела.

некоторых рабочих операций и затрудняется оценка мышечных усилий, необходимых для выполнения ряда движений. Однако уже в течение нескольких первых суток полета эти движения вновь обретают необходимую точность, уменьшаются необходимые усилия для их выполнения и эффективность двигательной работоспособности возрастает. При возвращении на Землю субъективно увеличивается вес предметов и собственного тела, изменяется регуляция вертикальной позы. При послеполетном исследовании двигательной сферы у космонавтов выявляется уменьшение объема нижних конечностей, некоторая потеря мышечной массы и субатрофия антигравитационной мускулатуры, главным образом длинных и широких мышц спины.

Изменения функций сердечно-сосудистой системы в длительных космических полетах проявляются как тенденция к небольшому снижению некоторых показателей артериального давления, повышение венозного давления в области вен шеи и снижение его в области голени. Выброс крови при сокращении сердца (ударный объем) первоначально увеличивается, а минутный объем кровообращения имеет на протяжении полета тенденцию к превышению предполетных величин. Показатели кровенаполнения головы обычно увеличивались, нормализация их происходила на 3-4 месяцах полета, а в области голени уменьшались.

Реакция сердечно-сосудистой системы на функциональные пробы с приложением отрицательного давления к нижней части тела и физической нагрузкой претерпевала некоторые изменения в полете. При пробе с приложением отрицательного давления реакции космонавта в отличие от земных были более выраженными, что указывало на развитие явлений ортостатической детренированности. Вместе с тем переносимость проб с физической нагрузкой в полугодовых полетах практически во всех обследованиях оценивалась как хорошая, и реакции качественно не отличались от предполетного периода. Это свидетельствовало о том, что с помощью профилактических мероприятий удается стабилизировать реакцию организма на функциональные пробы и даже в ряде случаев достигнуть их меньшей выраженности, чем в предполетном периоде.

В послеполетном периоде при переходе из горизонтального положения в вертикальное, а также при проведении ортостатической пробы (пассивное вертикальное положение на наклонном столе) выраженность реакций больше, чем до полета. Это объясняется тем, что в условиях Земли кровь снова обретает свой вес и устремляется к нижним конечностям и вследствие снижения у космонавтов тонуса сосудов и мышц здесь может скапливаться больше крови, чем обычно. В результате происходит отток крови от мозга.

может резко снизиться артериальное давление, мозг будет испытывать недостаток крови, а следовательно, и кислорода.

солей после полета. Сразу после полетов уменьшается выведение жидкости почками и увеличивается выведение ионов кальция и магния, а также ионов калия. Отрицательный баланс калия в сочетании с увеличением выведения азота, вероятно, указывает на уменьшение клеточной массы и снижение способности клеток в полном объеме ассимилировать калий. Исследования некоторых функций почек с помощью нагрузочных проб выявили рассогласование в системе ионорегуляции в виде разнонаправленного изменения экскреции жидкости и некоторых ионов. При анализе полученных данных складывается впечатление, что сдвиги в водно-солевом балансе обусловлены изменением систем регуляции и гормонального статуса под влиянием фактора полета.

Уменьшение минеральной насыщенности костной ткани (потеря кальция и фосфора костями) отмечено в ряде полетов. Так, после 175- и 185-суточных полетов эти потери составляли 3,2-8,3%, что существенно меньше, чем после длительного постельного режима. Такое относительно небольшое уменьшение минеральных компонентов в костной ткани является весьма существенным обстоятельством, поскольку рядом ученых деминерализация костной ткани рассматривалась как один из факторов, который может явиться препятствием для увеличения длительности космических полетов.

Биохимические исследования показали, что под влиянием длительных космических полетов происходит перестройка процессов метаболизма, обусловленная приспособлением организма космонавта к условиям невесомости. Выраженных изменений обмена веществ при этом не наблюдается.

и восстанавливается примерно через 1-1,5 месяца после полета. Исследования содержания эритроцитов в крови во время и после полетов представляют большой интерес, поскольку, как известно, средняя продолжительность жизни эритроцитов составляет 120 сут.

объема плазмы крови. В результате включаются компенсаторные механизмы, стремящиеся сохранить основные константы циркулирующей крови, что приводит (вследствие уменьшения объема плазмы крови) к адекватному уменьшению эритроцитарной массы. Быстрое же восстановление эритроцитарной массы после возвращения на Землю невозможно, поскольку образование эритроцитов происходит медленно, в то время как жидкая часть крови (плазма) восстанавливается! значительно быстрее. Такое быстрое восстановление объема циркулирующей крови приводит к кажущемуся дальнейшему уменьшению содержания эритроцитов, которое восстанавливается через 6-7 недель после окончания полета.

Таким образом, результаты гематологических исследований, полученные во время и после длительных космических полетов, позволяют оптимистически оценивать возможность приспособления системы крови космонавта к условиям полета и ее восстановление в послеполетном периоде. Это обстоятельство является чрезвычайно важным, поскольку в специальной литературе возможные гематологические изменения, ожидаемые в длительных космических полетах, рассматриваются как одна из проблем, способная воспрепятствовать дальнейшему увеличению продолжительности полетов.

после полета. Необходимо все же сказать, что мы еще не все знаем о реакциях космонавтов в длительном полете, не со всеми неблагоприятными явлениями можем бороться. Работы в этом плане предстоит еще много.

Космическая биология и медицина, как и космонавтика вообще, могла появиться лишь тогда, когда научный и экономический потенциал страны достиг мировых вершин.

Один из ведущих специалистов в космической биологии и медицине — академик Олег Георгиевич Газенко. В 1956 году его включили в группу ученых, которым было поручено медицинское обеспечение будущих космических полетов. С 1969 года Олег Георгиевич возглавляет Институт медико-биологических проблем Министерства здравоохранения СССР.

О. Газенко рассказывает о развитии космической биологии и космической медицины, о проблемах, которые решают ее специалисты.

Космическая медицина

Иногда спрашивают: с чего началась космическая биология и космическая медицина? И в ответ можно порой услышать и прочитать, что начиналась она с опасений, с вопросов типа: сможет ли человек в невесомости дышать, есть, спать и т. д.?

Конечно, эти вопросы возникали. Но все- таки дело обстояло иначе, чем, скажем, в эпоху великих географических открытий, когда мореплаватели и путешественники отправлялись в путь, не имея ни малейшего представления о том, что их ждет. Мы же в основном знали, что ждет человека в космосе, и это знание было достаточно обоснованным.

Космическая биология и космическая медицина начинались не на пустом месте. Они выросли из общей биологии, вобрали в себя опыт экологии, климатологии и других дисциплин, в том числе и технических. Теоретический анализ, который предшествовал полету Юрия Гагарина, основывался на данных авиационной, морской, подводной медицины. Имелись и экспериментальные данные.

Еще в 1934 году, сначала у нас и чуть позже в США, были предприняты попытки исследовать влияния верхних слоев атмосферы на живые организмы, в частности, на механизм наследственности мух-дрозофил. К 1949 году относятся первые полеты животных — мышей, кроликов, собак — на геофизических ракетах. В этих опытах исследовалось влияние на живой организм не только условий верхней атмосферы, но и самого полета на ракете.

Рождение науки

Всегда трудно определить дату рождения какой-либо науки: вчера, мол, ее еще не было, а сегодня появилась. Но вместе с тем в истории любой отрасли знания есть событие, знаменующее ее становление.

И как, скажем, работы Галилея можно считать началом экспериментальной физики, так и орбитальные полеты животных ознаменовали рождение космической биологии — все, вероятно, помнят собаку Лайку, отправленную в космос на втором советском искусственном спутнике Земли в 1957 году.

Потом была организована еще серия биологических испытаний на кораблях-спутниках, давшая возможность исследовать реакцию животных на условия космического полета, наблюдать за ними после полета, изучать отдаленные генетические последствия.

Итак, к весне 1961 года мы знали, что человек сможет совершить космический полет — предварительный анализ показывал, что все должно быть благополучно. И, тем не менее, поскольку речь шла о человеке, всем хотелось иметь известные гарантии на случай непредвиденных обстоятельств.

Поэтому первые полеты готовились с подстраховкой и даже, если угодно, с перестраховкой. И здесь просто нельзя не вспомнить Сергея Павловича Королева. Можно представить себе, сколько дел и забот было у Главного конструктора, готовящего первый полет человека в космос.

И, тем не менее, он вникал во все детали медико-биологической службы полета, заботясь о максимальной ее надежности. Так, Юрию Алексеевичу Гагарину, полет которого должен был длиться полтора часа и который вообще мог обойтись без еды и воды, дали пищи и других необходимых запасов на несколько суток. И правильно поступили.

Причина тут в том, что нам тогда просто недоставало информации. Знали, например, что в невесомости могут возникнуть расстройства вестибулярного аппарата, но такими ли они будут, как мы их представляем, было неясно.

Другой пример — космическая радиация. Знали, что она существует, но насколько она опасна, определить на первых порах было трудно. В тот начальный период изучение самого космического пространства и освоение его человеком шли параллельно: еще не все свойства космоса были изучены, а полеты уже начались.

Поэтому и защита от радиации на кораблях была мощнее, чем требовали реальные условия. Тут мне хочется подчеркнуть, что научные работы в космической биологии с самого начала были поставлены на солидную, академическую основу, подход к разработке этих, казалось бы, прикладных проблем был весьма фундаментальным.

Развитие космической биологии

Академик В. А. Энгельгардт, будучи в то время академиком-секретарем отделения общей биологии АН СССР, много сил и внимания уделил тому, чтобы дать космической биологии и космической медицине хороший старт.

Много помогал расширению исследований и созданию новых коллективов и лабораторий академик Н. М. Сисакян: по его инициативе уже в начале 60-х годов 14 лабораторий различных академических институтов вели работу в области космической биологии и космической медицины, в них были сосредоточены сильные научные кадры.

Большой вклад внес в развитие космической биологии и космической медицины академик В. Н. Черниговский. Как вице-президент Академии медицинских наук СССР, он привлекал к разработке этих проблем многих ученых своей академии.

Непосредственными руководителями первых экспериментов по космической биологии были академик В. В. Парин, который специально исследовал проблемы космической физиологии, и профессор В. И. Яздовский. Необходимо вспомнить и первого директора Института медико-биологических проблем профессора А. В. Лебединского.

С самого начала дело возглавили крупные ученые, и это обеспечило и хорошую постановку исследований и — как следствие — глубину и точность теоретического предвидения, которое прекрасно подтвердила практика космических полетов.

Три из них следует отметить особо.

— Это биологический эксперимент на втором искусственном спутнике, показавший, что живое существо в космическом летательном аппарате может без вреда для себя находиться в космическом пространстве.

— Это полет Юрия Гагарина, показавший, что космос не оказывает негативного влияния на эмоционально-психическую сферу человека (а такие опасения были), что человек, как и на Земле, может мыслить и работать в космическом полете.

— И, наконец, это выход в открытый космос Алексея Леонова: человек в специальном скафандре находился и работал вне корабля и — главное, что интересовало ученых,- уверенно ориентировался в пространстве.

В этот ряд следует поставить и высадку американских астронавтов на поверхность Луны. Программа «Аполлон» также подтвердила некоторые положения, теоретически разработанные на Земле.

Подтвердился, например, характер движений человека на Луне, где сила тяготения значительно меньше, чем на Земле. Практика подтвердила и теоретический вывод о том, что быстрый пролет через радиационные пояса, окружающие Землю, неопасен для человека.

Под словом «практика» я имею в виду не только полеты людей. Им предшествовали полеты наших автоматических станций типа «Луна» и «Зонд» и американских «Сервейеров», которые основательно разведали обстановку и на трассе и на самой Луне.

На «Зондах», кстати, Луну облетели живые существа и благополучно возвратились на Землю. Так что полет людей на наше ночное светило был подготовлен очень фундаментально.

Как видно из приведенных примеров, самой характерной чертой первого периода космической биологии был поиск ответов на принципиальные вопросы. Сегодня, когда эти ответы, причем довольно подробные, в основном получены, поиск ушел как бы вглубь.

Цена полета в космос

Современный этап характерен более тщательным и тонким изучением глубинных, фундаментальных биологических, биофизических, биохимических процессов, идущих в живом организме в условиях космического полета. И не просто изучением, но и попытками управлять этими процессами.

Чем это объяснить?

Полет человека в космос на ракетном аппарате небезразличен для состояния организма. Конечно, его приспособительные возможности необычайно велики и пластичны, но не беспредельны.

Притом за всякое приспособление всегда надо чем-то платить. Скажем, самочувствие в полете стабилизируется, но эффективность работы снизится.

Приспособишься в невесомости к «легкости необыкновенной», но потеряешь силу мышц и крепость костей… Эти примеры лежат на поверхности. Но, очевидно, и глубинные жизненные процессы подчиняются этому закону (и тому есть подтверждения). Их приспособление не столь заметно, в кратковременных полетах может вообще не проявиться, но ведь полеты становятся все длительнее.

Какова же плата за такое приспособление? Можно с ней согласиться или она нежелательна? Известно, например, что в крови космонавтов во время полета уменьшается число эритроцитов — красных кровяных телец, переносящих кислород. Уменьшение незначительное, неопасное, но это в недолгом полете. А как этот процесс пойдет в полете длительном?

Все это необходимо знать, чтобы построить профилактическую защитную систему и тем расширить возможности человека жить и работать в космосе. И не только для космонавтов — специально отобранных и подготовленных людей, но и для ученых, инженеров, рабочих, может быть, деятелей искусств.

Происходит углубление самого понятия «космическая медицина и биология». По замыслу, это прикладная наука, вырабатывающая на основе данных общей биологии свои рекомендации, свои методы и приемы поведения человека в космосе. Поначалу так оно и было. Но теперь стало ясно, что космическая биология и космическая медицина не производное от общей биологии, а вся биология в целом, только изучающая организмы в особых условиях существования.

Взаимные интересы науки

Ведь все, что делает человек на Земле, он начинает делать и в космосе: ест, спит, работает, отдыхает, в очень далеких полетах люди будут рождаться и умирать — словом, человек начинает в полном биологическом смысле жить в космосе. И поэтому мы теперь не найдем, наверное, ни одного раздела биологических и медицинских знаний, которые были бы нам безразличны.

Вследствие этого возрос масштаб исследований: если в первых шагах космической биологии и космической медицины принимал участие буквально десяток ученых, то сейчас на ее орбиту вышли уже сотни учреждений и тысячи специалистов самого различного и подчас неожиданного, на первый взгляд, профиля.

Вот пример: Институт трансплантации органов и тканей, которым руководит известный хирург профессор В. И. Шумаков. Казалось бы, что может быть общего между изучением здорового организма в особых условиях космического полета и такой крайней мерой спасения безнадежных больных, как пересадка органов? Но общее есть.

Область взаимных интересов относится к проблемам иммунитета — природной защиты организма от воздействия бактерий, микробов и других чужеродных тел. Установлено, что в условиях космического полета иммунологическая защита организма слабеет. Тому есть ряд причин, одна из них заключается в следующем.

В обычной жизни мы везде и всегда встречаемся с микробами. В замкнутом пространстве космического корабля атмосфера почти стерильна, микрофлора значительно беднее. Иммунитет становится практически «безработным» и «теряет форму», как теряет ее спортсмен, если долго не тренируется.

Но и при пересадке органов, чтобы организм не отторгнул их, приходится уже искусственно снижать уровень действия иммунитета. Вот тут и возникают наши общие вопросы: как ведет себя организм в этих условиях, как уберечь его от инфекционных заболеваний?..

Есть и другая область взаимных интересов. Мы полагаем, что со временем люди будут очень долго летать и жить в космосе. Значит, могут и заболеть. Поэтому возникает необходимость, во-первых, представить себе, какие это могут быть заболевания, а во-вторых, обеспечить людей в полете диагностической аппаратурой и, конечно, средствами лечения.

Это могут быть лекарства, но может быть и искусственная почка — нельзя исключить вероятность того, что в дальних экспедициях понадобятся и такие средства. Вот и думаем вместе со специалистами Института трансплантации органов и тканей над тем, как снабдить участников будущих космических экспедиций «запчастями» и какова должна быть «технология ремонта».

Впрочем, операция в космосе — это, конечно, крайний случай. Основную роль будет играть профилактика, предупреждение заболеваний. И тут не последнюю роль может сыграть питание как средство управления обменом веществ и его изменениями, если они возникнут, а также как средство снижения нервно-эмоционального напряжения.

Определенным образом составленная диета с включением в пищу соответствующих препаратов сделает свое дело незаметно для человека, процедура не будет носить характера приема лекарства. Соответствующие исследования мы проводили в течение ряда лет с Институтом питания АМН СССР под руководством академика АМН СССР А. А. Покровского.

Еще пример: Центральный институт травматологии и ортопедии имени Н. Н. Приорова (ЦИТО), который возглавляет академик АМН СССР М. В. Волков. Сфера интересов института — костно-опорный аппарат человека. Причем исследуются не только методы лечения переломов и ушибов, способы протезирования, но и всякого рода изменения костной ткани.

Последнее интересует и нас, ибо в космосе тоже происходят определенные изменения костной ткани. Методы же воздействия на эти процессы, применяемые и в космосе и в клинике, в основе — своей очень близки.

Распространенная в наше время гипокинезия — малая подвижность — в еще большей степени проявляется в космосе. Состояние человека, вставшего с постели после двухмесячной болезни, сравнимо с состоянием космонавта, вернувшегося из полета: обоим надо заново учиться ходить по земле.

Дело в том, что в невесомости часть крови перемещается из нижней части тела в верхнюю, приливает к голове. Кроме того, мышцы, не получая привычной нагрузки, слабеют. Примерно тоже самое происходит при долгом лежании в постели. Когда же человек возвращается на Землю (или встает после долгой болезни), происходит обратный процесс — кровь быстро оттекает сверху вниз, что сопровождается головокружениями и может даже вызвать обморок.

Чтобы избежать подобных явлений, космонавты в полете нагружают мышцы на специальном тренажере, используют так называемую вакуумную систему, которая способствует перемещению части крови в нижнюю половину тела. Вернувшись же из полета, они носят некоторое время послеполетные профилактические костюмы, которые, наоборот, препятствуют быстрому оттоку крови из верхней половины тела.

Теперь подобные средства используются и в лечебных учреждениях. В ЦИТО тренажеры типа космических позволяют больным «гулять», не вставая с постели. А послеполетные костюмы с успехом прошли испытание в Институте хирургии имени А. В. Вишневского — с их помощью пациенты быстрее встают на ноги в буквальном смысле.

Перераспределение крови в организме не просто механический процесс, оно влияет и на физиологические функции и поэтому представляет немалый интерес как для космической биологии и медицины, так и для клинической кардиологии. Тем более что вопросы регуляции кровообращения при изменении пространственного положения тела недостаточно еще исследованы на здоровых людях.

И вот в совместных исследованиях с Институтом кардиологии имени А. Л. Мясникова и Институтом трансплантации органов и тканей мы получили первые интересные данные о том, например, как меняется давление в различных сосудах и полостях сердца при изменении положения тела в пространстве. О том, как и в каком темпе меняется при физической нагрузке биохимический состав крови, оттекающей от мозга, или от печени, или от мышц, то есть отдельно от каждого органа.

Это дает возможность более глубоко судить о его работе и состоянии. Исследования, о которых идет речь, необычайно обогащают наши знания физиологии и биохимии человека, это пример фундаментального изучения биологической сущности человека. И пример не единственный.

Я уже упоминал, что в космосе у человека уменьшается число эритроцитов в крови и что важно разобраться в причинах этого явления. Специальные исследования, в частности на спутнике «Космос-782», показали, что в космосе снижается устойчивость (резистентность) этих клеток, и поэтому они разрушаются чаще, чем в нормальных земных условиях, средняя продолжительность жизни их сокращается.

Теперь, естественно, придется выяснять, каким образом можно было бы поддержать устойчивость эритроцитов. Это важно для космоса, но может оказаться полезным и для борьбы с анемией и другими болезнями крови.

Тот факт, что космическая биология участвует в фундаментальных исследованиях человеческого организма, вполне определенным образом характеризует современный этап ее развития, Фундаментальные исследования закладывают основы дальнейшего развития практической деятельности. В нашем случае закладываются основы дальнейшего продвижения человека в космос.

Кто полетит в космос

Уже сейчас потребности исследования космического пространства заставляют ученых думать о расширении состава специалистов, летающих в космос.

В ближайшие годы можно ожидать появления на орбите ученых — исследователей космоса, инженеров — организаторов внеземного производства различных материалов, которые нельзя получить на Земле, рабочих для сборки космических объектов и обслуживания производств и т. д.

Для этих специалистов придется, по-видимому, расширить довольно узкую сейчас «калитку» медицинского отбора, то есть снизить формальные требования к состоянию здоровья, уменьшить объем подготовительных тренировок.

Вместе с тем, разумеется, должна быть гарантирована и полная безопасность и, я бы сказал, безвредность полета для этих людей.

В орбитальном полете это сделать относительно просто: можно не только наладить постоянный контроль за состоянием экипажа, но и, в крайнем случае, всегда есть возможность за несколько часов вернуть человека на Землю. Другое дело — межпланетные полеты, они будут значительно более автономными.

Экспедиция, скажем, на Марс займет 2,5-3 года. Значит, подход к организации таких экспедиций должен быть иным, чем при полетах на орбите. Здесь, очевидно, нельзя снижать требования к здоровью при отборе кандидатов.

Более того, кандидаты, как мне представляется, должны обладать не только отличным здоровьем, но и некоторыми конкретными свойствами — скажем, способностью легко адаптироваться к меняющимся условиям окружающей среды или же определенным характером реакции на экстремальные воздействия.

Очень важна возможность организма приспосабливаться к изменению биологических ритмов. Дело в том, что свойственные нам ритмы имеют сугубо земное происхождение. Например, самый важный из них — суточный — прямо связан со сменой дня и ночи. Но земные сутки существуют только на Земле, на других планетах сутки, естественно, иные, и к ним придется приспосабливаться.

Что делать во время полета

Очень большое значение приобретают вопросы, связанные с моральным климатом, который установится на борту. И дело тут не только в личных качествах людей, но и в организации их работы, быта — вообще жизни, с учетом потребностей, в том числе и эстетических, каждого члена экипажа. Этот круг вопросов, пожалуй, наиболее сложный.

Например, проблема свободного времени. Считают, что во время перелета к тому же Марсу рабочая нагрузка на каждого члена экипажа составит не более 4 часов в сутки. Отведем 8 часов на сон, останется 12. Чем их занять? В ограниченном пространстве космического корабля, при неизменном составе экипажа сделать это не так просто. Книги? Музыка? Фильмы? Да, но не любые. Музыка, даже любимая, может вызвать излишнее эмоциональное возбуждение, усилить чувство отрыва от дома.

Книги и фильмы драматичного или трагедийного плана тоже способны вызвать негативные реакции, а вот жанр приключений, фантастики, книги путешественников, полярников, спелеологов, в которых есть материал для сравнения, сопереживания, будут, бесспорно, восприняты хорошо. Решать кроссворды, ребусы можно, а играть в шахматы или шашки едва ли будет рекомендовано, ибо в таких играх есть элемент соперничества, нежелательный в подобной ситуации.

Все эти соображения возникли в результате уже ведущихся исследований. Они, на мой взгляд, весьма стимулируют пристальное изучение психологии человека, и я думаю, что со временем, когда названные проблемы будут достаточно разработаны, они принесут большую пользу и земной практике — в организации труда и отдыха людей.

Жизнеобеспечение экспедиций

Особое место в разработке межпланетных полетов занимает жизнеобеспечение экспедиций. Сейчас космонавты все, что им нужно в полете, просто берут с Земли (лишь частично регенерируется атмосфера; в некоторых полетах проводили экспериментальную регенерацию воды).

Но на три года запасов с собой не возьмешь. На межпланетном корабле предстоит создать замкнутую экологическую систему, наподобие земной, но в миниатюре, которая будет снабжать экипаж пищей, водой, свежим воздухом и утилизировать отходы жизнедеятельности.

Задача невероятно сложная! По существу, речь идет о конкуренции с природой: то, что она создавала многие миллионы лет на всей планете, люди пытаются воспроизвести в лаборатории, чтобы потом перенести в космический корабль.

Такие работы ведутся уже много лет в нашем институте, в Красноярском институте физики имени Л. В. Киренского. Кое- что уже сделано, но все-таки еще нельзя говорить о больших здесь успехах. Многие специалисты вообще полагают, что реальный практический успех, может быть, достигнут лишь лет через 15-20. Возможно, конечно, и раньше, но ненамного.

Генетика

Наконец, проблемы генетики, воспроизводства потомства. В нашем институте совместно с МГУ и Институтом биологии развития АН СССР ведутся исследования, цель которых определить влияние невесомости на эмбриогенез и морфогенез.

Эксперименты, в частности на спутнике «Космос-782», показали, что насекомым (дрозофилам) невесомость не мешает давать нормальное потомство, а у более сложных организмов — рыб, лягушек — в ряде случаев были обнаружены нарушения, отклонения от нормы. Это говорит о том, что им для нормального развития на самых первых этапах жизни зародыша нужна сила земного тяготения, и, стало быть, эту силу следует создавать искусственно.

Проблематика длительных космических полетов

Итак, проблематика длительных космических полетов — самое существенное в нашей сегодняшней работе. И тут правомерен вопрос: а насколько длительным может быть пребывание человека в космосе? Точно сейчас ответить нельзя. В организме во время полета происходит ряд процессов, которыми пока не удается управлять. Они не изучены до конца, человек ведь еще не летал долее трех месяцев, и мы не знаем, как пойдут эти процессы при более продолжительных сроках полета.

Необходима объективная, экспериментальная проверка, и вопрос о возможности, скажем, трехлетнего пребывания человека в космосе должен быть решен на околоземной орбите. Только тогда у нас появится гарантия, что такая экспедиция пройдет благополучно.

Но я думаю, что человек не встретит на этом пути неодолимых препятствий. Такой вывод можно сделать на основе уже сегодняшних знаний. Ведь космическая эра человечества только началась, и, образно говоря, мы сейчас только собираемся в ту дальнюю дорогу, которая предстоит человечеству в космосе.



Что еще почитать